
365

Ensuring Quality in the Development of an Automated
Testbed via Concepts of Extreme Programming1

Clauirton A. Siebra, Angela F. Freitas, Kleber R. Carneiro, Paulo R. Costa,
 Raquel X. Freitas, Fabio Q. B. da Silva, Andre L. M. Santos

Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 – 50.740-540 – Recife – PE – Brazil

{cas,aff,krc2,phrc,rxf,fabio,alms}@cin.ufpe.br

Abstract. This paper describes our experience on using concepts of the Agile
methodology during the development cycle of an automated testbed solution.
The initial idea was to consider one of the Agile methods, the Extreme
Programming, to lead our process. However, the particular features of our
system have required adaptations in our initial process so that we could
ensure the final product quality. This paper details all the steps of this
adaptation, stressing the rationale for each of our decisions.

Resumo. Este artigo descreve nossa experiência no uso da metodologia Agile
durante o ciclo de desenvolvimento de um ambiente de automação. A idéia
inicial foi considerar um dos métodos Agile, Extreme Programming, como
base do nosso processo. Porém, características específicas do nosso sistema
forçaram uma adaptação dessa idéia inicial, de modo que pudéssemos
garantir a qualidade final do produto. O artigo detalha todos os passos dessa
adaptação, destacando as razões para cada uma das nossas decisões.

1. Introduction

The development of mobile phones has evolved into a complex engineering process,
mainly because of the capabilities that such devices currently support and are going to
support in their new generations. This has increased the pressure on the test stage of
mobile phones, which is required to apply more extensive and efficient procedures of
evaluation so that the final product meets the fast time-to-market goals and can compete
in the global marketplace. The test automation [Graham and Fewster 1999] is one
alternative to this emerging scenario, because it enables tests to be launched and
executed without the need for user intervention. In this way, common delays and errors
associated with the manipulation of test parameters by humans can be avoided.
Furthermore, tests can be continuously run during hours or days, ensuring maximum test
coverage.

This paper relates our experience on the implementation of an automated testbed
for mobile phones in close cooperation with the client and customers, in this case
Samsung/SIDI and its engineering team. Our initial problems were that customers had
only an abstract idea about the testbed and their functions, at the start of the

1 The results presented in this paper have been developed as part of a collaborative project between
Samsung Institute for Development of Informatics (Samsung/SIDI) and the Centre of Informatics at
the Federal University of Pernambuco (CIn/UFPE), financed by Samsung Eletrônica da Amazônia
Ltda., under the auspices of the Brazilian Federal Law of Informatics no. 8248/91.

VI Simpósio Brasileiro de Qualidade de Software

366

development, and there were many doubts about the possibility of integrating this new
testbed to third-party components, currently used in the test process of mobile phones.
Thus, the development of this testbed was classified as a high risk project, which should
be evolved in phases based on new requirements that could be raised along the project.
For this main reason, we decided for applying several ideas of Extreme Programming
(XP) [Beck 2000], which were compatible to the features of our project, as commented
along the paper.

The remainder of this paper is organized as follows: Section 2 introduces the
principal concepts of Extreme Programming and how we initially have used them to
ensure the testbed development quality. Section 3 details the modifications on the
original development method, stressing the reasons for such modifications. Finally,
Section 4 concludes this work, presenting some final remarks.

2. Appling the Extreme Programming Concepts

Figure 1 shows an abstract architecture of the automated testbed, after an initial meeting
with customers. In brief, we should develop an automation tool module and to integrate
it to both a scenarios simulator and the mobile phone to be tested. The communication
channels (CH) of this testbed gave us a better impression about the modules
interactions, sequence of events and general function of the system as a whole. Then,
based on Figure 1, we could imagine a system able to: sense and recognize the events
generated by the scenarios simulator (CH2); manipulate such events, generating specific
commands to be executed into the equipment in test (CH3); emulate the test execution
outputs as events in the simulated scenario (CH4); capture (failure or completion)
feedbacks about the performance of the mobile phone in test (CH5) and; generate logs
that explain all the test process, such as detailing failures and their reasons (CH1).

