
V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

439

Software Component Certification: A Component Quality
Model

Alexandre Alvaro, Silvio Lemos Meira

Federal University of Pernambuco and C.E.S.A.R – Recife Center for Advanced Studies
and Systems, Brazil

{alexandre.alvaro, silvio.meira}@cesar.org.br

Abstract. Component-based software development is becoming more
generalized, representing a considerable market for the software industry.
However, several technical issues remain unsolved before the software
components industry reaches the maturity as other software industries.
Problems such as component selection and the uncertain quality of third-party
developed components bring new challenges to the software engineering
community. In contrast, software component certification is still immature and
much research is needed in order to create well-defined standards for
certification. This paper introduces a component quality model, based upon
consistent and well-defined quality characteristics, and describes a formal
case study that was used in order to analyze the viability of the model usage.

Resumo. Desenvolvimento de Software Baseado em Componentes tem sido
amplamente adotado, representando assim um mercado promissor para a
indústria de software. Entretanto, inúmeros problemas técnicos ainda
permanecem sem solução antes mesmo que a indústria de componentes de
software alcance a maturidade de outras indústrias de software. Problemas
como a seleção de componentes e a falta de informações sobre a qualidade
dos componentes desenvolvidos trazem novos desafios para a comunidade de
engenharia de software. Por outro lado, a área de certificação de
componentes de software é relativamente imatura e necessita de consideráveis
pesquisas para o estabelecimento de um padrão para certificação de
componentes de software. Assim, este artigo apresenta um modelo de
qualidade de componentes, baseada em características consistentes e bem
definidas e, apresenta um estudo de caso formal o qual visa analisar a
viabilidade de utilização do modelo.

1. Introduction
One of the most compelling reasons for adopting component-based approaches in
software development, with or without objects, is the premise of reuse. The idea is to
build software from existing components primarily by assembling and replacing
interoperable parts. The implications for reduced development time and improved
product quality make this approach very attractive [Krueger, 1992].

 Reuse is a “generic” denomination, encompassing a variety of techniques aimed
at getting the most from design and implementation work. The top objective is to avoid
reinvention, redesign and reimplementation when building a new product, by

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

440

capitalizing on previous done work that can be immediately deployed in new contexts.
Therefore, better products can be delivered in shorter times, maintenance costs are
reduced because an improvement to one piece of design work will enhance all the
projects in which it is used, and quality should improve because reused components
have been well tested [D’Souza et al., 1999], [Jacobson et al., 1997].

 Software reuse is not a new idea. Since McIlroy’s pioneer work, “Mass
Produced Software Components” [McIlroy, 1968], the idea of reusing software
components in large scale is being pursued by developers and research groups. This
effort is reflected in the literature, which is very rich in this particular area of software
engineering.

 Most of the works follow McIlroy’s idea: “the software industry is weakly
founded and one aspect of this weakness is the absence of a software component sub-
industry” (pp. 80). The existence of a market, in which developers could obtain
components and assemble them into applications, was always envisioned.

 On the other hand, these works do not consider an essential requirement for
these systems: the assets certification. In a real environment, a developer that retrieves a
faulty component from the repository would certainly lose his trust on the system,
becoming discouraged to make new queries. Thus, it is extremely important to assert the
quality of the assets that are stored into the repository before making them available for
reuse. Despite this importance, the software engineering community had not explored
these issues until recently. In this way, a new research area arose: components
certification and quality assurance [Wohlin et al., 1994], [Morris et al., 2001], [Wallnau,
2003]. However, several questions still remain unanswered, such as: (i) how
certification should be carried out? (ii) what are the requirements for a certification
process? and, (iii) who should perform it? [Goulão et al., 2002]. This is the reason why
there is still no well-defined standard to perform component certification [Morris et al.,
2001].

