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Abstract. Refactoring is a well known activity in software engineering that aims
at changing a source-code snippet to improve structural quality attributes with-
out changing the external behavior. It is known that manual refactoring is a
common practice, but it is a time-consuming and error-prone activity. In litera-
ture it is possible to find approaches whose goal is to automatically recommend
refactorings to software engineers. The goal is mainly to improve the productiv-
ity and internal quality of systems. However, we have observed that refactoring
recommendations approaches are still immature, even those based on Machine
Learning (ML). Thus, this PhD aims at researching how ML, along with ex-
plainability models, can be used to improve refactoring recommendations.

1. Introduction

Refactoring is defined as the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improving its internal structure
[Fowler 2018]. The refactoring process involves mainly two steps: 1) the identification of
a refactoring opportunity and ii) the determination of which refactoring(s) should be ap-
plied to the identified places. It is recognized that manual refactoring is a time-consuming
activity and a considerable part of this time is devoted to search the opportunities.

In the last decade the number of proposals for automatizing the refactor-
ing process has grown. In literature, there are refactoring recommendation ap-
proaches that are heuristic-based [Fokaefs et al. 2007] [Terra et al. 2018] and search-
based [Nyamawe et al. 2020] [Alizadeh et al. 2019]. With the advent of Machine Learn-
ing (ML) several researchers have initiated investigations around the use of ML for im-
proving refactoring recommendations. However, these achievements are accompanied by
a growing complexity of the model, which causes the appearance of some deficiencies,
mainly in the transparency and explanation of the result obtained by the ML algorithm.
Thus, the explainable Intelligence Artificial (XAI) algorithms have emerged to make ML
more understandable to users.

After conducting a Systematic Review of the Literature (SRL) presented in Sec-
tion 3, our main motivation for this research is the lack of an approach able to provide
refactoring recommendations which are complete, understandable and relevant. The term
”complete” means that the recommendation must supply all the elements to support the
decision-making process by the user. Regarding this point, in Section 3, we specify the
five elements that all the recommendations must have to be considered complete.



The term ”understandable” refers to the ”Why” element. The recommendation
must be supported with explanations of the reasons why the code element has to be refac-
tored and the benefits that the application of the refactoring would bring. Finally, the
term ”relevant” means that the recommendations respond to ”real needs” related to the
components the user is working in that specific moment. In addition, we envisage the
consideration of the user feedback for refining the recommendations, making them more
meaningful for the user. This main motivation is broke down in three specific ones:

(i) Recommendation only for a subset of problems. We realized in SRL that the
focus of most refactoring recommendation approaches is only on resolving code smells.
However, there are other issues for which a refactoring can be applied. For example, Hen-
rique identified 11 motivations behind applying the ”Extract Method” refactoring besides
just solving a [Henrique et al. 2021] code smell.

(ii) The need for an improved explanation on the reason a refactoring was rec-
ommended. In SRL, the approaches usually left out the ”Why” element. So, the lack of
explanation about the recommendation and the benefits that the refactorings would bring
can lead the users not to trust in the recommendation and consequently reject them. About
this, Alizadeh shows a survey that 84% face-to-face interviewees confirmed that most of
the existing automated refactoring tools recommend hundreds of refactorings but they do
not specify how the refactorings can be relevant for the users [Alizadeh et al. 2019].

(iii) The absence of the consideration of the user feedback in the recommenda-
tions. For generating suitable recommendation, the user feedback needs to be considered.
However, it is one of the elements poorly treated in literature. Regarding this, Pantiuchina
et al. show that including the feedback in the generation of recommendation can help in
generating solutions that are well-suited for a specific developer [Pantiuchina et al. 2021].

Regarding our goals, the main is to propose a Refactoring Recommendation ap-
proach based on Machine learning techniques able to give understandable, complete and
relevant recommendations. To achieve our general goal, we break it down into 3 specific
goals: (i) Exploring and applying explainable methods for clarifying the machine learn-
ing algorithms results; (ii) Generating recommendations that include all the elements to
support a decision-making process of the user, solving doubts and creating confidence;
(iii) Identifying and analyzing the real problems for applying refactoring.

