

UNDERSTANDING FACTORS AND PRACTICES OF

SOFTWARE SECURITY AND PERFORMANCE

VERIFICATION

Victor V. Ribeiro1, Daniela Soares Cruzes2, Guilherme Horta Travassos1

1Programa de Engenharia de Sistemas e Computação – Universidade Federal do Rio de

Janeiro (UFRJ)

Caixa Postal 68.511 – Rio de Janeiro – RJ – Brazil

2SINTEF DIGITAL – SINTEF

Caixa Postal NO-7465 – Trondheim – Norway

vidigal@cos.ufrj.br, danielac@sintef.no, ght@cos.ufrj.br

Resumo. Este artigo apresenta um corpo de conhecimento construído com

base em evidência que caracteriza os requisitos não-funcionais mais

relevantes para sistemas de software e as abordagens de teste de software que

podem ser utilizadas para avaliar esses requisitos. O trabalho se especializa

na caracterização de práticas de verificação de segurança e desempenho

utilizadas em organizações de desenvolvimento de software e nos fatores que

apoiam a tomada de decisão relacionadas à essas práticas. Adicionalmente,

fatores de moderação que influenciam as atividades de verificação de

segurança e desempenho e ações que apoiam a promoção desses fatores são

apresentados. Os resultados apresentados são fortemente baseados em

evidência, pois têm origem em diferentes estratégias de estudo e observações

in vivo da indústria de software.

Abstract. This work offers an evidence-based body of knowledge

characterizing the most relevant non-functional requirements for software

systems, including suitable testing approaches to assess these requirements.

The work goes more in-depth into characterizing security and performance

verification practices in use in software development organizations and the

factors that support decision-making regarding their use. Additionally,

moderating factors of security and performance verification activities are

presented, as well as actions to their promotion. The results are strongly

evidence-based as they rely on different study strategies and in vivo

observations at the software industry to support the findings. Software

practitioners and researchers can benefit from using the body of knowledge

for supporting their software projects and empirical investigations on non-

functional requirements.

1. Introduction

The importance of software systems to contemporary society increases specific

concerns regarding some critical quality properties. Software engineers usually classify

such properties as non-functional requirements (NFRs). NFRs represent software

properties that are not related to the problem domain, such as security, performance,

usability, maintainability, portability. NFRs have always been essential to the success of

software systems [Hammani 2014] [Ameller et al. 2012], but contemporary software

systems have NFRs as essential properties [Joorabchi et al. 2013] [Rashid et al. 2015].

 Despite several technologies supporting software development, this is a human-

dependent activity and, therefore, error-prone. Therefore, as software systems should

meet NFRs, the software development organizations include quality assurance activities

throughout the software life cycle to evaluate these properties, preventing the

occurrence of failures after software release. Therefore, the overall motivation of this

work is summarized as follows: (1) the importance of non-functional requirements for

software systems; (2) the need to include quality assurance activities (verification)

aiming to assess if the software meets NFRs.

 This work is divided into two cycles of research. The first one (section 4)

focuses on identifying and understanding the most relevant NFRs for software systems

and the testing techniques that can be applied to those NFRs. A body of knowledge

consolidates the results of this first research cycle1 [Ribeiro and Travassos 2016].

 The second investigation cycle (sections 5 and 6) focuses on security and

performance (S&P) verification. We choose these two specific NFRs because they were

identified as the most relevant and because there was a request from Norwegian

software companies to investigate them. Besides, the software development industry has

strongly influenced this research cycle as we investigated the issues surrounding S&P

verification through a case study with four different organizations in Brazil. The results

are available through an evidence briefing23, allowing a better understanding by

practitioners, and partially published on Ribeiro, Cruzes, and Travassos [2018].

2. Research Goals and methodology overview

The research goal in its broader scope is to characterize the state of the practice

regarding NFRs verification. Specific goals are following listed:

▪ Propose a Body of knowledge characterizing relevant NFRs and the software

techniques that can be used to assess such requirements (NFR-BoK);

• Identify and characterize the S&P verification practices used by software

development organizations;

• Identify the decision-making factors related to S&P verification used by

software development organizations;

• Identify the moderator factors influencing the S&P verification;

• Identify actions used to promote S&P moderator factors.

