
Dual Mutation: The �Save the Mutants� Approach

Márcio Eduardo Delamaro
Centro Universitário Eurípides de Marília (UNIVEM)

Av. Hygino Muzzi Fillho, 529
Marília - SP, Brazil

17525-901
delamaro@fundanet.br

Abstract

Mutation testing is a fault based testing criterion that has been widely used
and studied. It has been shown an e�ective fault revealing criterion and its
characteristics allow its use in a large range of entities like regular programs and
behavioral speci�cations of real time systems. To evaluate the adequacy of a
test set T in the test of a program P, mutation testing uses a set of alternative
implementations of P called mutants. The adequacy of T is assessed by its
ability on demonstrate that the mutants produce di�erent results of P. In this
paper we present the idea of Dual Mutation Testing (DMT). DMT uses the same
mutants as mutation testing but requires test cases that show that the mutants
can produce the same results of P. In a case study we apply Dual Mutation
Testing and compare it to traditional mutation testing.
Keywords: software testing, mutation testing, dual mutation testing.

1 Introduction

Testing is a crucial activity in the software lifecycle. It is expensive and time consuming.
For this reason much e�ort has been spent on developing techniques and tools to support
the testing activity. An important result of those researches is the de�nition of techniques
and criteria to drive the generation of test sets that can suitably exercise a program.

Mutation testing is a fault based test technique. It uses a set of rules called mutant
operators to create programs slightly di�erent from the program under test. These
programs are called mutants. The goal of mutation testing is the generation of a test
set that distinguishes the behavior of the mutants from the original program. The ratio
between the number of distinguished mutants (also called dead or killed mutants) and
the total number of mutants, measures the adequacy of the test set.

According to the coupling e�ect hypothesis [12], test cases that distinguish simple
faults injected in the original program to create the mutants should also be able to reveal
faults that can be obtained as a composition of simple faults. Thus, mutant operators
can be seen as representative of common faults usually found in software.

In several empirical studies, mutation-based test adequacy criteria were found to be
e�ective for the selection and evaluation of test cases [9, 18]. However, the cost of using
such criteria, measured in terms of the number of mutants to be executed, is a barrier to
their applicability. Some approaches can be taken to reduce the cost of mutation testing,
for example, by applying constrained mutation criteria [14,15,19], without any signi�cant
loss in the e�ectiveness to reveal faults.

Besides the cost to create and execute mutants, there is also the cost to analyze mu-
tants and decide their equivalence. In this case only a few studies have been conducted
aiming at reducing such cost. O�utt and Craft [11] conduct a study to identify ways to
automatically detect equivalent mutants. They proposed six techniques based on strate-
gies of code optimization and data-�ow analysis. Using those techniques in an experiment
with FORTRAN programs, the authors concluded that a signi�cative percentage of the
equivalent mutants could be automatically detected. In some cases this number reaches
50% of the equivalent mutants. Jorge et al. [8] have proposed a technique to select mutant
operators based not only on the relative strength of each operator but also on its tendency
to create equivalent mutants.

In this paper we present an alternative way to use mutant to select test cases. This
criterion, named dual mutation testing (DMT) selects test cases that makes mutants
produce the same results of the original program. A case study has been conducted in
order to evaluate test cases selected by DMT against traditional mutation criterion.

In the next section a discussion about mutation testing is presented. In Section 3 the
criterion Dual Mutation is described. In Section 4 a case study applying DMT is discussed
and Section 5 presents the conclusions.

2 Mutation testing

Mutation testing (MT) is used to evaluate the quality of a test set based on its ability to
reveal simple faults injected in the program being tested. According to the coupling e�ect
a test set capable of revealing simple faults is capable of revealing more complex faults.
Some empirical support is available for the coupling e�ect [10,12,13,16].

In terms of testing criteria, mutation testing can be viewed as a partition, or more
precisely, a sub-domain criterion. Let us consider a program P and its input domain
D. A sub-domain criterion divides D in several sub-domains and then determines that
test cases should be selected from each sub-domain. In general, the sub-domains are
calculated based on some kind of testing requirement. In the case of mutation testing
the requirement is that a sub-domain is composed by elements that distinguish a given
mutant. More precisely, given the mutants {M1, M2, ..., Mn} of P it is possible to de�ne
the sub-domains {d1, d2, ..., dn} such that

di = {t ∈ D|P (t) 6= Mi(t)}
.