2. Background
Fowler defines Refactoring as the process of changing a software system in such a way
that it does not alter the external behavior of the code, yet improving its internal structure.
For identifying what part of the code must be refactored, code smells have been used as
indicators. According to the same author, a code smell is a surface indication that usually
corresponds to a deeper problem in the system [Fowler 2018].

Regarding Machine Learning, it uses computers to simulate human learning and
allows computers to learn from the real world, and improve performance of some tasks
based on this new knowledge [Michalski et al. 1985]. There are two main classification
used for the learning processes: supervised and unsupervised. Supervised learning hap-
pens when algorithms are provided with training data and correct answers. On the other
hand, in unsupervised learning, the ML algorithms do not have a training set, the learning
algorithms are mostly focused on finding hidden patterns in data [Celebi and Aydin 2016].



Explainable Artificial Intelligence (XAI) is a research field that aims to make
ML systems results more understandable to humans. According to DARPA, XAI aims
to produce more explainable models while maintaining a high level of learning per-
formance (prediction accuracy) and enable human users to understand, appropriately,
trust, and effectively manage the emerging generation of artificially intelligent partners
[Gunning 2017]. Angelov proposed a taxonomy that uses the concept of ”Post-hoc ex-
planinability”.This approach aims at explaining ”Opaque Models”, that are models with
high accuracy like random forest, neural networks and SVM. The explanation mainly can
be: (i)”By feature relevance”, this type of XAI approaches attempts to evaluate a feature
based on its average expected marginal contribution to the model’s decision; (ii)”Visual
explanation”, the family of data visualization approaches can be exploited to interpret the
prediction over the input data; and (iii) ”Local explanation”, it approximates the model in
a narrow area, around a specific instance of interest [Angelov et al. 2021].

3. Systematic Literature Review and Related Works
We have conducted a Systematic Literature Review (SLR) whose goal was to analyze how
Machine Learning has been used in the context of Refactoring Recommendations. Due
to space limitations, we concentrate on showing just the most important results. Table 1
shows the seven research questions of our SR.

Table 1. Research Questions

N° Research Question
RQ1 Which refactorings were the most and least investigated?
RQ2 What have the machine learning types and techniques been used to recommend refactorings?
RQ3 What have the repositories been used to build the datasets and which features/metrics are considered to compound them?
RQ4 How have the approaches been evaluated?
RQ5 What are the characteristics of the projects used for evaluation?
RQ6 How have the approaches dealt with user feedback?
RQ7 What is the automation level (fully automated, semi-automated or manual) of the approaches?

The search string was elaborated around three terms: (i) Recommendation; (ii)
Refactoring and (iii) Machine Learning. Further, we selected 5 online databases (ACM,
IEEE, Science Direct, Scopus and Wiley). As a result 187 papers were retrieved, after
removing the duplicated papers, applying the inclusion/exclusion criteria and applying
snowballing techniques, we obtained 17 papers.

Four papers belonging to Kumar’s research group focus on improving maintain-
ability and solving code smell. The recommendations provided by the approaches lists all
the methods or classes that need to be refactored. The main limitation is that they do not
specify the “what” element, i.e., the refactorings that should be applied. So, the user has
to choose the best refactoring based on their knowledge [Kumar et al. 2018].

Two papers belonging to Nyamawe’s research group have a goal to implement
modifications in code to be ready for the arrival of new requirements. The recommenda-
tions provided by the approaches are a list of refactorings that need to be applied. The
main limitation is that they do not identify the ”where” element, i.e., the identification of
the piece of code where the refactorings have to be applied [Nyamawe et al. 2020].

Two papers belonging to Alizadeh’s research group focus on improving the qual-
ity object-oriented attributes. The recommendations provided by the approaches are an



ordered sequence of refactorings (they can be up to 13 types) supported by description,
interactive tables and charts. The approaches consider the user feedback to reduce the
user’s area of interest [Alizadeh et al. 2019].