 In this context, the main goal of this work is investigating effective ways to
demonstrate that component certification is not only possible and practically viable, but
also directly applicable in the software industry. Through certification, some benefits
can be achieved, such as: higher quality levels, reduced maintenance time, investment
return, reduced time-to-market, among others. According to Weber et al. [Weber et al.,
2002], the need for quality assurance in software development has exponentially
increased in the past few years. This fact could be seen through a nationwide project
launched by the Brazilian government1. This project’s main concerns are: to develop a
robust framework for software reuse [Almeida et al., 2004], in order to establish a
standard to the component development; to develop a repository system; and to develop
a component certification process. This project has been developed in a collaboration
between the industry and academia (the RiSE group2 and two other universities), in
order to generate a well-defined model for developing, evaluating software component

1
http://www.finep.gov.br//fundos_setoriais/acao_transversal/resultados/resultado_Acao_transversal_Bibli
oteca_de_Componentes_05_2004.PDF (in portuguese)
2 RiSE (Reuse in Software Engineering) group – http://www.rise.com.br

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

441

quality, storing and, after that, making it possible for software factories to reuse
software components.

1.1. Software Components Inhibitors
To assess the market for Component-Based Software Engineering (CBSE), the Carnegie
Mellon University’s Software Engineering Institute (CMU/SEI) studied industry trends
in the use of software components. The study [Bass et al., 2000], conducted from
September 1999 to February 2000, examined software components from both technical
and business perspectives.

 A distinct set of inhibitors to adopting software component technology emerged
from the conducted surveys and interviews of earlier adopters of software component
technology. A summary from a Web survey of component adopters is presented in
Figure 1.

Figure 1. Summary of Survey Responses [Bass et al., 2000].

 From this data and from the interviews, the study concludes that the market
perceives the following key inhibitors for component adoption, presented here in
decreasing order of importance:

• Lack of available components;
• Lack of stable standards for component technology;
• Lack of certified components; and
• Lack of an engineering method to consistently produce quality systems from

components.

 The software engineering community is already attempting to reduce the gaps
related to the two first inhibitors. A look at the main Internet component markets, such

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

442

as Flashline3 and ComponentSource4, which contain, respectively, more than 13,000
and 9,000 components (four years ago they had less than 1,000 and 100 components
[Trass et al., 2000], respectively), leads to conclude that there is a large increase in the
availability of reusable assets. In the same period, component technologies have
obtained considerable maturity, especially those related to JavaBeans, Enterprise
JavaBeans (EJB), and Microsoft .NET technologies. Thus, the software engineering
community is trying to establish stable standards for component technology, each one
for a particular market niche.

 However, in relation to the third inhibitor, the community is still a fledgling.
Further research is required in order to assure the production of certified components,
especially when combined with the lack of component-based software engineering
techniques that deliver predictable properties (the last inhibitor).

 The concern with components certification reflects a natural progression of
concerns: first demonstrate that it is possible to build and sustain a component-based
system at all, and then improve the overall quality of components and the consumers’
trust in these components.

 Still on, according to Voas [Voas, 1998], to foster an emerging software
component marketplace, it must be clear for buyers whether a component’s impact is
positive or negative. Ideally, buyers should have this information before buying a
component. Component buyers could then choose an appropriate component according
to its certification level. With this information, system builders could make better
design decisions and be less fearful of liability concerns, and component vendors could
expect a growing marketplace for their products.

1.2. The Future of Software Components

Important researches on software components, such as Heineman [Heineman et al.,
2000], Councill in [Heineman et al., 2001], Crnkovic [Crnkovic, 2001] and Wallnau
[Wallnau, 2003] points to the future of software components is certification. These
authors state that certification is a necessary precondition for CBSE to be successfully
adopted and to achieve the associated economic and social benefits that CBSE could
yield. With the success of CBSE, software developers will have more time to develop,
instead of spending their time addressing problems associated with understanding and
fixing someone else’s code. Certified components used during development will have
predetermined and well-established criteria, thus reducing the risk of system failure and
increasing the likelihood that the system will comply with design standards.

