
Using Instrumentation to Reproduce the Execution of
Java Concurrent Programs

Márcio Eduardo Delamaro
Centro Universitário Eurípides de Marília (UNIVEM)

Av. Hygino Muzzi Fillho, 529
Marília - SP, Brazil

17525-901
delamaro@fundanet.br

Abstract
The Java language provides mechanisms to implement concurrency and synchro-
nization based on the monitor model. Testing multi-thread Java programs many
times requires to re-execute them with determined test data. The problem is
that re-executing such programs with a same test datum does not guarantee the
same behavior due to the non deterministic scheduling policy implemented in
the JVM. In this paper we present a simple way to reproduce the behavior of a
multi-thread Java program, based on program instrumentation.
Keywords: deterministic replay, Java multi-thread programs

1 Introduction

Testing is a crucial activity in the software lifecycle. It is expensive and time consuming.
For this reason much e�ort has been spent on developing techniques and tools to support
the testing activity. An important result of research is the de�nition of techniques and
criteria to drive the generation of test sets that can suitably exercise a program.

In testing and debugging activities, many times we face the problem of executing the
program under analysis and checking its results. The term �record and playback� (R&P)
has been used to describe techniques and tools to register the input and output of a
program execution and to use such data to automatically re-execute the same (or other)
program and compare the results.

When dealing with concurrent programs one extra aspect must be considered, i.e., the
non determinism. Two executions of a program on the same input may produce di�erent
� and still correct � results. If one wants to assure that the results of two executions with
the same input are identical, some extra control should be applied.

When testing a sequential program one can rely on the fact that there exists only one
correct output for a given test data. The statements are executed in a determined order
that does not change from one execution to another, if the input is the same. This is not
true for concurrent programs. The parallel or concurrent execution of several (determin-
istic) processes may result in di�erent outputs, depending on the order of execution of
the di�erent processes.

In the Java programming language, concurrency is obtained by the creation of multiple
threads of execution. Each thread has its own execution environment. On the other hand,
they can share objects. In order to control the access to the shared objects the language



provides statements and methods that implement the monitor synchronization model.
In short, each object created in the Java Virtual Machine (JVM) has associated to it a
monitor that can be used to assure to a thread, exclusive access to the object.

In this paper we describe an approach to R&P of Java concurrent programs based
on program instrumentation. A given program P that is subject to analysis (testing or
debugging) is instrumented in such a way that, when executed with a test case t, will
produce, in addition to its ordinary output, a sequence of events called �synchronization
sequence� intended to identify the order of access of each thread to the shared objects.
This is the �record� phase. In the �playback� phase the same P is instrumented in such
a way that the recorded �synchronization sequence� is used to guide the program re-
execution to reproduce its original behavior.

In the next section the basics of the Java synchronization mechanisms are discussed.
Next we present our model of instrumentation to R&P Java concurrent programs and the
classes we created to implement it. In Section 4 it is discussed how our technique can also
be used to try to exercise the program more completely by generating new synchronization
sequences to it. Section 5 discuss the limitations and drawbacks of our approach. Section 6
comments on related work and Section 7 presents our �nal observations.

2 Overview of Java Synchronization Mechanisms

The unit for parallelism in Java are �threads�. Threads have their own execution environ-
ment and may execute independently. They can also share objects, and thus, a mechanism
to synchronize the access to the shared objects is needed.

The basic mechanisms for thread synchronization in Java are synchronized methods
and synchronized blocks. Every object in Java has a monitor associated to it. This
monitor is used to guarantee that only one thread at time has access to an object. Pro-
gram 1 shows an example of synchronized method. In a program with two or more threads
sharing an object X of type MyClass, only one at a time can enter myMethod using that
object. The access to myUnsyncMethod does not have such restriction. Hence, a thread T1

can execute, for instance, myMethod on object X concurrently with thread T2, executing
myUnsyncMethod on the same object X but cannot execute myMethod concurrently with
thread T2, executing myMethod or myOtherMethod.