Papers [Kurbatova et al. 2020][Sheneamer 2020] focus on solving the code smell
recommending the application of Move Method refactoring. The training is centered
around learning and detecting the code smell problem. The recommendations provided
by the approaches are a long list of methods where the smell was detected, recommending
for all of them the application of the Move Method refactoring.

Papers [Xu et al. 2017] [Yue et al. 2018] focus on solving a code smell, recom-
mending the application of Extract Method refactoring. The training is centered around
mining and learning the characteristics of the refactoring applied in the history of the
projects. The recommendation provided by the approaches is a long list of methods that
need to be refactored and the recommendation of applying Extract Method.

Table 2 shows short summaries of the research questions results.

Table 2. Systematic Review Results

N° Answer
RQ1 The Extract Method and the Move Method are the most investigated, researched by 9 and 8 papers respectively. On

the other hand, the least researched refactorings are Introduce Parameter Object, Preserve Whole Object, Rename Field,
Replace Temp with Query, Substitute Algorithm and Replace Function with Command each researched by 1 paper.

RQ2 The most used algorithm is the well-known Supervised Learning (SL), researched by 9 papers. On the other hand,
the less used algorithms are Supervised Learning combined with Unsupervised Learning and Supervised Learning with
Artificial Neural Network researched by 1 paper. Besides, the most used algorithms are Support Vector Machine (SVM),
Logistic Regression (LR), Naive Bayes (NB) and Random Forest (RF) from SL researched by 4 papers.

RQ3 The most popular repository is Github used by 8 papers. Regarding the features in dataset, we identified 5 sets of
characteristics that the features belong to: i) C1, UML Quality Metrics; ii) C2, Code Metrics; iii) C3, new feature
related Metrics; iv) C4, Semantic information Metrics; v) C5, Historical project Metrics. Thus, 12 of 15 papers use C2
Code metrics, representing 80% of the papers because they are well-known and most used metrics in literature.

RQ4 In the final set of papers, we identified 3 main methods used for evaluation: 1) Comparing the approach with others state-
of-the-art approaches/tools; 2) Evaluating all the classifiers; and 3) Evaluating only one Classifier. So, the ”Comparing
the approach with other state-of-the-art approaches/tools” is the most common, researched by 10 papers. Moreover, the
most popular tool used for comparison purposes is JDeodorant which is an eclipse plugin.

RQ5 Some important criteria for choosing the projects: (i) open-source projects whose source code is publicly available;
(ii) projects with long history (more than 7 years), this usually guarantee the high quality of the maintaining; (iv) the
projects belong to different domains and were developed by different developers.

RQ6 Only 2 papers belonging to the same authors consider the feedback of the user. The approach uses Genetic algorithms
with unsupervised learning and considering the user preferences reduce the generation of solutions. The approach
presents explanations through interactive tables and charts. Furthermore, the approach allows the interaction of the user
with the proposed recommendation via editing/adding/removing the solution.

RQ7 14 papers (80% of the papers) have a manual approach. In the manual approach, there is not any support for guiding the
developer in the refactoring process. Only two papers which belong to the same author provide a tool support.

After conducting this systematic review, we identified 5 main elements that any
recommendation should have: (1) The identification of What refactorings need to be
applied to solve the problem; (2) the identification of where the refactorings should be
applied, i.e., the code element where the refactoring must be applied; (3) The identifi-
cation of the goal, i.e., the problem that the refactoring wants to resolve. In the final
set of papers, we identified four main goals: (i) solving a code smell; (ii) preparing the
system for the introduction of new requirements; (iii) improving quality object-oriented
attributes; and (iv) improving maintainability attributes; (4) The identification of Why the
refactorings is recommended that is the explanation of the recommendation given to the
user; (5) The order to apply the refactorings when the recommendation is a sequence.



4. A Refactoring Recommendation Approach based on Machine-Learning
Based on the deficiencies found in the SR, this work proposes the creation of a refactor-
ing recommendation approach whose main focus is on the generation of complete, under-
standable and relevant refactoring recommendations. Figure 1 shows an overview of our
proposal that has two views: the User view and the Internal view of the ML pipeline.