Several papers have addressed the problem of evaluating a test criterion or a testing
technique based on the characteristics of its sub-domains. Just to mention some of them,
the work of Hamlet and Taylor [6] and Duran and Ntafos [5] compared and analyzed
the performance of partition testing against random testing and concluded that partition
testing is not superior to random testing. In addition, if the cost to apply the partition
criteria is high, then random testing is likely more cost e�ective than partition testing.
Weyuker and Jeng [17] analyzed the results presented by Duran and Ntafos and by Hamlet
and Taylor and determined the characteristics a partition should have in terms of fault
distribution, sub-domain size and test case probability that would make a partition testing
better or worse than random testing. Unfortunately, the �ndings in those papers have not
been very useful because in practice it is hard to predict or to assess those characteristics,
in particular the fail rate of each sub-domain.

The sub-domains di, in general, overlap. In the particular case of mutation testing it
has been observed that there is a lot of intersection among them, i.e., it is common to
�nd a test case t that distinguishes many mutants. Early studies showed that 80% of the
mutants generated using FORTRAN operators die very easily, i.e., can be distinguished
with any test case [1]. Similar results have been obtained for C operators [7]. On the
other hand, a few mutants are hard to kill and require very speci�c test cases. In this way,
it would not be wrong to associate larger sub-domains to those mutants that are easier
to distinguish and smaller sub-domains to those mutants that are harder to distinguish.

If we take the sub-domains d1,... dn and order them according to its cardinality from
the smallest to the largest, and start randomly selecting test data from D, it is most
probable that the sub-domains at the end will be �covered� �rst and the ones at the
beginning will last �alive� longer. The quality of mutation testing-adequate test sets rely
on those small domains, which represent particular situations and that lead to a more
complete examination of P.

3 Dual mutation testing

In this section we present another way to use mutants to select test cases. The idea is to
take those mutants that are killed too easily and use them to construct useful test cases.
We propose to select test cases that do not distinguish mutants, i.e., test cases t such
that for a given mutant Mi, Mi(t) = P (t). Intuitively, selecting test cases in such a way
would lead to sub-domains that would neglect the good quality of sub-domain criteria in
at least one way:

• The intersection between them would be high. If one takes two mutants Mi and Mj

and selects a test case t that does not execute the mutated statement in Mi neither
the mutated statement in Mj, then it is easy to see that t is in the intersection of the
sub-domains corresponding to those mutants. In general, it would not be di�cult
to �nd such a test case.

In summary, killing the mutants would be just a matter of �nding test cases that do not
execute the mutated statement. But what we mean in the Dual Mutation Testing (DMT)
criterion is to select test cases that execute the mutated statement and still produces the
same results of the original program.

In order to clarify this concept, some de�nitions are necessary. Consider the program
under test P, a test set T, a mutant set M and the input domain D of P. Then, according
to the DMT technique we have:

De�nition 1 A mutant Mi ∈ M is dead when executed with T, i� ∃t ∈ T sucha that
two conditions hold:

• the execution of P with t reaches the statement that was mutated to create Mi;

• Mi(t) = Pi(t);

This de�nition establishes the necessary conditions to consider that a mutant is dead.
Note that in this case, �dead� is the opposite of �distinguished�, so the terms cannot be
used interchangeably as in conventional mutation testing. We will use t Â Mi to indicate
that test case t kills mutant Mi and t 6Â Mi to the opposite case.

The �rst condition above is also required in conventional mutation testing, as stated by
DeMillo [4], but with a slightly di�erent meaning. There, it is not a condition that must
be checked in order to consider a mutant dead, but it is a pre-requisite for t to achieve
Mi(t) 6= P (t). Figure 1(a) shows how reachability relates to killability in mutation testing.
R is the set of test cases that causes the mutated statement to execute and S ⊆ R is the
set of test cases that distinguish Mi. Figure 1(b) highlights the set R− S that is the set
of mutants that dual-kill Mi.

D

R

S

(a)

D

R

S

(b)

Figure 1: Relation between reachability and killing test cases for (a) mutation testing;
(b) Dual Mutation Testing

De�nition 2 A mutant Mi ∈ M is dual-equivalent to P i�

∀t ∈ D, t 6Â Mi

It means, a mutant is dual-equivalent if there is no test case that executes the mutated
statement and makes the mutant behave the same as the original program.