If a given thread T1 is executing a synchronized method on an object X and another
thread T2 tries to enter a synchronized method on the same object the system blocks T2

until T1 terminates executing the synchronized method. Then T2 can execute, or more
precisely, it can compete to get access to the object, since other threads may also be
trying to access the same object within a synchronized method.

When a thread T1 gains access to a synchronized method of an object X we say that
T1 owns or has locked X's monitor. A static method can be synchronized. In this case,
entering the method locks the monitor associated to the Class object associated to the
class where the method is de�ned.

Synchronized blocks are similar to synchronized methods but the protected code is
restricted to a piece of a method and the object on which the lock is executed is explicitly
declared. For example, in the code in Program 1, the thread must obtain the monitor of
myObject before executing doSomeOtherThing, in method myOtherMethod.



Program 1 - Example of synchronized method/block
1 public class MyClass {
2 myOtherClass myObject = new myOtherClass();
3

4 public synchronized void myMethod() {
5 doSomething();
6 }
7

8 public void myOtherMethod() {
9 synchronized (myObject) {
10 doSomeOtherThing();
11 }
12 }
13

14 public void myUnsyncMethod() {
15 doSomeOtherThing();
16 }
17 }

Every object created by the Java Virtual Machine (JVM) is associated to a wait set
which allows the thread that locked a monitor temporarily releasing that monitor until
an event occurs. Class Object de�nes a wait method that releases the monitor of the
object used in the call. The method also inserts the current thread in the object's wait
set, temporarily blocking its execution. The de�nition of method wait explicitly states
that the thread that calls the wait must be holding the monitor of the object, otherwise
an exception is thrown. Since every class in Java inherits from the class Object, every
object created in Java has a method wait (declared ��nal� in the class Object).

The class Object also declares a method notify which wakes up a thread waiting in
a wait set. When this method is called on an object X, one of the threads is randomly
removed from the wait set, becoming ready to execute. This does not mean that it will be
executed immediately. First because the thread that calls notify must be in possession
of the object monitor; thus, the thread removed from the wait set can execute only after
the current thread releases the lock. Moreover, even after the current thread has released
the lock, there is no guarantee that that speci�c thread will be the one that acquires the
monitor because other threads may be in contention for the same monitor.

The thread removed from the wait set resumes from the point immediately after the
call to wait and returns to the same state it had at that time, i.e., in possession of the
monitor. The wait method has a variant that accepts a timeout value as argument. The
semantics of this call is similar to the one described above, i.e., the thread is inserted
in the wait set until a notify removes it. In addition, if it is not removed by a notify
within the speci�ed timeout, it is removed �by itself�. The notify method has a variant
notifyAll that, when called on object X, removes all the threads from the wait set of X.

Other methods in the Java API complete the resources of the language for concur-
rency. Among them, the methods in the class Thread, responsible for the creation and
management of new threads.



3 Record and Playback

In this section we describe our approach to R&P concurrent Java programs in order to
allow the reproduction of one execution of a program P, making sure that the results
obtained will match the results of the original execution. Initially, we describe the two
distinct types of instrumentation: one for recording an execution and another for replaying
it. Then we show how the instrumentation is actually implemented, allowing both phases
to be done with a single instrumentation.

It is necessary to note that we are considering programs in which non-determinism
arises only from the order in which the threads are activated. In addition, in order to
guarantee that any single thread isolated from the others has a deterministic behavior,
any access to a shared object is done inside a synchronized block or method. It is beyond
the scope of this paper but it can be shown that under these restrictions a synchronization
sequence can be determined by the order in which the threads access the shared objects
or, in other words, the order in which the threads execute the synchronized code. If a
program P executes with an input t and produces an output O, then a second execution
of P with t that follows the same synchronization sequence should also produce O.

Several approaches can be used to force the re-execution of P to follow the same
synchronization sequence recorded in a previous execution. Some obvious choices are:

• The scheduler system uses the same choices when choosing a thread to execute;

• The execution of P is externally monitored in the �rst execution and in the re-
execution the synchronization sequence is forced by this external monitor;

• The program P is instrumented in order to record the synchronization sequence
in the �rst execution and to follow the recorded synchronization sequence in the
re-execution.