Figure 1. An abstract view of the testbed environment

After a first planning meeting and with this abstract understanding about the
system and their features, we decided to apply several concepts of the Extreme
Programming method. The main reasons for that were:

 Abstract initial idea about the system so that it was impossible to define a
complete specification. Then, the system should evolve in iterations, with a
continue aggregation of new functionalities and concepts;

 As the customers themselves were not sure about the real possibility of
implementing some technical details, such as the integration of the testbed
components, it was important to release small versions of the system, so that
they could see its evolution and raise, from each release, new requirements to
next iterations;

VI Simpósio Brasileiro de Qualidade de Software

367

 We intended to have the customer constantly aware of what was being done, so
that they could collaborate with the team to construct a product that would
satisfy their expectations;

 We had a short time, about four months, to create something functional and
useful. Furthermore, this development has involved activities of research and
prototyping to validate some concepts. Thus, we needed to eliminate or
summarize parts of the development that were not actually essential.

Extreme Programming (XP) is a software engineering methodology, the most
prominent of several agile software development methodologies [Abrahamsson et al.
2003]. Like other agile methodologies, Extreme Programming differs from traditional
methodologies primarily in placing a higher value on adaptability than on predictability.
Proponents of XP regard ongoing changes to requirements as a natural, inescapable and
desirable aspect of software development projects. They believe that being able to adapt
to changing requirements at any point during the project life is a more realistic and
better approach than attempting to define all requirements at the beginning of a project
and then expending effort to control changes to the requirements. XP prescribes a set of
12 practices, for managers and developers, which are meant to embody and encourage
particular values such as communication, simplicity and feedback. Table 1 lists such
practices, indicates if we have initially employed them, and traces some comments about
our initial use of these practices.

Table 1. XP practices and their initial use in our project

XP Practice Adoption Comments about the initial use of the practices

Planning game Partially
adopted

A plan was defined for each iteraction and their tasks (analysis, design or tests),
including release dates (Figure 2). But we did not define requirements for each
interaction in any level of abstraction.

Small releases Adopted Iterations were 15 days long each, with releases at the end of each one.

Metaphor Adopted A common vision about how the program works was defined (Figure 1), also with a
system of names. This metaphor has mainly evolved during the first two iterations.

Simple design Adopted We did not care about a complex design, at the beginning of the project, which
could anticipate any new functionality or concept.

Test-first
design

Not
adopted

The main integration test was left to the end of each iteration, while some functional
tests were carried out during the implementation.

Refactoring Adopted We decided for regular refactoring and a flat design evolution.

Pair
programming

Not
adopted

We have used an adaptation of this idea (Section 4.4), mainly as a way to
communicate knowledge throughout the team.

Collective
ownership

Adopted The team collectively owned the code. In several occasions the code required
special knowledge to deal with particular problems. However this knowledge was
always shared so that all the team could change the code.

Continuous
integration

Adopted We tried to keep the system integrated at all times. For that, it was common to
perform more than one code consolidation during each interaction.

40-hour week Partially
adopted

We tried to keep an average time of 40-hour per week. A few times we put in
overtime to meet the release dates.

On-site
customer

Not
adopted

The customer was geographically separated from the team. However several
resources (e.g., SkypeTM and teleconference) were used to surpass this limitation.

Coding
standards

Adopted A manual of coding standards was specified and used for the team. Thus, the code
was kept uniform and familiar to all members, supporting the collective ownership.

VI Simpósio Brasileiro de Qualidade de Software

368

During the planning game, it was defined that we should deliver the system in
five iterations of 15 business days each (Figure 2). Each of these iterations was defined
as follows: three days to requirements specification, five days to analysis and design,
seven days to implementation and one day to final tests. After that, the development
team could build a release and send it to the project manager and customer so that the
interaction could be approved. Apart from the code implementation itself, other artifacts
should also be delivered, such as: an interface prototype document, a document of
requirements and a document of user cases.