De�nition 3 The (dual) mutation score of a test set T is given by

ms(T, M, P) =
of dead mutants

|M | −# of dual-equiv. mutants

Note that this de�nition has not changed, since we changed the de�nition of dead
mutants in De�nition 1.

Lets take as an example the program in Figure 2. It takes as parameters two integers
x and y greater than or equal to 0 and computes xy.

In Table 1 the three �rst mutants, generated by real mutant operators implemented
in the tool PROTEUM/IM [3] show how dual mutation can select very speci�c test cases out
of mutants that are practically useless for regular mutation. The last column shows the
conditions required by the input in order to dual-kill the mutant.

int pow(int x, int y)
{
int s = 1;
int i;

for (i = 0; i < y; i++)
{

s *= x;
}
return s;

}

Figure 2: Program to compute xy.

Table 1: Examples of mutants and test data to dual-kill them.
Original Mutated Mutant Constraint
statement statement operator to kill
s *= x; s *= 0; CLSR x = 0

y > 0
s *= x; s *= 1; VLSR x = 1

y > 0
s *= x; s *= -1; CRCR x = 1

y ≥ 2
y%2 = 0

return s; return -1; CRCR equivalent

The last mutant shows that also in dual mutation we are not free from the equivalents.
There is no test case that makes the mutant return the same value of the original program.
Such a mutant is useless for regular as well as for dual mutation.

In the next section a case study is presented comparing DMT and mutation testing.
The objective is to compare the strength of test cases generated by Dual Mutation Testing
against mutation testing and vice-versa.

4 A Case study

In this section we present a case study that compares MT-adequate test sets against DMT
and vice versa. We used a very simple program (the Unix cal) and generated for it 40 test
sets using mutation testing and then evaluated these sets using DMT. Then, generated
40 adequate test sets with DMT and evaluated them using mutation testing.

To generate an MT-adequate or a DMT-adequate test set the equivalent mutants are
identi�ed then test cases are generated at random using a simple test pro�le. If a test case
kills a mutant the test case is kept in the test set. Otherwise the test case is discarded.
This process continues until a mutation score of 1.0 is reached or until no improvement
in the mutation score is obtained in a sequence of 1000 test cases, i.e., if 1000 test cases
are generated and throw away in a row, then the process terminates. In this case, test

cases are manually inserted to achieve the 100% adequate test set. Figure 3 summarizes
the generation of one adequate test set (from this point, called a section).

The program cal takes zero, one or two arguments to execute. If no argument is pro-
vided the program should output the calendar of the current month. If a single argument
is provided, it indicates the year whose calendar should be presented. If two arguments
are provided, they represent the month and the year the user wants to see. Considering
the domain as the set of all sequences of zero, one or two integer numbers in the interval
[-MAXINT, MAXINT)1, the following pro�le was used to generate the random test cases:

• 90% of the test cases are �valid� test cases, i.e., with the arguments, when provided,
in the valid range: 1 to 12 for the month and 1 to 9999 for the year;

• from those valid test cases, 1% is generated with no argument, 49% with a single
argument and 50% with two arguments;

• the non valid test cases, are evenly divided in four groups: 1) non-valid year only; 2)
non-valid month and valid year; 3) valid month and non-valid year; and 4) non-valid
month and non-valid year.

N

Generate Mutants

k := 0

Generate 1 Test Case

Execute Mutants

Has an Adequate
Test Set

Complete Test Set
Manually

k := k + 1

M.S. = 1.0 ?

M.S. Improved ?

k = 1000 ?

N

S

SN

S

Figure 3: A session to generate one adequate test set

The processes to create mutation testing-adequate and DMT-adequate test sets are
the same except for the di�erences related to the criteria application, as explained in
Section 3.

1In our study MAXINT = 231

The program cal has four functions: main, cal, jan1and pstr. We tested them sepa-
rately, so actually at the end there exists 20 sections for each function, 10 to generate MT-
adequate test sets and 10 to generate the DMT-adequate test sets as shown in Figure 4.
Each section in one side of the �gure uses independent sequences of random generated
test cases. Corresponding sections in both sides � indicated by the dashed arrows � use
the same generation sequence.