Each approach has its advantages and problems. The �rst solution is the most com-
plete and less restrictive, as any program could be �recorded and played back� without any
change in the program. In the case of Java, the JVM is the responsible for scheduling the
threads. Thus the implementation of such a solution would require modifying the JVM
implementation. In addition, di�erent implementations of the JVM would require di�er-
ent implementations of the R&P system. Section 6 comments about DejaVu, a system
that uses this solution.

The second solution can be implemented by using libraries for debugging Java pro-
grams such as the Sun's Java Platform Debugger Architecture (JPDA API). The mon-
itoring program should set break points on speci�c places of P in such a way that the
synchronization sequence could be recorded in the �rst execution. In the re-execution
the monitor would be able to enable/disable threads according to the order established in
the synchronization sequence and in this way make the program P to follow the desired
sequence. The problem in this case is that the monitored execution of a program tends
to be much slower than the normal execution. In a simple test we could verify that the
number of breakpoints required to record the synchronization sequence in a simple pro-
gram using the JPDA API makes its execution impractical and in some cases makes the
JVM crash.

The third option is the one we have adopted. It is the simplest to implement but it is
more restrictive than the others. It inserts some control statements in places of the code



that deal with shared objects, for example, inside a synchronized method. To do so, it is
necessary to have access to the synchronized method code, no always accessible. Let us
take as an example a thread that shares an object vec of type java.util.Vector. Accord-
ing to the de�nition of the Java API, this object is implicitly synchronized, i.e., when the
thread calls a method on this object it is calling a synchronized method. This fact should
be registered in the synchronization sequence but, as the code of java.util.Vector can
not be instrumented, it is not possible to do so. The best we could do is to analyze
statically the program and identify the points where implicitly synchronized objects are
being used.

The instrumentation of the code is done in two di�erent moments. The �rst is the
instrumentation for the recording phase and the second is the instrumentation for the
replaying phase. In the recording phase the goal is to register which thread is accessing
which object. Since we started from the assumption that every access to a shared object
is done inside a synchronized code, what we want to do is to register when a synchronized
block or method begins executing. Then the instrumentation consists in �nding the
synchronized blocks and methods and inserting a statement inside them to register which
thread is blocking which object.

Let us take as example the class in Program 1. The instrumented code for recording
is shown in Program 2. The call to beginRegisterAccess is responsible for inserting an
event in the synchronization sequence, i.e., the fact that a thread has locked an object.
Although not necessary for the characterization of the synchronization sequence, the call
to endRegisterAccess inserts the opposite event, i.e., the release of an object's lock.
Such an event may be useful for synchronization sequence generation, as described in
Section 4.

The replaying phase requires a di�erent instrumentation. The �rst point to note is
that before entering a synchronized code, the thread should consult the synchronization
sequence and check whether the next event is the one to be executed. For example, if
thread T1 is about to lock object O1, there must be an statement that consults the syn-
chronization sequence to check if the next event is �T1 locks O1�. This is the �rst problem
we have. For a synchronized method, �before entering� means that the instrumentation
should be done before calling the method, which, for many obvious reasons is not de-
sired. Thus, the �rst thing the instrumentation should do is to transform a synchronized
method into a synchronized block. The object used in the synchronized block depends on
the method, i.e.:

• If the method is an instance method the object is �this�;

• If the method is a static method the object is the Class object that represents the
class in which the method is de�ned. For example MyClass.class.

The instrumentation for replaying a synchronization sequence for the example in Pro-
gram 1 is shown in Program 3.

Note that the call to checkAccess does not use the synchronizing object to consult the
synchronization sequence. This is so because, considering that the thread is deterministic
and followed the synchronization sequence until that point, it would not be accessing a
di�erent object. It has only to check if it is its turn to execute.



