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Abstract. Background: Unhandled exceptions affect the reliability, usability, 

and security of web applications. Detecting automatically unhandled latent 

exceptions is difficult and application-specific. Hence, general approaches to 

deal with defects in web applications do not treat unhandled exceptions 

appropriately. Aims: To design and evaluate a method that can support 

finding, correcting, and preventing unhandled exceptions in web applications. 

Method: We designed a method called Pattern-Driven Maintenance (PDM), 

which relies on identifying defect patterns from failures and producing custom 

static analysis rules that can be used for prevention. We applied PDM to two 

industrial web applications measuring the reliability improvement, evaluated 

reuse of static analysis rules produced on within- and cross-company 

software, and studied the effectiveness, challenges faced, and acceptance of 

novice maintainers on applying PDM. Results: In both industry cases, we 

eliminated pattern-related failures improving the application reliability. Some 

of the static analysis rules produced by applying PDM were reused on within- 

and cross-company software. We identified knowledge and experiences that 

influence effectively applying the steps of the PDM method. Conclusions: 

PDM can help maintainers to improve the reliability of existing applications. 

We provide guidance on how to apply PDM, reuse the produced static 

analysis rules, and the knowledge and experiences needed to apply the PDM 

method effectively. 

Resumo. Contexto: Exceções não tratadas afetam a confiabilidade, 

usabilidade e segurança em aplicações web. Detectar exceções não tratadas 

latentes de forma automatizada é uma tarefa difícil e específica de cada 

aplicação. Assim, abordagens gerais para tratar defeitos em aplicações web 

não tratam exceções não tratadas latentes apropriadamente. Objetivos: 

Projetar e avaliar um método que possa suportar encontrar, corrigir e 

prevenir exceções não tratadas em aplicações web. Método: Nós projetamos o 

método chamado Manutenção Orientada a Padrões (Pattern-Driven 

Maintenance - PDM), que consiste em identificar padrões de defeitos se 

baseando em falhas para produzir regras de análise estática que podem ser 

utilizadas para a prevenção de defeitos. Nós aplicamos PDM em duas 

aplicações web na indústria medindo a melhoria na confiabilidade das 

aplicações. Nós também avaliamos o reuso das regras de análise estática 



  

produzidas na mesma empresa e em outras empresas. Finalmente, nós 

estudamos a eficácia, os desafios encontrados e a aceitação de mantenedores 

novatos aplicando o método PDM. Resultados: Nos dois casos industriais, 

nós eliminamos completamente as falhas relacionadas a exceções não 

tratadas latentes melhorando assim a confiabilidade da aplicação. Algumas 

regras de análise estática produzidas pela aplicação do método PDM foram 

reutilizadas em software na mesma empresa e em outra empresa. Nós 

identificamos os conhecimentos e experiências que influenciam em aplicar os 

passos do método PDM de forma eficaz. Conclusões: O PDM pode ajudar os 

mantenedores a melhorar a confiabilidade de aplicações existentes. Nós 

disponibilizamos orientações sobre como utilizar o método, reutilizar as 

regras de análise estática produzidas, e quais conhecimentos e experiências 

são necessários para aplicar o PDM com eficácia. 

1. Introduction  

Maintenance is the most costly phase in the software lifecycle (Bourque, Fairley, and 

others 2014). Defect prevention and correction activities consume part of these 

resources. Additionally, the impact of failures in software in use can range from a slight 

inconvenience to severe damage, including economic ones (Jones and Bonsignour 

2011). Among those failures are the ones generated by exceptions that are not handled 

by the application, i.e., unhandled exceptions. 

 Unhandled exceptions can affect software reliability, usability, and security. The 

reliability of a system is its ability to perform their required functions under stated 

conditions for a specific period (ISO 2010). Reliability is affected when an exception is 

not handled correctly. Indeed, exception handling is a requirement for reliable web 

applications. Usability may also be affected; typically, users do not receive proper 

messages to deal with the exceptional situation when it occurs. Furthermore, unhandled 

exceptions are listed as a common software weakness (CSW-248)1, which, if exploited 

by attackers, may affect software availability and confidentiality2.  