In
de

pe
nd

en
t Section 1

Section 2

Section 10

Section 1

Section 2

Section 10

main

cal

Section 1

Section 2

Section 10

Section 1

Section 2

Section 10

main

cal

Section 1

Section 2

Section 10

Section 1

Section 2

Section 10

jan1

pstr

Section 1

Section 2

Section 10

Section 1

Section 2

Section 10

jan1

pstr

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

PROGRAM cal

same random sequence

PROGRAM cal

MUTATION DUAL MUTATION

ran
do

m
se

qu
en

ce
s

Figure 4: General view of the sections

The tool used in this case study (PROTEUM/IM) has two distinct sets of mutant op-
erators: one for unit testing and one for the Interface Mutation criterion [2], aiming at
interprocedural testing. We used a subset of the unit testing operators. The reasons we
did not used the whole set are two:

• Some instrumented mutants do not make sense for dual mutation. For example the
STRP operator replaces each statement by a trap function that distinguishes the
mutant. So there is no way that the mutation point is executed and the mutant
behaves as the original program; and

• The tool implements a mechanism to control the execution path of each test case
in order to avoid the execution of those mutants that are not reached by some test
cases. This mechanism is essential for dual mutation because it is necessary to know
whether a mutation has not changed the behavior of the program for a test case or
the mutation has not been reached by the test case. For a few operators that may
change radically the shape of the control �ow graph, the tool is not able to make
such decision.

Table 2 shows the operators used in the sections and the number of mutants generated
for each one.

Table 2: Number of mutants per mutant operator.
Operator main cal pstr jan1 Total Operator main cal pstr jan1 Total
u-Cccr 612 312 14 88 1026 u-Ccsr 403 247 12 72 734
u-CRCR 155 95 20 40 310 u-OAAA 12 17 0 12 41
u-OAAN 48 37 4 36 125 u-OABA 9 12 0 9 30
u-OABN 33 27 3 27 90 u-OAEA 3 4 0 3 10
u-OALN 30 18 2 18 68 u-OARN 90 54 6 54 204
u-OASA 6 8 0 6 20 u-OASN 22 18 2 18 60
u-OBAA 0 0 0 0 0 u-OBAN 0 0 0 0 0
u-OBBA 0 0 0 0 0 u-OBBN 0 0 0 0 0
u-OBEA 0 0 0 0 0 u-OBLN 0 0 0 0 0
u-OBNG 0 0 0 0 0 u-OBRN 0 0 0 0 0
u-OBSA 0 0 0 0 0 u-OBSN 0 0 0 0 0
u-OCNG 9 5 4 2 20 u-OCOR 0 0 0 0 0
u-OEAA 55 50 20 10 135 u-OEBA 33 30 12 6 81
u-OESA 22 20 8 4 54 u-Oido 1 8 6 0 15
u-OIPM 0 0 2 0 2 u-OLAN 15 5 0 0 20
u-OLBN 9 3 0 0 12 u-OLLN 3 1 0 0 4
u-OLNG 9 3 0 0 12 u-OLRN 18 6 0 0 24
u-OLSN 6 2 0 0 8 u-ORAN 60 30 10 10 110
u-ORBN 36 18 6 6 66 u-ORLN 24 12 4 4 44
u-ORRN 60 30 10 10 110 u-ORSN 24 12 4 4 44
u-OSAA 0 0 0 0 0 u-OSAN 0 0 0 0 0
u-OSBA 0 0 0 0 0 u-OSBN 0 0 0 0 0
u-OSEA 0 0 0 0 0 u-OSLN 0 0 0 0 0
u-OSRN 0 0 0 0 0 u-OSSA 0 0 0 0 0
u-OSSN 0 0 0 0 0 u-SBRC 0 0 1 0 1
u-SCRB 0 0 0 0 0 u-SGLR 0 0 0 0 0
u-SRSR 49 31 12 8 100 u-STRI 10 6 4 4 24
u-VDTR 93 57 12 24 186 u-VGAR 28 24 0 0 52
u-VGPR 0 0 0 0 0 u-VGSR 0 0 0 0 0
u-VGTR 0 0 0 0 0 u-VLAR 4 0 0 0 4
u-VLPR 0 11 7 0 18 u-VLSR 197 154 14 26 391
u-VLTR 0 0 0 0 0 u-VSCR 18 0 0 0 18
u-VTWD 62 38 8 16 124 TOTAL 2268 1405 207 517 4397

We start our analysis by comparing the number of equivalent mutants and dual-
equivalent mutants. Table 3, as well as many previous experiments, shows that the set of
mutant operators we have been using is not too bad in the number of equivalent mutants
they produce. It is true that for a toy program like cal it is painful to have to analyze 347
equivalent mutants. For dual-mutation the scene is even worse. Table 3 shows that the
number of dual-equivalent mutants is much higher than for traditional mutation. In this
case study, more than 50% of the mutants are dual-equivalent.