Program 2 - Example of recording instrumentation
1 public class MyClass {
2 myOtherClass myObject = new myOtherClass();
3

4 public synchronized void myMethod() {
5 beginRegisterAccess(Thread.currentThread(), this);
6 try {
7 doSomething();
8 }
9 finally {
10 endRegisterAccess(this);
11 }
12 }
13

14 public void myOtherMethod() {
15 Object sinc;
16 synchronized (sinc = myObject) {
17 beginRegisterAccess(Thread.currentThread(), sinc);
18 try {
19 doSomeOtherThing();
20 }
21 finally {
22 endRegisterAccess(sinc);
23 }
24 }
25 }
26 }

Program 3 - Example of replaying instrumentation
1 public class MyClass {
2 myOtherClass myObject = new myOtherClass();
3

4 public void myMethod() {
5 checkAccess(Thread.currentThread());
6 synchronized (this) {
7 nextEvent();
8 doSomething();
9 }
10 }
11

12 public void myOtherMethod() {
13 checkAccess(Thread.currentThread());
14 synchronized (myObject) {
15 nextEvent();
16 doSomeOtherThing();
17 }
18 }
19 }



In addition to consulting the synchronization sequence it is necessary to remove its
�rst event, when a match is found. This cannot be done in the checkAccess or elsewhere
before entering the synchronized block. This would allow another thread to �nd a match
and lock the object before, not respecting the ordering in the synchronization sequence.
The call to nextEvent inside the block assures that the object has been locked before the
event is removed from the synchronization sequence, liberating other threads to follow
their execution (if possible).

This is only part of the necessary instrumentation. So far we did not deal with wait
sets. As stated before, it is important to register every access to shared objects (or to
synchronized code). When a thread returns from a wait, it is re-entering a synchronized
code and that event should be registered in the synchronization sequence. The registration
instrumentation replaces a call like x.wait() by a call to another method Wait(x). This
new method is the responsible for:

• Calling x.wait();

• Inserting an event in the synchronization sequence to state that the thread gained
access to the object again, after returning from the wait.

Although not necessary for implementing the R&P, registering the call to the wait
method may contribute to add additional information to the synchronization sequence
such as the inclusion of the thread in the wait set or even to control which threads are in
which wait set. The same is valid for the notify and notifyAll calls. They do not need
to be replaced in the recording phase instrumentation, but doing so makes it possible to
insert some control events in the synchronization sequence; for example, to check which
threads are in the speci�c wait set at the notify call.

For the replay phase, the instrumentation of wait's becomes a little more complex.
When a thread is removed from the wait set and returns from the wait, it is necessary to
check whether this is the event expected in the synchronization sequence . However, if
it is not, what should be done? The thread should be re-inserted in the wait set � what
is not so di�cult � and then to expect the execution of some other thread that matches
the next event in the synchronization sequence. The problem is that such a thread may
never arrive because the notify that should remove it from the wait set may have been
wasted with the wrong thread. Hence, the program may block.

The solution we adopted is:

• replace each call x.wait by a call to Wait(x);

• the Wait method calls x.wait(timeout);

• when returning from the wait, checks whether this event matches the one in the
synchronization sequence. If it does not, call x.wait(timeout) again.

In summary, every call to a wait() is replaced by a timed-wait. In this way, the thread
is re-inserted in the wait set and will not be blocked forever even if no other notify removes
it from the wait set. The notify calls become useless but since we have the ordering of
the threads to be followed, we can expect the same behavior of the original execution.

Programs 4 and 5 show, respectively, an original class Channel extracted from [4]
and the actual instrumentation done by our system. The methods described above are



implemented in a package RRTools (Figure 1 extracted from [7]). They are inside a class
named Replay and are all static methods. The instrumentation shown in Program 5
di�ers from the one previously described because it intends to be used in both phases,
i.e., record as well as replay.