 Table 1 presents an overview of the methodology used to archive these goals.

1 http://lens-ese.cos.ufrj.br/NFRWIKI

2 http://lens-ese.cos.ufrj.br/spvsurvey/moderators-presentation.pdf

3 http://lens-ese.cos.ufrj.br/spvsurvey/moderators-presentation-ptbr.pdf

Table 1. Methodology overview

Research

methodology
Goals

Structured literature

reviews

▪ Identify the most relevant NFRs

▪ Identify testing approaches to evaluate NFRs

▪ Build a body of knowledge of NFRs and testing approaches

Case study ▪ Identify and characterize S&P verification practices

▪ Identify S&P decision-making factors

▪ Identify and understand moderator factors influencing S&P

verification

Rapid Reviews ▪ Improve the confidence of moderator factors

Survey ▪ Endorse our understanding of case study with case study

participants

▪ Confirm the moderator factors pertinence with practitioners

3. Research approach, primary results, and contributions

Two investigation cycles with six steps compose this research (Figure 1). The scope of

the first investigation cycle was related to software testing approaches supporting the

assessment of NFRs. Thus, we use the technical literature to gain a better understanding

of non-functional testing approaches.

 However, as we gained knowledge on the topic, we realized that it would not be

feasible to investigate all NFRs in-depth and that software testing is not a suitable

approach to assess some NFRs. Therefore, in the second investigation cycle, the scope

of this work has been adjusted to focus on security and performance and to encompass

static verification activities (including software reviews).

Figure 1. Research steps overview

4. Testing non-functional requirements: A body of knowledge

A body of knowledge (NFR-BoK) consolidates the results of the first investigation

cycle. The NFR-BoK organizes information about identified NFRs, including the

testing approaches that can be used to assess each of them. It is organized as a wiki to

facilitate user navigation. Figure 2 presents the relevant NFRs so that by clicking on

that, the user can view a page of detailed information. The first numerical character

inside the brackets represents the number of papers that identify the NFR as relevant,

and the second represents the number of testing approaches to assess it. For instance, six

papers cite confidentiality as a relevant NFR, and there are two testing approaches to

assess it.

Figure 2. NFR-BoK - Relevant non-functional requirements

The detailed information about each NFR includes the following attributes:

▪ Definition: an NFR description explaining some system’s capability, e.g.,

performance: It is the system capacity to provide appropriate use of resources

(memory, CPU) needed to perform full functionality under stated conditions.

▪ Synonyms: names that present the same meaning, e.g., reliability is presented as

a synonym of dependability.

▪ Composed by: other NFRs that are part of the main NFR, e.g., scalability,

resource consumption, and timeliness compose the performance requirement.

▪ Target object: system element through which the NFR can be observed.

Examples of target objects of the performance NFR: (1) system performance

(how the system is using memory during execution), (2) function performance

(what is the response time of specific function observing the messages among

system functions), (3) interaction with user performance (response time

observing user request and time until response).

▪ Observed through: how the NFR can be observed or how the software exposes

it. For instance, performance can be observed through resources’ monitoring or

time observation in execution time.

▪ Specification examples: suggest how to specify an NFR, e.g., usability can be

observed through user feedback.

▪ Operationalization: describes the mechanisms used to operationalize the NFR.

An example of security operationalization is to store the password encrypted.

▪ Risks: risks related to non-compliance with an NFR. E.g., risks of availability

requirement: loss of business opportunities or slow productivity.

▪ It contains behavior NFR: defines if an NFR represents a software behavior,

e.g., “system services must response every request at most one second.”

Behaviors properties can be observed in execution time; they can be tested.

▪ It contains representational NFR: represents syntactical or technical software

properties, e.g., “Software must use MySQL database.” Representational

properties are static properties, and so they cannot be tested. However, it can be

assessed through static techniques such as inspections.

▪ Assessable through testing: defines if the NFR is testable. It is yes if the NFR

represents a system behavior.

▪ Who is affected by: the roles directly affected by the NFR. E.g., Internal

Stakeholders, Owner, Manager, Software Engineer, Programmer, Final User.

▪ Mentioned by: list of papers identifying the NFR, but not describing it.

▪ Defined by: list of papers identifying and describing the NFR.