 When the system is developed using a CBSE approach, the use of certified
components could provide objective evidence that the components meet rigorous
specifications including data on intended use. This approach does not permit the
designer to forego inherently safe system design practices. Instead, certification reduces
the risk of system failure by providing information about a software component’s risk
mitigation procedures, such as the anticipation about the software failure state and
return to the last stable state with notice to the system administrator. The objective is to

3 http://www.flashline.com
4 http://www.componentsource.com

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

443

build safe systems from well-documented and proven components. And if these
components are independently certified, the confidence that the information
accompanying these components meets their requirements will be greater.

2. Software Component Certification: A Brief Survey
Existing literature is not that rich in reports related to practical software component
certification experience, but some relevant research explores the theory of component
certification in academic scenarios. The timeline can be “divided” into two ages: from
1993 to 2001, where the focus was mainly on mathematical and test-based models and,
after 2001, where the focus was on techniques and models based in predicting quality
requirements. More details about it can be seen in [Alvaro et al., 2005a].

 By looking at the works covered in [Alvaro et al., 2005a], which represent the
history and the current state-of-the-art in component certification, we may notice that
this is a still immature area. Further research is needed in processes, methods,
techniques, models, and tools, in order to obtain well-defined standards to software
component certification.

 In general, the main certification idea’s is bringing quality to a certain software
product, in this case software components. One of the core goals to achieve quality in
component is to acquire reliability on it and, in this way, increase the component market
adoption. Normally, the software component evaluation occurs through models that
measure its quality. These models describe and organize the component quality
characteristics that will be considered during the evaluation. So, to measure the quality
of a software component it is necessary to develop a quality model. In this way, we aim
to investigate a Component Quality Model (CQM), identifying its characteristics, the
sub-characteristics, the quality attributes and the related metrics that compose the
model.

3. A Component Quality Model (CQM)
In general, there is no consensus yet on how to define and categorize software
component quality characteristics [Goulão and Abreu, 2002a], [Goulão and Abreu,
2002b], [Bertoa and Vallecillo, 2002]. Here we will try to follow as much as possible a
standard terminology, in particular the one defined by ISO/IEC 9126 [ISO/IEC 9126,
2001].

 The ISO/IEC 9126 is a generic software quality model and it can be applied to
any software product by tailoring it to a specific purpose. The main drawback of the
existing international standards is that they provide very general quality models and
guidelines, and are very difficult to apply to specific domains such as Component-Off-
The-Self (COTS) and Component-Based Software Development (CBSD).

 The component quality model presented here (Table 1) is based on ISO/IEC
9126 and some adaptations for components were accomplished [Alvaro et al., 2005b].
The sub-characteristics, quality attributes, metrics and kind of metrics adopted could be
seen at [Alvaro et al., 2005c].

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

444

Table 1. A Component Quality Model.

Characteristics Sub-Characteristics
(Runtime)

Sub-Characteristics
(Life cycle)

Functionality Accuracy
Security

Suitability
Interoperability
Compliance
Self-contained

Reliability Fault Tolerance
Recoverability Maturity

Usability Configurability
Understandability
Learnability
Operability

Efficiency
Time Behavior
Resource Behavior
Scalability

Maintainability Stability Changeability
Testability

Portability Deployability
Replaceability
Adaptability
Reusability

Marketability

Development time
Cost

Time to market
Targeted market

Affordability

 Besides concentrating on quality characteristics only, we also created and added
to the model other characteristics level called Marketability. This information is not
important to evaluate the quality of a component, but is important to analyze some
factors that bring credibility to the component customers.

 Still on, we identified some characteristics that bring relevant information for
new customers, such as Productivity, Satisfaction, Security and Effectiveness.
According the ISO/IEC 9126, theses characteristics are called Quality in Use
characteristics. This is the user’s view (i.e. developer’s) of the component, obtained
when they use a certain component in an execution environment and analyze the results
according their expectation. These characteristics show if the customer can trust in a
component or not.