Program 4 - The original Channel class
1 public class Channel extends Selectable{
2

3 Object chan_ = null;
4

5 public synchronized void send(Object v) throws InterruptedException {
6 chan_ = v;
7 signal();
8 while (chan_ != null) wait();
9 }
10

11 public synchronized Object receive() throws InterruptedException {
12 block();
13 clearReady();
14 Object tmp = chan_; chan_ = null;
15 notifyAll(); //should be notify()
16 return(tmp);
17 }
18 }

By doing so, the instrumented program follows a given input synchronization sequence
and at the same time records an output synchronization sequence. Although this may
sound useless since they should be the same, this approach makes it possible to provide
only part of a complete synchronization sequence (a pre�x) and force the program to
follow it. When the pre�x runs out, the program continues normally, recording the rest
of the synchronization sequence. If no pre�x is provided as input, the system will only
record the synchronization sequence.

As shown in Program 6, methods such as afterEnterSyncBlock in the class Replay
use methods in class RR which is the responsible by doing the synchronization sequence
recording. Both classes use a system property to de�ne from where to read the input
synchronization sequence and where to write the output synchronization sequence. Thus,
if one wants to execute a program MyProg, which has its classes instrumented, and make
the program read its input synchronization sequence from a �le �inSeq� and write its
output synchronization sequence to a �le �outSeq�, the following statement should be
used:

java -DRR=outSeq -DRW=inSeq -classpath .:RRTools-directory MyProg

In the next section we explain how simultaneous record and playback instrumentation
can be used to improve program testing.



Program 5 - The instrumented Channel class
1 public class Channel extends Selectable {
2 Object chan_ = null ;
3 public void send (Object v) throws InterruptedException {
4 {
5 final Object OOO_0_ = this;
6 RRTools.Replay.beforeEnterSyncBlock(OOO_0_,"send-4");
7 synchronized (OOO_0_) {
8 RRTools.Replay.afterEnterSyncBlock(OOO_0_,"send-3");
9 try {
10 chan_ = v;
11 signal();
12 while (chan_ != null)
13 RRTools.RR.Wait(this,"send-1");
14 } finally {
15 RRTools.Replay.exitSyncBlock(OOO_0_,"send-2");
16 }
17 }
18 }
19 }
20

21 public Object receive () throws InterruptedException {
22 final Object OOO_1_ = this;
23 RRTools.Replay.beforeEnterSyncBlock(OOO_1_,"receive-4");
24 synchronized (OOO_1_) {
25 RRTools.Replay.afterEnterSyncBlock(OOO_1_,"receive-3");
26 try {
27 block();
28 clearReady();
29 Object tmp = chan_;
30 chan_ = null;
31 RRTools.RR.NotifyAll(this,"receive-1");
32 return (tmp);
33 } finally {
34 RRTools.Replay.exitSyncBlock(OOO_1_,"receive-2");
35 }
36 }
37 }
38 }

4 Behavior Generation

We commented that this model of instrumentation � in particular for the recording phase
� can collect more information than that essential for R&P. This information, such as
releasing of a lock, calls to notify, and others, may be used by a tool to support other
activities such as: 1) a friendly visualization of a synchronization sequence by the user; and
2) automatic generation of other valid synchronization sequences for the same program.

This second characteristic together with the ability to use a pre�x of a synchronization
sequence to execute the program under analysis may improve software testing. Many times
the tester faces the problem of trying to exercise some features in the program under
test but is not able because the execution system keeps choosing the same scheduling



Figure 1: Package RRTools

sequences, that does not lead to the desired behavior. This problem is addressed in the
work of O�ut et al. [5] and commented in Section 6.

With our approach it is possible to implement a tool that analyzes a given synchro-
nization sequence and creates valid alternative synchronization sequences. For example,
let us take the following piece of a synchronization sequence:

• Thread T1 locks object X1

• Thread T1 calls X1.notify(). The wait set of X1 at this point contains:
Thread T2 included by a non-timed wait
Thread T3 included by a non-timed wait



Program 6 - A summary of class RRTools.Replay
1 package RRTools;
2 public class Replay {
3 static String inFile = System.getProperty("RW");
4

5 static {
6 // load inFile
7 }
8

9 /** checks if the event is the one expected
10 deals with entering a synchronized block */
11 static public void beforeEnterSyncBlock(Object x, String obs) {
12 ...
13 }
14

15 static public void afterEnterSyncBlock(Object x, String obs) {
16 RR.beginRegisterAccess(x, obs);
17 Remove();
18 }
19