 In web applications, the web server logs into the error log, among other failures, 

those generated by unhandled exceptions. They can be identified by the HTTP return 

code 500 in the web server access log. Those logs have been previously used to measure 

the reliability of several web applications (KALLEPALLI; TIAN, 2001; GOŠEVA-

POPSTOJANOVA et al., 2006), showing the recurrent occurrence of unhandled 

exceptions. However, the logs record only the unhandled exceptions thrown during 

software use. Hence, even if unhandled exceptions are not registered in the log, it is still 

possible for the web application to have source code that lacks exception handling, but 

that has not thrown exceptions yet. We refer to this type of source code problem as 

unhandled latent exceptions. 

 It is difficult to detect unhandled latent exceptions automatically. Automated 

approaches for testing web applications ( GAROUSI et al., 2013; DOGAN; BETIN-

CAN; GAROUSI, 2014; LI; DAS; DOWE, 2014) and locating defects using static 

 
1 http://cwe.mitre.org/data/definitions/248.html 

2 http://capec.mitre.org/data/definitions/54.html 



  

analysis (Heckman and Williams 2011; Muske and Serebrenik 2016) do not focus on 

unhandled latent exceptions, thus they are inadequate to treat this problem. Application-

specific approaches (Ersoy and Sözer 2016) show only superficially how to create static 

analysis rules to find application-specific defects. They also do not inform the precision 

of the static analysis rules produced and how that precision can be improved. 

 To fail and to learn from failure are essential parts of the engineering discipline 

(Petroski and Baratta 1988). We aim to apply this principle to the (latent) unhandled 

exceptions problem, using logged failure information as the basis for learning how to 

prevent them. Using the design science (Wieringa 2014) template, our problem can be 

stated as follows:  

Improve the reliability of web information systems that present failures caused 

by unhandled operational3 exceptions  

by designing a method to automate the localization of unhandled (operational 

and latent) exceptions  

that satisfies high levels of precision and recall for localization  

in order to not only fix the existing defects (operational and latent) but also be 

used to prevent the reintroduction of the same type of defect during the software 

evolution 

 The remainder of this extended summary of Mendonça (2019) thesis   is 

organized as follows: Section 2 presents our research method. Section 3 presents the 

PDM method. Section 4 presents our results. We conclude and present our contributions 

in Section 5. 

2. Methodology 

Our research methodology to address this problem is based on the design science 

engineering cycle (Wieringa 2014). The design science approach starts with idealized 

assumptions to produce an artifact that solves a practical problem. Afterward, 

engineering cycles are performed with controlled conditions, gathering experience to 

improve the artifact. Each engineering cycle relaxes the conditions of experimentation 

gradually by approximating them to practical conditions. Those cycles are performed 

until the artifact is ready to be used in practice.  

 In our case, we had some idealized assumptions drawn from our previous 

experience and knowledge of the unhandled exceptions problem and its related 

literature. Our assumptions at this early time were: (1) unhandled exceptions 

(operational and latent) form patterns in the source code of web applications, (2) each 

application has its own patterns, and (3) each specific defect pattern occurs several 

times throughout the source code. 

 We designed a method called Pattern-Driven Maintenance (PDM) to perform 

corrective and preventive maintenance of web applications against unhandled latent 

 
3 Unhandled operational exceptions are the exceptions which were exercised during software 

operation producing a failure, while the unhandled latent exceptions are the exceptions that may produce 

a failure but were not exercised in this way during software operation yet.   



  

exceptions. In this method, the maintainer first uses the web server logs as sources to 

find software failures generated by unhandled exceptions; then, an investigation is 

performed on the failures and in the application source code to identify source code 

patterns that trigger an unhandled exception, i.e., a defect pattern. Once such a pattern 

has been identified, the maintainer creates a static analysis rule that represents the defect 

pattern and uses a static analysis tool to locate its instances. After the pattern instances 

are found, they are evaluated by testing or inspection, revealing their latent defects. The 

verification activity not only enables correction of the defects but also assists in 

improving the precision of the static analysis rules, working as a learning cycle. 

 Once designed, we conducted investigations aiming to answer the following 

design science knowledge questions (Wieringa 2014) about PDM: 

RQ1.(effect) What is the software reliability improvement achieved by fixing 

the located defects? 

RQ2.(requirement satisfaction) What is the precision and recall of the 

automated defect localization? 

RQ3.(sensitivity) Which factors influence the method application and precision 

of the automated defect localization? 

RQ4. (sensitivity) In which scope rules created by applying PDM can be 

reused? 

RQ5.(effect) What are the benefits of reusing rules created by applying PDM? 

RQ6.(sensitivity) Which factors influence reusing rules created by applying 

PDM? 

RQ7.(requirement satisfaction) How effective are maintainers applying PDM 

for preventing defects? 