 Finally, we identified some additional characteristics that are interesting to the
component quality model (Table 2). These characteristics are called Considerable
Information and are composed of: Technical Information, which is important to the
customer analyze the actual state of the component (i.e. if the component has evolved, if
any patterns was used in the implementation, which is the component version, amongst
other information); and Responsible, which is interesting to the customer know who is
the responsible for that component, i.e. who maintain that component.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

445

Table 2. Additional Information.

Additional
Information

Technical Information
• Component Version
• Programming Language
• Patterns Usage
• Lines of Code
• Technical Support

Organization Information
• CMM Level
• Organization’s Reputation

4. A Preliminary Evaluation
In order to determine whether the CQM meets its proposed goals, a formal case study
was performed. This section describes the steps of the formal case study and presents
how these steps were performed in the study of this work.

 The plan of the formal case study to be discussed follows the model proposed in
[Wohlin et al., 2000] and the organization adopted in [Barros et al., 2002]. The
definition and the planning steps to be presented in the following sections are described
in the future tense, symbolizing the precedence of the plan in relation to its execution.

 This formal case study was meant to be as close as possible to an empirical
study. It contemplates important points that a good empirical study should have, such as
the previous planning and the precise definition of the null and alternative hypotheses to
be evaluated. However, it cannot be considered a complete empirical study because it
does not contemplate essential parts of an empirical evaluation, such as [Basili et al.,
1986]: Pilot Project, Qualitative Analysis, Internal/External Validity of the Study,
Validity of the Construction of the Study, among other points.

4.1. Definition of the Formal Case Study

According to the Goal Question Metric Paradigm (GQM) [Basili et al., 1986], the main
objective of this study is to:

Analyze the current gap between the required and provided information of the main
component marketplaces and a Brazilian software factory

for the purpose of evaluating the component quality model
with respect to the efficiency of the model
from the point of view of the researchers, software and quality engineers
in the context of the software component certification area.

4.2. Planning of the Formal Case Study

Context. The objective of the study is to evaluate how much of the information required
for the metrics in the proposed CQM is currently available from the most widely used
component markets.

Object of Study. The objective of the study is evaluate the CQM usage, considering the
software components of the most popular component markets from the Internet, such as

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

446

JARS5, Flashline and ComponentSource, and the software components of a Brazilian
software factory6. Thus, from these three sites, JARS and Flashline were finally
discarded. First, JARS mainly offers Java applets, and the information provided for each
product is very scarce, basically a pointer to the Web site of the Applet developer
(which usually provided few more information). By the other hand, the
ComponentSource marketplace acquired Flashline’s marketplace in 2003 and all of its
products incorporated into ComponentSource’s offerings. Therefore, we decided to
discard Flashline and concentrate only on ComponentSource, which covered both, and
suddenly became the only large and widely used software component market.

Subject. The subject of the study will be a MSc. student at Federal University of
Pernambuco and, system and quality engineers at the Brazilian software factory.

Instrumentation. The subject will act as a system and quality engineer, and will use
Excel spread sheets in order to compute the component information found in the
analyzed markets.

Criteria. The quality focus of the study demands criteria that evaluate the real
efficiency of the model in measuring software component quality. This criteria will be
evaluated quantitatively ((i)amount of the component quality attributes found, (ii)
amount of the component quality attributes measured and (iii) amount of the
component information found in the market and not covered in the model).

Hypothesis. An important aspect of formal case studies is to know and to formally state
what is going to be evaluated in the formal case study. A set of hypotheses was selected,
as described next.

- Null hypotheses, H0: these are the hypotheses that the experimenter wants to reject
strongly. In this study, the null hypotheses determine that the CQM is not efficient to
measure the component quality information that is available in the component
marketplaces and in a software factory. According to the selected criteria, the following
hypotheses can be defined:

Ho’: amount of the component quality attributes of the model that were found in the market < 70%
Ho’’: amount of the component quality attributes of the model that could be measured < 70%
Ho’’’: amount of the component information that was found in the market and that is not covered in the model > 5%

 The values of these hypotheses (70%, 70% and 5%, receptivity) were achieved
through the feedback of some researchers of RiSE group and, software and quality
engineers of a Brazilian software factory. Thus, these values constitute well-defined
indices which the model must achieve in order to prove its viability.