20 static public void exitSyncBlock(Object x, String obs) {
21 ...
22 }
23

24 /** replaces a wait call */
25 static public void Wait(Object x, long mili, int nano, String obs)
26 throws InterruptedException {
27 ...
28 }
29

30 /** replaces a wait call */
31 static public void Wait(Object x, long mili, String obs)
32 throws InterruptedException {
33 ...
34 }
35

36 /** replaces a wait call */
37 static public void Wait(Object x, String obs)
38 throws InterruptedException {
39 ...
40 }
41 }

• Thread T1 releases X1

• Thread T2 locks X1

It suggests that the call to the notify takes T2 o� the wait set allowing that thread to lock
X1 in the sequence. Using this synchronization sequence up to this point and replacing
the last event by T3 locking X1 may be an interesting pre�x that may cause a di�erent
behavior in the rest of the execution, leading to exercise untested features in the program.



Currently our system does not have such an analysis tool but the recording instru-
mentation collects much of the information required to implement this kind of analysis.
It includes:

• entering a synchronized method or synchronized block;

• leaving a synchronized method or synchronized block;

• call to a wait method (and inclusion of the thread in the wait set);

• return from a wait call (and remotion from the wait set);

• call to notify and notifyAll and veri�cation of the threads in the wait set.

5 Limitations

As stated before, the technique presented herein aims at Java multi-thread programs in
which each thread is deterministic. It means that the only kind of non-determinism that
may arise is from the way the threads are scheduled in the JVM.

In addition, it supposes a well-behaved program, in which every access to shared
objects is done by using the constructs of the language in a determined sequence. Methods
to control thread execution such as Thread.interrupt or Thread.stop may confuse the
R&P system and make it fail.

Another problem, as mentioned before, is the use of synchronized methods from li-
braries that are not part of the program under analysis. For example, the class java.util.
Vector de�nes its methods as synchronized. Since the class cannot be instrumented, it
is not possible to control the order of accesses from multiple threads. The best the in-
strumentation system can do is to warn the programmer and to indicate the places where
such classes are used. The programmer can choose to insert synchronized blocks at those
points. Such blocks, although redundant, permit the instrumentation to work properly.

In the replay phase, the instrumented code has to identify which thread matches the
next event in the input synchronization sequence. So, there must be a correspondence
between a thread in the original run and a thread in the re-execution. Unfortunately,
there is no safe way to do so, other than by the name of the thread. The Java runtime
system allows the creator of a thread to name it. If it is not named, the runtime system
will give it a name, based on its thread group and the sequential order it is created. Since
the order of creation of the threads may not be the same, it is not guaranteed the same
name is given in two di�erent executions. In order to allow the instrumentation system
to associate the threads of two di�erent executions, it is necessary that every thread is
explicitly named by the creator, so they have the same name in di�erent runs.

6 Related Work

The use of instrumentation to control multi-process program synchronization has been
used before. Carver and Thai [1] proposed the technique called �deterministic execution�
where they describe how to instrument concurrent programs that use either monitors or
semaphores as the synchronization model. According to the authors their technique can
be extended to other synchronization models and languages.



The most commented system for applying R&P to Java found in the literature is
probably DejaVu [2]. It implements a completely di�erent approach. It was developed
as an extension to the Sun's Java Virtual Machine and can be used on single processor
systems, as well as on multiprocessor systems. The JVM can be started in one of two
modes: 1) the record mode wherein the tool records information about logical thread
scheduling; and 2) the replay mode in which the tool reproduces the execution behavior,
enforcing the same logical thread schedule.

Silva-Barradas [6] uses this approach to record the synchronization sequence of Ada
programs. The approach presented herein is similar to those of Silva-Barradas but requires
a completely di�erent instrumentation strategy since the concurrency and synchronization
mechanisms of Java are sensibly diverse from those of Ada.