RQ8.(requirement satisfaction) Would maintainers accept to use PDM? 

 We performed three different studies to address those questions. First, we 

evaluated PDM effectiveness and sensitivity in preventing unhandled latent exceptions 

by applying it in two industrial cases ( Mendonça et al., 2018). We measured the 

reliability against unhandled exceptions of both software before and after applying 

PDM (RQ1), evaluated the precision and recall of rules produced (RQ2), and reported 

our perceptions on the factors that influence PDM application (RQ3).   

 After applying PDM in two industrial software systems, we selected other 

similar software to evaluate the reuse of rules produced by the method (Mendonça & 

Kalinowski, 2020). We selected three software systems, one within the same company 

and team that we applied PDM, and the other two with other companies and 

development teams. We evaluated in which ones the rules could be reused (RQ4), as 

well as the factors that influence rule reuse (RQ6). We also measured the precision of 

the reused rules and discussed the benefits found by reusing PDM-produced rules 

(RQ5). 

 Finally, we evaluated the effectiveness of novice maintainers in applying PDM 

and their acceptance of the method by making them apply PDM in an observational 

study ( Mendonça & Kalinowski, 2020b). We measured the percentage of maintainers 

that correctly applied each step of PDM and compared the maintainers that correctly 

performed each step with others. Hence, we evaluated maintainers effectiveness (RQ7) 

and the skills needed to achieve it. We evaluated PDM acceptance by applying the 

technology acceptance model (TAM) questionnaire after maintainers used PDM (RQ8). 



  

3. Pattern-Driven Maintenance 

In this section, we briefly explain the proposed Pattern-Driven Maintenance (PDM) 

method. Figure 1 shows the activities collapsed into steps along with the control flow of 

the method. Two primary paths can be observed: the maintenance path (steps 1, 2, and 

3) and the defect pattern improvement cycle (steps 4, 5, and 2).  

 

Figure 1: The PDM method control flow 

 The maintenance path includes activities to process the server logs and identify 

defect patterns (step 1), to develop static analysis rules to detect the latent defects (step 

2) and to verify the detected instances and correct the defects (step 3). The execution of 

the maintenance path occurs when the web server error logs contain new records. The 

web server logs must be monitored periodically to identify those new records by 

performing the first step of the method (failure analysis and defect pattern 

identification). Eventually, no defect pattern will be identified in step 1, and in this case, 

no further step of PDM need to be performed. The maintainer should perform the 

typical corrective maintenance in cases when failures are present in logs, but no pattern 

were identified. For simplicity, we did not represent this case in PDM workflow (Figure 

1). 



  

 The defect pattern improvement cycle is performed when the evaluation of the 

rules (step 4) (e.g., based on precision and recall) does not reach acceptable levels to 

alert during development. These levels vary according to the static analysis rule and 

depend on factors such as the impact on software reliability. Each company or 

maintenance team also has its own tolerance levels to false positive and negative alerts. 

Thus, we do not prescribe the thresholds for these levels. Further information on how 

we establish those levels in our industrial evaluations and benchmarks are provided 

inMendonça et al. (2018)..  

 When precision or recall levels are not acceptable, the source code context of the 

detected defects is analyzed to improve the static analysis rules (step 5). Finally, there 

are two exit steps in the exit path of the method – rule deployment for defect alerting 

(step 6) and rule contingency (step 7) –, which includes using the rules and patterns only 

in a limited way. Further details on the seven depicted steps are provided in Mendonça 

(2019). 

4. Results and Discussion 

In this section, we answer our design science knowledge questions about PDM. 

 We applied the PDM method to two industrial web applications from different 

companies and using different technologies (-Mendonça et al. 2018). In both 

evaluations, applying the method enabled identifying three defect patterns and locating 

their latent instances statically using SonarQube (SonarSource 2008). A total of 104 

defects were tested and fixed. To assess the PDM method, we performed measurements 

of failures caused by those patterns before and after applying PDM. In both 

applications, the failures caused by the treated defect patterns were eliminated, 

improving the application reliability (RQ1). We also evaluated the static analysis rules 

produced by the PDM method (RQ2). The method iteratively improved the precision of 

the defect pattern static analysis rules achieving absolute levels of precision of the rules 

of 59-68% and 89-100% in each application. These results strengthen our confidence 

that PDM can help maintainers in improving the reliability of existing web applications 

(-Mendonça et al. 2018).  