Figure 2. Schedule to 5 iterations defined during the plan game phase.

The phases of requirements definition were the moments when the team had
more opportunities to discuss about the system evolution. The team itself was composed
by one customer (representing the company), one part time project manager, one
technical coordinator and three developers. From this team, only the project manager
had experience with XP. However all the team had opportunity, before the project start
up, to review the method. During the evolution of the iterations, more functions and
external components (e.g., database) were adding complexity to the development so that
we were forced to tailor the XP method according to our needs.

3. Adaptations and their Rationale

Several projects have made adaptations to XP [Grenning 2001] [Silva et al. 2005]
during their software development process. These adaptations are very connected to the
final product features. An interesting case, for example, is the adaptation of XP for
developing lightweight ontologies for Artificial Intelligence applications [Hristozova
and Sterling 2002]. The important point of this discussion is that all these adaptations
are in fact supported by the Agile Methodology itself, which argues that there is no
process that fits every project as such, but rather practices should be tailored to suit the
needs of individual projects. Based on this context, the next sections discuss the
adaptations carried out during our project and the reasons for them.

3.1. Documentation

The documentation on the development process was the activity that required more
adaptations during the project. According to XP, documentation is a very time-
consuming process so that it is very important to discuss about which kind of
documentation is in fact important for the project. Based on this affirmation, we have

VI Simpósio Brasileiro de Qualidade de Software

369

defined: (1) a Coding Standard (CS) document to clear the understating of source code;
(2) a Requirement Specification (RS) document to specify the system requirements; (3)
an Use Cases (UC) document to support technical reviews and system maintainers; and
(4) an Interface Prototype (IP) document to validate the requirements with the customer.
Note that, while the CS was prepared during a pre-iterations phase, the other documents
should be updated at each interaction (RS during the definition of requirements phase
and UC/IP during the analysis and design phase).

Our first setback was about the UC documentation. This kind of document, in
particular, can and should be written in a way that avoids frequent hard modifications.
For example, we could avoid the definition of alternative and exceptional fluxes,
keeping the focus on the main UC goal. However we did not follow this
recommendation so that the updates of this documentation, during the second and third
iterations, were very time-consuming. Furthermore, as we were using the principle of
collective ownership, all the team was always up to the code (we did not have a division
between developers and programmers). Such facts have reduced the interest for UC in
our project. On the other hand, the specification of UC has helped us to think about the
system in a more detailed way. In addition, UC documentation is very important to
maintain the system, mainly if the maintenance process will be carried out by other team
in the future. To deal with this treading-off, we decided by relaxing the UC specification
during the iterations and create a complete version at the end of the project, as
commented later.

The second setback was related to the IP documentation. We have noticed that it
was very useful during joint discussions because the team could discuss better the
design ideas in such an easier way to all participants. For example, the IP documentation
helped to reveal misunderstandings regarding what the customer expected from the first
iteration. This was a decisive factor to consider the IP as an instrument to validate the
understanding of customers during the requirements elicitation phase, rather than only
creating it during the analysis and design phase.

Our third setback was about the difference between documenting new
requirements and solicitations of changes (e.g., interfaces adjustments). As a way of
avoiding mix of concepts, we decided to introduce a new document (SLA – Service
Level Agreement) to register such solicitations. SLA keeps tracking of the tasks that are
developed by the team. It contains information about the tasks to be developed, the
iteration to which each task was assigned and estimated time for tasks completion.

Other motivation to use the SLA documentation was to offer a better support to
the release planning, which is part of the XP Planning Game practice. However XP
implements this document in a different way. XP suggests that solicitations to be
implemented (called user stories) should be written on cards, and then assigned
priorities and estimations. These cards are then moved around a table, in a meeting
involving all the team, to create a set of stories to be implemented during the iterations.
In our case, as the team was not located at the same site, we could not work in this way.
The tasks needed to be documented using a media that could be easily sent to everyone
involved, and thus we decided to document them in an ExcelTM document.