It is interesting to note � and we believe this analysis has not been done before � how
bad the mutant operators we use are to create meaningful mutants, i.e., mutants that
corroborate to the construction of good test cases. The dual-equivalent mutants show
exactly this: the number of mutants in traditional mutation that are killed by any test
case that executes the mutation point. We knew that the percentage of mutants that die
easily is high but how many die with any test case, only the analysis of dual-equivalence

can show.
In summary, traditional mutation creates �few� equivalents and a large number of

useless-always-die mutants. Dual mutation creates a large number of equivalents and few
useless mutants. Finding equivalent mutants is much harder than �nding the mutants
that are always killed so in this matter, DMT is much more expensive than mutation
testing. In this case study we felt that identifying dual-equivalent mutants is easier than
equivalent mutants. This should not be taken in consideration so far because it lacks
scienti�c bases, but this is a point we plan to investigate in the future.

Table 3: Number of equivalent and dual-equivalent mutants.

Function Equivalents Dual Equiv. Mutants
main 199 (8.8%) 1424 (62.8%) 2268
cal 96 (6.8%) 675 (48%) 1405
pstr 18 (8.7%) 167 (80,7%) 207
jan1 34 (6.6%) 60 (11.6%) 517
TOTAL 347 (7.89%) 2326 (52.90%) 4397

Also in terms of required test cases, DMT has been found more expensive than muta-
tion. Table 4 shows the size of adequate test sets for mutation and for DMT. Except for
function pstr where the number of test cases is always 1 or 2 for both criteria, the number
of test cases required by DMT is always larger than the corresponding set for mutation
testing. In some cases like for the cal function, the DMT set can be as large as four times
the set for mutation testing.

Besides the cost, we can try to analyze what the fact that DMT sets are larger suggests
in terms of domain partition. For DMT we are considering a smaller number of mutants
� since the number of equivalents is higher � and still the number of test cases is larger.
This suggests that the sub-domains overlap less for DMT than for mutation testing. For
mutation testing one test case might kill many mutants so the number of required test
cases that kill all of them is lower than for DMT. This point must be further explored
but it may be an interesting feature and increase the e�ectiveness of DMT in comparison
to mutation testing.

According to Wong [20], two criteria C1 and C2 can be compared by their relative
strength, i.e., by evaluating how a C1-adequate test set behaves in relation to C2 and vice-
versa. Mutation testing has been shown an e�ective testing criterion [20] so a criterion
with a high relative strength in relation to it is expected to have similar fault revealing
e�ectiveness.

In this case study each of the 40 DMT-adequate test sets were evaluate in relation
to mutation testing and each MT-adequate test set were evaluated in relation to DMT.
Table 5 shows the result. The fourth column displays the average mutation score obtained
by DMT-adequate test sets when evaluated by mutation testing. The second column
shows the average mutation score obtained by MT-adequate test sets when evaluated by
DMT.

It can be observed that in this matter, the study indicates that DMT is better than
MT. The average mutation scores obtained by DMT-adequate test sets is signi�cantly
larger than those obtained by MT-adequate sets. In addition, except for function pstr, the

Table 4: Number of test cases in the adequate sets.

Mutation Testing Dual Mutation
Function Test cases Avg. Std. Dev. Test cases Avg. Stdv Dev.
main 40 32 30 27 30.9 3.5418 54 57 54 56 55.5 1.5092

30 32 29 55 59 55
29 29 31 55 55 55

cal 7 8 5 16 8.5 3.0277 35 32 36 31 34.5 2.5055
7 9 10 33 34 38
9 8 6 36 38 32

pstr 2 2 1 2 1.6 0.5164 1 2 2 1 1.7 0.4830
1 1 2 2 2 1
2 2 1 2 2 2

jan1 16 12 17 14 14.6 1.7127 35 37 38 39 36.7 2.5408
12 16 14 37 31 35
14 16 15 40 38 37

largest score obtained by the MT-adequate sets is always bellow the lower score obtained
by the DMT-adequate sets. For pstr the small number of test cases in the adequate sets
produces very di�erent scores between the sets. Some DMT-adequate sets achieved scores
of 1.0 and some scores around 0.88. The MT-adequate sets concentrate their scores on
1.0 and 0.45.