 As noticed in our lessons learned (RQ3), the way in which PDM steps are 

performed influences the application effort. Indeed, the PDM variation applied in the 

second evaluation, considering the context of false positives as soon as possible, showed 

to reduce the method application effort. Another factor that may have an impact on 

effort is the familiarity of the maintainer with the subject web application. Without this 

familiarity, extra effort and support from other developers may be required in order to 

identify defect patterns, perform testing and evolve the rules. Regarding the precision, 

our findings indicate that there is an influence of the technology selection on the 

precision of the rules. During our experience, using data flow analysis besides control 

flow analysis features helped to improve the precision of the rules in the second 

application (-Mendonça et al. 2018). 

 We found that rules produced by applying PDM might be reused in within- or 

cross-company environments (RQ4), and not only for software in the maintenance 

phase, but also recently developed ones (Mendonça & Kalinowski, 2020a). We were 

able to find defects in other software by reusing rules, as well as to reduce the 

verification effort of a defect pattern. Nevertheless, as expected, the architecture and 



  

programming style played an essential role in successfully reusing rules produced by 

PDM application (RQ6), thus being an influencing factor for reuse. This finding 

indicates the feasibility of PDM producing rules that are application architecture and 

coding style specific, and not only application-specific. In this way, the reuse of rules 

has the advantage of producing more robust rules and might reduce the effort of 

identifying similar patterns in other systems (RQ5) (Mendonça & Kalinowski, 2020a). 

We also observed that previous successful experience with PDM influences rule reuse 

adoption (RQ6) (Mendonça & Kalinowski, 2020a). 

 Based on our experience, we recommend some practices for the evaluation and 

implementation of the reuse of rules produced by PDM (Mendonça & Kalinowski, 

2020a). After executing a rule in another software, our advice is to inspect both the 

alerts produced and the potential defect candidates that were not alerted. The inspection 

of the former might show new contexts to include in the rule to avoid false positives, 

and the latter might present adjustable cases where the rules fail because of differences 

in the architecture implementation or programming style. After inspecting these cases, 

fully or incrementally, the rules can be adjusted and executed for performing the 

maintenance cycle of PDM. Furthermore, additional defect pattern improvement cycles 

can also be performed if needed.  

 We have evaluated PDM regarding maintainers’ effectiveness in applying it and 

their acceptance of the method (RQ7) (Mendonça & Kalinowski, 2020b). In this way, 

we observed 54 novice maintainers applying PDM steps split into three tasks, i.e., 

failure analysis and defect pattern identification (task 1), static analysis rule 

programming (task 2), and rule evaluation and context analysis (task 3). The 

maintainers had difficulties during PDM steps application, and few of them correctly 

completed the tasks. The difficulties found included the defect pattern documentation 

format, which was changed during the study, the identification of defect patterns and 

their fixing alternatives, the static analysis rule programming, as well as the 

understanding of the subject software source code and difficulties caused by lack of 

experience with the tasks. 

 We analyzed the profile of maintainers that correctly completed the tasks. We 

found that the ones that correctly completed task 1 had superior experience in the 

subject software programming language (Java), stack trace reading, and source code 

inspection; while in task 3 the maintainers had previous experience with the software to 

which PDM was applied. We also found that task 2 requires experience working with 

abstract syntax trees and static analysis rule programming.  

 Finally, the maintainers answered a TAM questionnaire about PDM acceptance 

(RQ8) (Mendonça & Kalinowski, 2020b).  Most of them found PDM useful but not 

easy to apply. However, the perceived ease of use of PDM could be hindered by the 

conditions of the limited time of an observational study.  

 In this way, we had insights about the effectiveness of maintainers applying 

PDM and their acceptance. We also identified influence factors that can help to 

appropriately identify professionals for applying each step of the PDM method. The 

results also indicate that proper training is needed for applying the method, especially 

on static analysis rule programming. 



  

5. Conclusion 

Initially, we aimed to support industrial partners in solving a recurrent problem of 

unhandled exceptions in a financial web application implemented in Python. As the 

application has no reliable documentation, no automated testing, and high people 

turnover, we realized that there was no appropriate approach to deal with unhandled 

exceptions in this context. An inspection could be performed, but the entire software 

would need to be inspected, which would represent significant effort. A software 

process improvement approach could be implemented, solving the problem during 

evolution, but not dealing with unhandled latent exceptions. A cost-effective solution 

was needed to locate and fix the unhandled latent exceptions and to avoid the 

reintroduction of the problem. 