A fourth setback was the sporadic need of Technical Research Reports (TRR).
TRR are documents that describe the results of investigations about one or more

VI Simpósio Brasileiro de Qualidade de Software

370

technologies or concepts. The main aim of this document is to provide knowledge to the
team, supporting its process of decision making. Thus, TRR is much like an explanatory
and comparative document. During our project, the team has produced four TRR.
Generally one of the members was allocated to this task, working part of an interaction
in this subject. The TRR was included as part of the package released at the end of some
interaction.

A last issue was concerned with the documents related to the Death Phase (after
iterations phase or the end of the project). The main aim of this last documentation
package was to support the future generations of engineers that will maintain the
product we are building. Actually the death phase documentation can be seen as an
evolution of the documents produced along the project. The documents that we have
considered to the death phase are:

 Final and complete version of User Cases;

 Generation of Javadoc to provide a high-level document to navigate the system;

 Document about the system architecture. This was an appropriate moment to do
that because the last refactoring was already carried out;

 User manual, which was evolved from the interface prototype documentation.

Considering all this discussion about documentation, we can conclude we were
in accordance with XP when we decided to create all the documentation that in fact can
help the development process. Ever the SLA and TRR, which are not common
documents of a development process, have their roles in our process. The SLA has
improved our ability to monitor the development progress, mainly from the point of
view of customer and project manager. Furthermore, it was employed as a basis to
establish metrics of development, so that we could predict average values to codification
tasks. TRRs have avoided the losing of specialized knowledge, as well as supported the
sharing process of such knowledge and its maintenance for future iterations.

3.2. Refactoring

XP advocates that we should only codify what it is required at the moment, keeping the
implementation as simply as possible. During the evolution of the code, this may result
in a system that is stuck. For example, with multiple copies of the same/similar code, or
with codes very related so that the change of one affects another. To deal with this
problem, XP doctrine says that when this occurs, the system is telling you to refactor
your code by changing the architecture, making it simpler and more generic.

We have initially agreed to such practice. However the very constant adjustment
of requirements, mainly during the first iterations, has changed our minds so that we
decided to perform only two main refactorings. A first refactoring was done when we
had a better idea about the system (end of the second interaction). The second
refactoring was scheduled to the end of the project. This decision was possible because
our project is complex in terms of routines and functions (e.g.; routines for external
integration or synchronization algorithms). However it is not so extensive in terms of
code lines (the system has about 120 classes), so that bad-design related problems could
temporarily coexist with the ongoing codification. An interesting idea is to use the
concepts of refactoring and patterns together [Kerievsky 2004]. Fundaments of this

VI Simpósio Brasileiro de Qualidade de Software

371

matching suggest that using patterns to improve an existing design is better than using
patterns early in a new design. Then we could improve the design with patterns by
applying sequences of low-level design transformations in the form of refactorings.

3.3. Tests

XP encourages the practice of creating unit tests before coding the functionalities.
According to XP, the creation of unit tests helps developers to really consider what
needs to be done, and thus is a good guiding to the development of code. We have used
continuous tests (in parallel to implementation) to validate several parts of our system.
However the test definition was done only after the implementation of each
functionality. The main reason was we already had enough documentation to know our
needs and the additional creation of unit tests documents, before the coding, could delay
the process.

From our experience we could say that continuous tests are in fact a very good
practice that adds quality to the code as it ensures each individual component is working
before integration. However we do not have the experience to say if it is better/easier to
think about such tests before or after the implementation. Our big mistake related to
tests was that we did not document them. Actually we did not feel the need of this
documentation as a way to help our development, but to revalidation of functions after
significant code changes and refactoring processes. Thus we certainly corroborate to the
idea of having a very well documented suite of tests, independently if they are produced
before or after the implementation of each functionality.

3.4. Additional issues

We have applied other three minor but important adaptations on the XP practices. First,
we have not used the On-side customer practice. However this by no means should be
interpreted that geographically distributed teams are not entitled for XP methodology.
Actually there are already reported experiences on successful projects with distributed
teams [Baheti 2002]. In our case we have used multimedia resources (e.g., SkypeTM and
teleconference) to “connect” the team. Note that it is important that, even geographically
dispersed, the team must be available for eventual discussions.