Table 5: Comparison of DMT-adequate and MT-adequate test sets.

MT-adequate to DMT DMT-adequate to MT
Function Average MS Std. Dev. Average MS Std Dev.
main 0.9364 0.0069 0.9886 0.0008
cal 0.7168 0.0797 1.0 0.0
pstr 0.6150 0.2657 0.9646 0.0571
jan1 0.7473 0.0720 0.9733 0.0137

A last characteristic we tried to evaluate in this case study is the intersection between
the correspondent MT-adequate and DMT-adequate sets. As indicated in Figure 4, one
MT-adequate and one DMT-adequate test sets use the same random generated sequence
of test cases to try to kill their mutants. What we would like to know is whether they
select the same test cases or di�erent test cases.

Table 6 shows in the fourth column the size of the test sets generated using DMT
criterion when used to evaluate MT-adequacy (only the test cases that kill at least one
mutant). The second column shows the analog case where MT-adequate sets are used on
DMT. These two columns give an idea of how the test sets behave in relation to its dual
criterion. For example, we can see for function jan1 that from the DMT-adequate test
sets which average 36.7 test cases, only 7.5 test cases are required to obtain the mutation
score of 0.9733 as shown in Table 5. On the other hand, 14.1 out of the average 14.6 test
cases of the MT-adequate sets are required to obtain the DMT score of 0.7473.

The sixth column shows the average size of the intersection between the e�ective sets
used with their dual criteria. This number gives the idea of how many test cases are
common in the MT and DMT-adequate sets. For example, for function main we can say
that 19.6 out of the 30.9 test cases that are MT-adequate are also in the DMT-adequate
set (in average 55.5 test cases large).

Table 6: Size of e�ective test sets.

MT-adequate to DMT DMT-adequate to MT Intersection
Function Set length Std. Dev. Set length Std Dev. Set length Std Dev.
main 22.4 1.5776 22.4 1.5055 19.60 1.5055
cal 7.4 1.8379 7.0 1.4142 6.4 1.0750
pstr 1.0 0.0 1.3 0.4830 1.0 0.0
jan1 14.1 1.8529 7.5 1.5092 6.70 1.4944

5 Conclusions

This paper presented the idea of Dual Mutation Testing (DMT). It uses mutants to create
test cases for a given program, similar to what is done in traditional mutation testing.
The di�erence is that it considers dead those mutants for which the tester has provided
a test case that reaches the mutation point and does not distinguishes the mutant, i.e.,
that makes the mutant behave as the original program. The motivation behind this idea
is trying to use those mutants that in traditional mutation testing are easily killed and
do not contribute to create good test sets.

In a case study using a very simple program a few �rst results could be drawn. The
�rst is that the number of equivalent mutants is much higher for DMT than it is for
mutation testing. This is a consequence of the fact that a large number of mutants are
useless for mutation testing. They are not only easy to kill, but any test case that reach
the mutation point would distinguish them. They are the dual-equivalent mutants. This
is a negative point to the use of DMT because analyzing equivalence or dual-equivalence
is certainly the most expensive task in mutation based testing.

The cost of DMT is high also in terms of test cases needed to ful�ll its requirements.
The data show that the number of test cases necessary to build an DMT-adequate test
set can be as large as four times the size of MT-adequate test sets. On the other hand,
this may indicate that the sub-domains determined by each mutant in DMT overlap less
than in traditional mutation. In traditional mutation a single test case can kill a large
number of mutants and it seems that in DMT this number might be smaller. If the
other problems with DMT can be overcome, this may be a good feature to improve fault
detection e�ectiveness.

Another positive point in favor of DMT is the fact that DMT-adequate test sets
are much closer to MT-adequacy than MT-adequate test sets are to DMT-adequacy.
In addition, using DMT-adequate test sets to evaluate MT-adequacy produces test sets
smaller than those produced by generating random test sets and then completing them
by hand (the way the adequate test sets were produced in this case study). This suggests
a way to use DMT and MT in conjunction.