- Alternative hypotheses: these are the hypotheses in favor of that which the null
hypotheses reject. The formal case study aims to prove the alternative hypotheses by
contradicting the null hypotheses, as follows:

H1: amount of the component quality attributes of the model that were found in the market >= 70%
H2: amount of the component quality attributes of the model that could be measured >= 70%
H3: amount of the component information that was found in the market and that is not covered in the model <= 5%

5 http://www.jars.com
6 Currently, this company has about 700 employees and is in preparation to obtain the CMM level 3.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

447

Validity of the Conclusion of the Study. The validation of the conclusion of the study
measures the relation between the treatment and the result, and determines the
capability of the study to generate conclusions [Wohlin et al., 2000].

4.3. Design of the Formal Case Study
Data Used in the Study. Fifty components were selected from ComponentSource (13
business components, 14 infra-structure components, 13 interface components and 10
database components). The components were chosen from Best Sellers and Top Reviews
categories. The selection criterion was to choose only the most recommend and mostly
used components. The idea was to evaluate the best components of the market, because
such components would theoretically have more information that could be used to
evaluate quality. However, this has proven not to be true.

 From the Brazilian Software Factory, only six components were obtained.
However, differently from those obtained from ComponentSource, which contained just
a few samples and some documentation, these components were completely available
(i.e. source code, documentation, models, samples, etc.).

 Among a set of 13,000 components of ComponentSource, 50 components were
selected and, by the other hand, among a set of 20 component of a Brazilian software
factory, 06 components were selected. Thus, the data obtained from this study can be
used to make comparisons between the markets because the data selected constitute
approximately the same weight (50 from 13,000 and 06 from 20 components).

4.4. Instantiation of the Formal Case Study

Selection of the Subjects. For this study, no students were selected. Only one MSc.
student participated in the formal case study.

Random Capability. The selection of the subjects for the formal case study was not
random, since only one MSc. student accomplished the study.

Analysis Mechanism. To evaluate the hypotheses of the study, mechanisms of
descriptive statistics (e.g. the mean), will be used.

4.5. Instantiation of the Formal Case Study

Realization. The formal case study was conducted as part of a MSc. Course in
Computer Science, during first semester in 2005, at Federal University of Pernambuco.
The formal study was executed over a period of 2 months, conducted by a single MSc.
student. All the components were deployed, used and tested (through a set of examples
developed and using demos available). The computer used has Windows operating
system, 1.8GHz of processor speed and 512mb of RAM.

4.6. Analysis of the Formal Case Study

According to the required information of the CQM, each software component was
analyzed together with its related assets in order to provide the information required.

Descriptive Analysis. Once the necessary information was collected, the analysis could
be performed (Table 3). Thus, the percentages for null hypothesis H0’ were calculated as
the percentages of attributes that were found in the market in relation to all attributes of

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

448

the model. The percentages for null hypothesis H0’’ were calculated as the mean of all
percentages of measurability for each market. Finally, the 0% values for null hypothesis
H0’’’ were observed during the execution of the study. The standard deviation was not
considered due to the small number of selected components.

Table 3. Mean of the data from the study.

Mean
ComponentSource Software Factory

H0’ 72,58% 83,87%
H0’’ 32,92% 75,27%
H0’’’ 0% 0%

 As shown in Table 3, in the case of the Brazilian software factory, the results
have shown that the null hypotheses were rejected, while in the case of
ComponentSource marketplace, the second null hypothesis was not rejected.