 We noticed that failures in this software were similar and could represent the 

same error repeated several times, thus forming defect patterns. However, a systematic 

approach was needed to identify, document and locate those patterns, finding not only 

the unhandled latent exceptions but also informing maintainers when the same defect 

pattern has been reintroduced. Within this context, we proposed Pattern-Driven 

Maintenance (PDM), a systematic method to help maintainers dealing with defect 

patterns using automation. 

 We applied PDM in two industrial software systems, showing its effectiveness 

(RQ1), the precision and recall of automation produced (RQ2), and the influence factors 

(RQ3) for applicability not only for the software for which PDM was initially designed 

but also for other software . In this way, we state our first and main contribution:   

 

1st Contribution. An empirically evaluated method for preventing 

unhandled latent exception in web applications. 

 After investigating the effectiveness of PDM, a hypothesis on the reusability of 

the defect patterns found during the study raised. For checking this hypothesis, we 

selected some software systems with the similar architecture of the ones in which the 

patterns were found and checked patterns reusability (Mendonça & Kalinowski, 2020a). 

Some of the defect patterns could be successfully reused. We evaluated the reusability 

in within- and cross-company environments (RQ4), showing that it is possible to reuse 

PDM produced defect patterns and static analysis rules. We investigated the benefits of 

reusing rules (RQ5) as well as factors of influence for reusing rules (RQ6).  

 The reuse of defect patterns and static analysis rules produced by PDM might 

not be immediate. The patterns and rules could need to be adjusted, and we present 

some recommendations on how to act to proper reuse the defect patterns produced. 

These recommendations involve how to check whether the static analysis rule reused is 

correctly working and how to adjust them to new software. Hence, we state our second 

contribution: 

 

2nd Contribution. Guidance on reusing rules produced by PDM. 

 After checking the reuse of defect patterns produced by PDM, we still had 

doubts if maintainers would effectively apply (RQ7) and accept (RQ8) PDM 



  

(Mendonça & Kalinowski, 2020b). This doubt was justified because only the maintainer 

that created the method (the author of this thesis) had applied PDM and he has a senior 

level of experience. Hence, we decided to evaluate PDM with novice maintainers. Our 

findings showed characteristics of maintainers that successfully applied each step of 

PDM, thus reflecting the knowledge and experiences needed. This finding could help to 

properly select or train maintainers for applying the method. In this way, we state our 

third contribution: 

 

3rd Contribution. Guidance for effectively selecting or training 

maintainers for applying PDM. 

 The papers produced that are directly related to this thesis can be found in Table 

1. As future work, we intend to evaluate PDM acceptance by experienced maintainers. 

We do believe that experienced maintainers could have different results on applying 

PDM than novice ones.  

 We also intend to develop tools to facilitate PDM’s application. The difficulties 

collected during PDM’s acceptance study showed that novice maintainers have 

difficulties in identifying and documenting defect patterns. They also have problems 

with implementing static analysis rules. Tool support for these activities could help 

novice maintainers to effectively apply PDM.  

Table 1. Papers produced throughout the thesis: 

Paper Chapter Status 

MENDONÇA, D. S.; Staa A.v. . Um Método Semi-Automatizado 
para Manutenção Corretiva e Preventiva de Sistemas Web. In: 
XVI Simpósio Brasileiro de Qualidade de Software (SBQS), 2017, 
Rio de Janeiro. XV Workshop de Teses e Dissertações em 
Qualidade de Software, 2017. p. 80-88. 

3  Published 

MENDONÇA, Diogo S. et al. Applying pattern-driven 
maintenance: a method to prevent latent unhandled exceptions 
in web applications. In: Proceedings of the 12th ACM/IEEE 
International Symposium on Empirical Software Engineering 
and Measurement (ESEM’18). ACM, 2018. p. 31. 

3, 4 Published 

MENDONÇA, Diogo S.; KALINOWSKI, Marcos.  Towards Practical 
Reuse of Custom Static Analysis Rules for Defect Localization. In: 
Proceedings of Simpósio Brasileiro de Qualidade de Software 
(SBQS’20). ACM, 2020, 10 pages. 

3, 5 Published  

MENDONÇA, Diogo S.; KALINOWSKI, Marcos.  An Empirical 
Investigation on the Challenges of Creating Custom Static 
Analysis Rules for Defect Localization. Information and Software 
Technology (IST). Elsevier, 2021. E-print available at ArXiv. 

6 Written, 
under 

submission  
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