And this is the direction we plan to follow in this research. Initially it is necessary to
expand the knowledge about DMT with more complete experiments. Comparing it with
other criteria is also a strategy to follow. In particular, comparison with mutation testing
can suggest how they relate to each other.

Then we plan to explore ways to use MT and DMT together. Experiments might
suggest sets of mutant operators that are more adequate to DMT than to MT or more
adequate to MT than to DMT. Other ways of using both might be explored as well, for
example using one of them to pre-select test cases to the other.

References

[1] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Theoretical and
empirical studies on using program mutation to test the functional correcteness of
programs. In Proceedings of the 7th ACM Symposium on Principles of Programming
Languages, pages 220�233, New York, NY, 1980.

[2] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface Mutation: An
Approach for Integration Testing. IEEE Transactions on Software Engineering,
27(3):228�247, March 2001.

[3] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An
integrated mutation testing environment. In Mutation 2000 Symposium, pages 91�
101, San Jose, CA, October 2000. Kluwer Academic Publishers.

[4] R. A. DeMillo and A. J. O�utt. Constraint Based Automatic Test Data Generation.
IEEE Transactions on Software Engineering, 17(9):900�910, September 1991.

[5] J. Duran and S. Ntafos. An evaluation of random testing. IEEE Transactions on
Software Engineering, SE-10:438�444, July 1984.

[6] D. Hamlet and R. Taylor. Partition Testing Does Not Inspire Con�dence. IEEE
Transactions on Software Engineering, 16(12):1402�1411, December 1990.

[7] R. F. Jorge. Teste de mutação: Subsídios para a redução do custo de aplicação.
Master's thesis, ICMC-USP, São Carlos � SP, February 2002.

[8] R. F. Jorge, M. E. Delamaro A. M. R. Vincenzi, and J. C. Maldonado. Teste de
Mutação: Estratégias Baseadas em Equivalência de Mutantes para Redução do Custo
de Aplicação (Mutation Testing: Equivalency Based Strategies for Cost Reduction
- in Portuguese). In XXVII Latin-American Conference on de Informatics (CLEI),
Meridas, Venezuela, June 2001.

[9] A. P. Mathur. Performance, E�ectiveness and Reliability Issues in Software Testing.
In Proceeding of the 15th Annual International Computer Software and Applications
Conference, pages 604�605, Tokio, Japan, September 1991.

[10] L.J. Morell. A theory of fault-based testing. IEEE Transactions on Software Engi-
neering, 16(8):844�857, August 1990.

[11] A. J. O�ut and W. M. Craft. Using compiler optimization techniques to detect
equivalent mutants. Journal of Software Testing Validation and Reliability, 4(3):131�
154, 1994.

[12] A. J. O�utt. Coupling E�ect: Fact or Fiction. In Proceedings of the 3rd Symposium
on Software Testing, Analysis, and Veri�cation (ISSTA'89), pages 131�140, Key
West, FL, December 1989.

[13] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions
on Software Engineering Methodology, 1(1):3�18, January 1992.

[14] A. J. O�utt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An Experimen-
tal Determination of Su�cient Mutant Operators. ACM Transactions on Software
Engineering Methodology, 5(2):99�118, 1996.

[15] A. J. O�utt, G. Rothermel, and C. Zapf. An Experimental Evaluation of Selective
Mutation. In Proceedings of the 15th International Conference on Software Engi-
neering, pages 100�107, Baltimore, MD, May 1993.

[16] K. S. H. T. Wah. Fault coupling in �nite bijective functions. Journal of Software
Testing Veri�cation and Reliability, 5(1):3�47, March 1995.

[17] E. J. Weyuker and B. Jeng. Analyzing Partition Testing Strategies. IEEE Transac-
tions on Software Engineering, 17(7):703�711, July 1991.

[18] W. E. Wong. On Mutation and Data Flow. PhD dissertation, Department of Com-
puter Science, Purdue University, W. Lafayette, IN, December 1993.

[19] W. E. Wong and A. P. Mathur. Reducing the Cost of Mutation Testing: An Empirical
Study. The Journal of Systems and Software, 31(3):185�196, December 1995.

[20] W. E. Wong, A. P. Mathur, and J. C. Maldonado. Mutation Versus All-uses: An
Empirical Evaluation of Cost, Strength, and E�ectiveness. In Proceedings of the
International Conference on Software Quality and Productivity, pages 258�265, Hong
Kong, December 1994.