(i) Amount of the component quality attributes found: The CQM contains 62 quality
attributes. In the study, 45 quality attributes (72,58%) were obtained from the
information found in the ComponentSource marketplace, while in the Brazilian software
factory this number was 52 (83,87%). These results reject hypothesis H0’, which
validates alternative hypothesis H1: amount of the component quality attributes of the model that were found in

the market >= 70%. This implies that the quality attributes that compose the model is
compatible with the component information found in the component market and in the
repository of the software factory;

(ii) Amount of the component quality attributes measured: During the study
accomplished in the components available from the Brazilian software factory, 75,27%
of the quality attributes required to the CQM was measured. In the case of the Brazilian
software factory, null hypothesis H0’’ was rejected, validating hypothesis H2: amount of the component quality

attributes of the model that could be measured >= 70%. However, only 32,92% of the information
required to the CQM could be measured into the ComponentSource marketplace.
Therefore, in the case of ComponentSource, the null hypothesis H0’’ was not rejected.
This can be explained by the lack of information (source code, documents, models,
tutorials, API’s, information about interfaces and components, etc) that could be freely
accessed without buying the component, which was the approach taken by this study.
However, in a real certification environment, these information would be available, and
this number would probably be close to the number achieved in the case of the Brazilian
software factory (75,27%); and

(iii) Amount of the component information found in the market and not covered in
the model: Among all the component information found in the ComponentSource
marketplace and in the Brazilian software factory, everything was covered by the
proposed component quality model, i.e. the study did not find any information that
could not fit into some attribute of the model. In this sense, null hypothesis H0’’’ was
rejected, validating hypothesis H3: amount of the component information that was found in the market and that

is not covered in the model <= 5%. This indicates that the component characteristics that are
defined in the CQM comprise a good set of characteristics, being a good candidate for
software components evaluation.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

449

Conclusion. The results shown in Table 3 confirm the existing gap between the
information required by the “theoretical” metrics defined in current component quality
models, and the information that is currently supplied by software components vendors
and software factories that develop components. Even in the best case (the Brazilian
software factory), almost 25% of the attributes could not be measured, and almost 16%
of the attributes were not even present.

 Another relevant point that was observed during this study is the gap between
the information available in “black-box” components (those selected from
ComponentSource) and in “white-box” components (those selected from a software
factory). Although in some degree this was caused because this study did not actually
buy the analyzed components, and therefore did not have access to more documents, it
was observed that the source code is an important asset to be considered in component
certification and must be available for a real component certification environment.

 In order to improve this situation, component vendors should improve the
available information about the components (both in quality and quantity) in order to
aid the measurement task. Another improvement that could provide some benefits is to
better structure and organizes the information aiming to facilitate the automation of the
assessment processes as much as possible. Source code should be provided in order to
maximize the amount of attributes that can be measured.

 Still on, the quality characteristics and quality attributes of the model deserve
further analysis, in order to refine the model in future evaluations. One example is the
mean of attributes of the model that could be measured with information from the
market. In this study, the amount of attributes that could be measured was 32,92% and
75,27% (for ComponentSource and the Brazilian software factory, respectively). The
number for ComponentSource is extremely low, indicating a large gap between the
information from the model and information from the market.

 However, this calculation considered the amount of attributes measured in
relation to ALL attributes from the model, including those that could not be found,
which implied that this mean would never be greater than the amount of attributes that
could be found. For example, if 70% of the attributes were found in the market, and
EVERY component presented information to measure 100% of these attributes, the
calculated mean would still be 70%.

 A more representative result could be obtained by excluding from this
calculation the attributes that could not be found in ANY component. With this in mind,
another hypothesis could be elaborated: H2´: AMONG THE ATTRIBUTES THAT COULD BE FOUND, the

amount of attributes of the model that could be measured >= 70%. Recalculating the means for
ComponentSource and the Brazilian software factory, these values arise to 45,36% and
89,75%, respectively, better reflecting the measurability of the attributes. However, the
gap between the information from components obtained from ComponentSource and
from the Brazilian software factory is still a large one.

5. Main Contributions
The main contributions of this work could be split on three main aspects: (i) the
realization of a survey related to the state-of-the-art in software component certification
research; (ii) the proposition of a Component Quality Model to evaluate the software

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

450

component quality; and (iii) the accomplishment of a formal case study, in order to
evaluate the proposed component quality model.