 The detailed information about each NFR testing approaches includes the

following attributes:

▪ Reference information and Abstract: directly extracted from the paper that

proposes the testing approach. It is used to find the paper that proposed the

testing approach;

▪ Proposal: a brief description of the testing approach. It is useful to contextualize

NFR-BoK’s user.

▪ System Domain/Type: represents the context the testing approach was proposed

▪ Software test step, Test level, and Test technique: describe the testing

dimensions covered by the testing approach;

▪ Evaluation: the kind of study was used to evaluate the testing approach;

▪ Non-functional requirements covered: presents the NFRs the approach is able

to assess.

5. A perception of the state of the practice of security and performance

verification

This section presents the S&P verification practices and their characterization regarding

techniques, the definition of done criteria, automation level, and assets. Figure 3

presents a brief overview of the practices supporting S&P verification.

Figure 3. Identified security and performance verification practices

5.1. Details of software security and performance verification practices

Figure 4 presents the characterization of identified security verification practices

regarding their techniques, the definition of done, automation level, and assets. Figure 5

presents the same information regarding performance practices.

Figure 4. Software security verification practices details

Figure 5. Software performance verification practices details

6. Moderator factors of security and performance verification

This section presents the eight moderator factors influencing security and performance

verification. Besides, it presents a set of actions to promote each of the factors. Such

factors emerged from the practice (case study), and then their pertinence (columns # and

%) was confirmed through the opinion of practitioners (survey).

Table 2. MF1: Organizational awareness of S&P importance

MF1: Organizational awareness of security and performance importance

Need for support from every stakeholder

Need for training

Actions to promote organizational awareness of security and performance

importance
%

Keeping programmers well-informed about security and performance 28 90%

Promoting training 25 81%

Informing the customer about the real state of software security and

performance
19 61%

New actions to promote organizational awareness of security and performance

importance
Simulation of security and performance failures and show business impact

Regular meetings to discuss security practices

External audit to mitigate human problems

Having an ethical hacker would be extremely good for security and creating

performance indicators

Table 3. MF2: Cross-functional team

MF2: Cross-functional team

Dependence on specialized verification team

Dependence on database team

Support of infrastructure team

Support of legislation experts

Actions to promote the build of a cross-functional team # %

Building a team having multiple skills 23 79%

Disseminating the view that the verification team is not the enemy but allied 23 79%

Stimulating interaction between members of different teams 18 62%

New actions to promote the build of a cross-functional team

The team should have leaders swapping places (for example, marketing and

development). team leaders can get to know limitations, capabilities, and point of view

which can lead to better teamwork and results

Highlight the positive results of having a multidisciplinary team

Knowing what is problematic in other sectors of the organization

Encouraging integration between teams working on similar topics

Value verification professionals

Select qualified people for the position

Invest in the training and qualification of the verification team

Apply Scrum

Table 4. MF3: Suitable requirements moderator factor

MF3: Suitable requirements

Lack of well-defined requirements

Verification team should participate in the requirements phase

Actions to promote the building of suitable requirements # %

Using techniques to handle security and performance requirements 25 81%

Involving the verification team in the requirements phase 24 77%

Stimulating the verification team to assess the testability of requirements 24 77%

New actions to promote the building of suitable requirements

Involving the verification team in all phases of the software life cycle

The verification team and Product Owner should discuss the specification to identify

and adjust any deviations before the specification goes into development.

Infrastructure team should assess security and performance

Involving the requirements team in verification activities

Table 5. MF4: Suitable support tools moderator factor

MF4: Suitable support tools

Support tools decrease the effort of manual activities

Preference for using free tools

Allow the verification team to suggest new tools

Automated tools generate unsuitable reports

Verification report should include essential information

Actions to promote the selection of suitable support tools # %

Allowing the technical team to suggest and adopt support tools 24 77%

Using tools consistent with the verification team knowledge 22 71%

Supporting the use of free tools 13 42%

New actions to promote the selection of suitable support tools

Providing training to the verification team to enable them to operate the adopted tools (5

participants)