The second adaptation is also related to the On-side Customer practice. Apart
from eventual discussions, we have defined fixed meetings, at the beginning of each
interaction (Definition of Requirements phase), with all the team to define the next
directions. Such meetings were important to attenuate the dispersed feature of our team.
To improve the effectiveness of such meetings, we have noticed the importance of short
pre-meeting, without the participation of the customer, so that we could align our ideas
and avoid as much as possible conflicts between members of the development team.

The third adaptation is related to the Pair Programming practice. We have
observed that the process of codification swaps between deliberate and mechanical
moments. Deliberative moments are the part of the codification where developers make
decision about how to implement the code (algorithms). Mechanical moments are the
part of the codification more related to edition and organisation of the code (e.g., choice
of names, creation of classes, imports, implementation of algorithms, etc.). We have
only used pair of developers during deliberative moments, when critical decisions

VI Simpósio Brasileiro de Qualidade de Software

372

should be done. In such cases, it was very important two developers to exchange ideas
to reach better solutions. The code integration is a different moment where developers
are working side-by-side. Here we have used a merging tool the shows the difference
between the original and new code. Thus, before integrations, pair of developers must
review all the changed code so that at least two persons are aware of its modifications.

4. Final Remarks

 We had a good productivity applying the techniques discussed here. At the end of five
iterations we had a functional testbed, whose features were compatible to the pre-
defined requirements so that the customer accepted the final product. Some numbers
about our final products are: 122 work days (1.560 hours), 5 developers, 25 specified
packages with 120 classes, 10720 code lines, 843 methods and 415 attributes. As future
directions, an extension plan was already specified to this testbed and our intention is
still improving/adapting our method during the development of such extension.

Acknowledgements

The authors would like to thank all the test engineers of the CIn/SIDI-Samsung Test
Center (Amanda Araujo, Karine Santos, Luiz Filgueiras and Talita Spiller). The team is
also very grateful for the support received from Samsung/SIDI team, in particular from
Ariston Carvalho, Miguel Lizarraga, Ildeu Fantini and Vera Bier. The National Council
for Scientific and Technological Development (CNPq) has provided valuable support to
the project through the Brazilian Federal Law no. 8010/90.

References
Abrahamsson, P., Warsta, J., Siponen,.T., and Ronkainen, J. (2003). “New Directions on Agile

Methods: A Comparative Analysis”. In Proceedings of 2003 International Conference on
Software Engineering, Portland, Oregon, USA, pp.244-254.

Baheti, P., Gehringer, E. and Stotts, D. (2002) “Exploring the Efficacy of Distributed Pair
Programming”, Extreme Programming and Agile Methods, Lecture Notes in Computer
Science, 2418:208-220, Springer Berlin.

Beck, K. (2000) “Extreme Programming Explained”, Addison-Wesley, Reading, Mass.

Graham, D. and Fewster, M. (1999) “Software Test Automation: Effective Use of Test
Execution Tools”, Addison Wesley.

Grenning, J. (2001) “Launching Extreme Programming at a Process-Intensive Company”, IEEE
Software, 18(6):27-33.

Hristozova, M. and Sterling, L. (2002) “An eXtreme method for developing lightweight
ontologies”. In Workshop on Ontologies in Agent Systems, First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy.

Kerievsky , J. (2004) “Refactoring to Patterns”, The Addison-Wesley Signature Series.

Salo, O. (2004) "Improving Software Process in Agile Software Development Projects: Results
from Two XP Case Studies," In Proc. of 30th EUROMICRO Conference, pp. 310-317.

Silva, A., Kon, F. and Torteli, C. (2005) “XP South of the Equator: An eXPerience
Implementing XP in Brazil”, Extreme Programming and Agile Processes in Software
Engineering, Lecture Notes in Computer Science, 3556:10-18, Springer Berlin.