• A Survey on Software Component Certification. The main research
contributions found in the literature, from the 90’s until today, were analyzed in
order to understand how the software component certification area has evolved
during this timeline. Through this study, it became possible to elaborate a well-
defined component certification framework, aiming the development of a
consistent and efficient component certification process [Alvaro et al., 2005a];

• The Component Quality Model. The survey showed that software component
quality is important to the component market and a quality model for software
component is really necessary. In order to supply this necessity, a quality model
for software components was defined, analyzing which quality characteristics
and attributes are adequate for components and which metrics are useful for
measuring these attributes [Alvaro et al, 2005b], [Alvaro et al, 2005c], [Alvaro
et al, 2006a]; and

• A Formal Case Study. In order to determine whether the quality model meets
its proposed goals, a formal case study was performed. This study analyzed the
viability of the proposed component quality model, identifying its main
drawbacks. In this sense, a preliminary evaluation of the model was
accomplished and future evaluations have been planned [Alvaro et al, 2006b].

6. Concluding Remarks and Future Directions
The growing use of commercial products in large systems makes evaluation and
selection of appropriate products an increasingly essential activity. However, many
organizations struggle in their attempts to select an appropriate product for use in
CBSD, which is being used in a wide variety of application areas and the correct
operations of the components are often critical for business success and, in some cases,
human safety. In this way, assessment and evaluation of software components has
become a compulsory and crucial part of any CBSD lifecycle.

 In this sense, in order to properly enable the evaluation of software components,
supplying the real necessities of the software component markets, a component quality
model is strictly necessary. Thus, this work presented a Component Quality Model
proposed and its related quality characteristics. Still on, a formal case study was
defined, planned, executed and analyzed, showing the viability of the component
quality model proposed.

 As future work, we intend to update the CQM with the new ISO/IEC 9126,
revised in 2005 [ISO/IEC 25000, 2005]. Our research group is working with the
definition of a Software Component Maturity Model (SCMM). Based on the CQM
proposed, the SCMM will be constituted of certification levels where the components
could be certified. The idea is to develop a model in which the component could
increase its level of reliability and quality as it evolutes.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

451

References
Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C., Meira, S. R. L. (2004). “RiSE

Project: Towards a Robust Framework for Software Reuse”, In: IEEE International
Conference on Information Reuse and Integration (IRI), Las Vegas, USA, pp. 48-
53.

Alvaro, A., Almeida, E.S. and Meira, S.L. (2005a). “Software Component Certification:
A Survey”, In: The 31st IEEE EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Component-Based Software Engineering
(CBSE) Track, pp. 117-125.

Alvaro, A.; Almeida, E. S.; Meira, S. R. L. (2005b). “Towards a Component Quality
Model”, In: The 31st IEEE EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Work in Progress Session, Porto, Portugal,
2005.

Alvaro, A., Almeida, E.S., Meira, S.L. (2005c) “Quality Attributes for a Component
Quality Model”, In: 10th International Workshop on Component Oriented
Programming (WCOP) in conjunction with the 19th ACM European Conference on
Object Oriented Programming (ECCOP), Scotland.

Alvaro, A.; Almeida, E. S.; Meira, S. R. L. (2006a). “A Software Component Quality
Model”. Submitted to the 31st IEEE EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), Croatia.

Alvaro, A.; Almeida, E. S.; Meira, S. R. L. (2006b). “A Software Component Quality
Model”. Submitted to the 30st Annual International Computer Software and
Applications Conference (COMPSAC), EUA, Chicago.

Barros, M.O., Werner, C.M.L., Travassos, G.H. “An Experimental Study about
Modeling Use and Simulation in support to the Software Project Management” (in
portuguese), In: 16th Brazilian Symposium in Software Engineering, Brazil, (2002).