Our R&P system has been used to support the application of mutation testing for Java
concurrent programs [3,7]. It is used to record the execution of the original program and
to use the synchronization sequence obtained to guide the execution of the mutants, trying
to make them behave as the original program. A mutant is considered dead if it is not able
to follow the original synchronization sequence or if it follows the original synchronization
sequence but presents a di�erent behavior. This approach has been proposed by Silva-
Barradas [6] for Ada programs.

O�ut et al. [5] have also tried to use mutation testing in concurrent (Ada) programs.
The authors proposed a technique that calculates an approximated set Ω, de�ned as a
subset of all possible results of P(t). This set is calculated by executing P(t) several times.
The mutantM is distinguished if it produces at least one result M (t) /∈ Ω. One problem of
their approach is the fact that in a given environment (operating system or in this case the
Ada runtime system) the repeated execution of the program under test might not create
several di�erent behaviors because the system tends to take the same actions on choosing
tasks to execute. With the mutation it is possible that those choices change and the
mutant will produce a di�erent (although correct) result and be erroneously considered
distinguished. A possible solution would be to use our R&P system to record the �rst
execution of P(t) and then generate alternative synchronization sequences in the hope of
creating alternative behaviors and so expanding the set Ω.

7 Final Remarks

Testing and debugging of concurrent programs present additional di�culties to the testing
and debugging of sequential programs. One of them is the non-determinism that makes
harder to reproduce the behavior of a program execution. Even if the concurrent pro-
cesses are deterministic, non-determinism can arise from the possible di�erent sequences
of process scheduling.

Unfortunately, most of the operating systems and runtime systems � included the
diverse versions available of the Java Virtual Machine � do not o�er any support to the
tester facing this problem. Thus, the tester has to �nd alternative approaches in order to
be able to adequately exercise his/her programs. One exception is the work with DejaVu,
which extends the JVM with R&P capabilities [2].

In this paper we presented an approach to reproduce the behavior of a Java multi-
thread program. The program under analysis (under testing or debugging) is instrumented
in such a way that the synchronization points (where the program accesses shared objects)
are recorded. In a second execution this instrumented program can use this synchroniza-



tion sequence to force the same sequence of accesses to the shared objects, to produce the
same behavior. In addition, the analysis of a given synchronization sequence created in a
particular execution can help to create new synchronization sequences and possibly new
behaviors.

The technique does not apply to concurrent Java programs in general, relying on some
constraints in the program to be tested. Even so, we believe that, given its simplicity and
easy of use and implementation, it may be helpful to support the testing and debugging
activity for many real-world applications. In a case study [7], it was used to support
the application of mutation testing for Java concurrent programs, including part of a
commercial real-time monitoring system.

Acknowledgements

The author would like to thank CNPq and Fundação Araucária for partially supporting
the work reported herein and Prof. Mario Jino for reviewing this text.

References

[1] R. H. Carver and K. Tai. Replay and Testing for Concurrent Programs. IEEE Software,
8(2):66�74, March 1991.

[2] J.D. Choi and H. Srinivasan. Deterministic replay of java multhithread applications.
In ACM SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT), pages
48�59, August 1998.

[3] M. E. Delamaro, M. Pezzè, A. M. R. Vincenzi, and J. C. Maldonado. Mutant oper-
ators for testing concurrent Java programs. In SBES'2001 � Simpósio Brasileiro de
Engenharia de Software, pages 272�285, Rio de Janeiro, RJ, October 2001.

[4] J. McGee and J. Kramer. Concurrency: State Models and Java Programs. John Wiley
and Sons, 19919.

[5] A. J. O�utt, J.M. Voas, and J. Payne. Mutation Operators for ADA. Technical Report
ISSE-TR-96-09, Department of ISSE, George Mason University, Fairfax, VA, March
1996.

[6] S. Silva-Barradas. Mutation Analysis of Concurrent Software. Phd thesis, Department
of Eletronic and Informatics, Polythecnic of Milan, Milan, Italy, 1997.

[7] E. Sprea�co. Experimental Evaluation of a Technique to Test Concurrent Java Pro-
grams (in Italian). Undergrad. �nal work, Facoltà Di Informatica - Università degli
Studi di Milano, Milan, Italy, 2001.