Institutionalize the use of tools

Using industry best-practice toolsets

Support from the tool provider

Table 6. MF5: Suitable verification environment moderator

MF5: Suitable verification environment

Verification performed on the unsuitable environment

Verification team should be able to control the environment

Virtualization technologies assist in instantiating verification environment

Actions to promote the configuration of the suitable verification

environment
%

Using virtualization technologies to simulate execution environment 26 84%

Keeping the verification team well-informed about used technologies 22 71%

Using virtualization technologies to set up tests agents 19 61%

Performing each test case more than once and at a different period to

mitigate external influences
16 52%

Scheduling the verification activities if it is not possible to instantiate a

specific verification environment so that verification should never be

performed in parallel with any other activity

15 48%

New actions to promote the configuration of the suitable verification environment

Using automated verification

Simulating a defined behavior that constitutes real user behavior

Using techniques to generate suitable testing data

Table 7. MF6: Suitable methodology moderator factor

MF6: Systematic verification methodology

Lack of systematic verification techniques

Organization methodology should be based on previously established standards

Good methodology requirements

Actions to promote the systematic verification methodology # %

Using a proposed methodology and adapting it to the context of the

organization
21 78%

New actions to promote the systematic verification methodology

Modify the company culture at some level by fostering a new methodology

Search for a methodology aligned with stakeholders needs

Use appropriately trained testers; avoid using a dopey methodology

Create processes and revise them according to proposed methodology and company

context

Table 8. MF7: Security and performance planning moderator factor

MF7: [Lack of] Security and performance verification planning

Security and performance verification requires extra effort
Insufficient time to perform intended activities

Actions to promote the planning of security and performance verification # %

Using a tool to guide the security and performance verification planning 25 86%

New actions to promote the planning of security and performance verification

Including the security and performance verification activities as part of the development

and maintenance cycle

Having business knowledge helps prioritize the parts of the system that should be

evaluated

Table 9. MF8: Encouraging reuse practices moderator factor

MF8: Encourage reuse practices

Reuse of functional test cases

Reuse of previous systems test cases

Use of similar systems to determine requirements

Knowing common defects

Actions to promote the reuse of S&P verification practices # %

Knowing common defects (e.g., vulnerabilities) and using pre-defined test

cases to identify the failures caused by these defects
25 86%

Reusing the knowledge acquired from other similar systems as a basis for

the definition of the requirements
23 79%

Reusing functional test cases as they represent real usage scenarios 19 66%

Reusing test cases from similar systems adapting parameters 13 45%

New actions to promote the reuse of S&P verification practices

Creating a base of knowledge of recurring defects

Mapping vulnerability according to the domain to promote the identification of

vulnerabilities applicable to specific situations

Functional test cases specify what could be added for performance verification

Design real-time scenario with production volume data, per hour, per day transaction,

Per week, among others.

Reusing multiple test scenarios is very useful for both professional and runtime

scenarios that we can insert in the context of similar new projects

References

Ameller, D., Ayala, C., Cabot, J. and Franch, X. (Sep 2012). How do software architects

consider non-functional requirements: An exploratory study. In 2012 20th IEEE

International Requirements Engineering Conference (RE). IEEE.

http://ieeexplore.ieee.org/document/6345838/.

Hammani, F. Z. (May 2014). Survey of Non-Functional Requirements modeling and

verification of Software Product Lines. In 2014 IEEE Eighth International Conference

on Research Challenges in Information Science (RCIS). IEEE.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6861085.

IEEE-610.12 (1990). 610.12-1990 - IEEE Standard Glossary of Software Engineering

Terminology. IEEE Computer Society, v. 121990.

Joorabchi, M. E., Mesbah, A. and Kruchten, P. (Oct 2013). Real Challenges in Mobile

App Development. In 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement. IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6681334.

Rashid, M., Ardito, L., and Torchiano, M. (Oct 2015). Energy Consumption Analysis of

Algorithms Implementations. In 2015 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM). IEEE.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7321198.

Ribeiro, V. V., Cruzes, D. S., and Travassos, G. H. (Nov 2018). A Perception of the

Practice of Software Security and Performance Verification. In the 2018 25th

Australasian Software Engineering Conference (ASWEC). IEEE.

Ribeiro, V. V., and Travassos, G. H. (2016). Testing Non-Functional Requirements:

Lacking Technologies or Researching Opportunities. XV Brazilian Symposium on

Software Quality.