Bass, L.; Buhman, C.; Dorda, S.; Long, F.; Robert, J.; Seacord, R.; Wallnau, K. C.
(2000) “Market Assessment of Component-Based Software Engineering, Software
Engineering Institute (SEI)”, In: Technical Report, Vol. I, May.

Basili, V.R., Selby, R., Hutchens, D. “Experimentation in Software Engineering”, In:
IEEE Transactions on Software Engineering, Vol. 12, No. 07, pp. 733-743, 1986.

Bertoa, M. and Vallecillo, A. (2002) “Quality Attributes for COTS Components”, In the
Proceedings of the 6th International ECOOP Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE), Spain.

Crnkovic, I. (2001). “Component-based software engineering - new challenges in
software development”, In: Software Focus, Vol. 02, No. 04, pp. 27-33.

D’Souza, D. F.; Wills, A. C. (1999). “Objects, Components, and Frameworks with
UML, The Catalysis Approach”. Addison-Wesley, USA.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

452

Goulao, M. and Abreu, F. B. (2002a). “Towards a Component Quality Model”, Work in
Progress Session of the 28th IEEE Euromicro Conference, Dortmund, Germany.

Goulao, M. and Abreu, F. B. (2002b). “The Quest for Software Components Quality”,
In: The 26th IEEE Annual International Computer Software and Applications
Conference (COMPSAC), England, pp. 313-318.

Heineman, G. T.; Councill, W. T. (2001). “Component-Based Software Engineering:
Putting the Pieces Together”, Addison-Wesley, USA.

Heineman, G. T.; Councill, W.T.; Flynt, J. S.; Mehta, A.; Speed, J. R.; Shaw, M.
(2000). “Component-Based Software Engineering and the Issue of Trust”, In: The
22th IEEE International Conference on Software Engineering (ICSE), Canada, pp.
661-664.

ISSO/IEC 9126, “Information Technology – Product Quality – Part1: Quality Model”,
International Standard ISO/IEC 9126, International Standard Organization, June,
2001.

ISO/IEC 25000, 2005, Software Engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Guide to SQuaRE, International Standard
Organization, July, 2005.

Jacobson, I.; Griss, M.; Jonsson, P. (1997). “Software Reuse: Architecture, Process and
Organization for Business Success”, Addison-Wesley, Longman.

Krueger, C.W. (1992). “Software Reuse”, In: ACM Computing Surveys, Vol. 24, No.
02, June, 131-183.

Mcllroy, M. D. (1968). “Mass Produced Software Components”, In: NATO Software
Engineering Conference Report, Germany, pp. 79-85.

Morris, J., Lee, G., Parker, K., Bundell, G. A. and Lam, C. P. (2001). “Software
Component Certification”. In: IEEE Computer, Vol. 34, No. 09, pp. 30-36.

Trass, V.; Hillegersberg, J. (2000) “The software component market on the Internet,
current status and conditions for growth”, In: ACM Sigsoft Software Engineering
Notes, Vol. 25, No. 01, pp. 114-117.

Voas, J. M. (1998). “Certifying Off-the-Shelf Software Components”, In: IEEE
Computer, Vol. 31, No. 06, pp. 53-59.

Wallnau, K. C. (2003). “Volume III: A Technology for Predictable Assembly from
Certifiable Components”. In: Software Engineering Institute (SEI), Technical
Report, Vol. III, April.

Weber, K. C., Nascimento, C. J. (2002). “Brazilian Software Quality 2002”. In: The
24th IEEE International Conference on Software Engineering (ICSE), EUA, pp.
634-638.

Wohlin, C. and Runeson, P. (1994). “Certification of Software Components”, In: IEEE
Transactions on Software Engineering, Vol. 20, No. 06, pp. 494-499.

V Simpósio Brasileiro de Qualidade de Software – SBQS´2006

453

Wohlin, C., Runeson, P., Host, M., Ohlsson, C., Regnell, B., Wesslén, A.
“Experimenta-tion in Software Engineering: An Introduction”, in: Kluver Academic
Publishers, (2000).