Figure 1. Vision of the approach for Refactoring Recommendations

User view. It is located at the top of Figure 1 and represents the way users use
the approach. The process starts with the activity called ”Activating the Refactoring Rec-
ommendations” represented with number 1 in the ”User View”. So, the user starts the
process activating the option ”Allow Recommendation” in his screen. Then, the ”Extrac-
tion Features Tool”, included in the plugin installed in the client machine, calculates the
features values to fill the ”Project Dataset”.

The next activity is ”Presenting the Refactoring Recommendations” represented
with the number 2 in Figure 1 and it aims at showing the list of recommendations. The
next activity is called ”Analyzing the Refactoring Recommendations” represented with
number 3 in Figure 1. So, the user selects one recommendation in the list and the sys-
tem shows the explanations for this recommendation accompanied with all the necessary
elements to facilitate the comprehension of the recommendation.

The number 4 in Figure 1 represents three actions the user can take after analyzing
the recommendation: (i) ignoring the recommendation. So, the user ignores the recom-
mendation but, he can review the recommendation later; (ii) rejecting the recommenda-
tion. That is, the user does not agree with the suggestion given. So, this feedback feeds the
”Feedback dataset” for the retraining process; (iii) accepting the recommendation. That



is, the user considers that the recommendation makes sense and it will bring benefits for
the project. This feedback also feeds the ”Feedback dataset”. So, the cycle of analyzing
each refactoring recommendation continues until there are no more recommendations.

Internal View of the ML pipeline. This view is located at the bottom of Figure 1
and represents the Machine Learning pipeline followed to construct, train and deploy the
models. The process has three phases that are described below.

Phase I: Data Collection and Preparation. This Phase aims at building and
filling the initial Dataset. So, it is the basis of any ML process pipeline and it is essential
for the following phases. This phase is conducted manually and it has 3 main activities
described next. The first activity called ”Choosing Repositories” represented with the
letter A in Figure 1, it aims at selecting the repositories and the software projects to
compose the initial sample. The second activity called ”Data Processing” is represented
with the letter B in Figure 1 has as goal mining the history of the software projects and
defining the features for the Dataset. Finally, the last activity is called ”Populating Initial
Dataset” represented with the letter C aims at populating the dataset with suitable data.

Phase II: Training and Explanation. This Phase starts with the activity called
”Training ML algorithms” represented with the letter D in Figure 1. We envisage to use
the ML algorithms used and accepted by the approaches in the related works (see the
Subsection 3). We expect to train the ML algorithms, identify the ones with the best per-
formance and put them into a repository to be consulted by the Explainable Algorithms.
The next activity is called ”Explaining ML algorithms” represented with the letter E in
Figure 1. Using Explainable Machine Learning (XAI) Algorithms, we envisage making
the result of the ML algorithm understandable for the user. The trained XAI algorithms
are put into a repository to be consulted by the plugin installed in the client.

Phase III: Repopulate Dataset. This phase aims at retraining the model to
make it more suitable. For retraining, we expect to use a new Dataset called ”Retrain-
ing Dataset” which is conformed by the sum of the elements in the ”Initial Dataset” and
the samples in the ”Feedback Dataset”.

5. Contribution
The theoretical contributions are: (i) An approach for Refactoring Recommendations
based on machine learning techniques able to generate understandable, complete and rel-
evant recommendations. We envisage contributing with guidelines and documents that
other researchers can use to guide the implementation of their own solutions; (ii) A tech-
nical documentation with the result of our mining study for exploring the user motivations
behind the refactorings; (iii) The technical documentation of our experience exploration
the explainable resources; (iv) A systematic mapping in Refactoring Recommendations,
the results were collected, grouped and discussed.

The technical contributions are: (i) Tool/plugin to recommend relevant refactor-
ings based on machine learning; (ii) The Datasets will be available in a public repository
to be used for other researchers to replicate or extend this work.

6. Evaluation
We defined three mains research questions to guide possible evaluations:



How accurate is our approach compared with the other state-of-the-art ap-
proaches based on Machine Learning techniques? To answer this question, we will
consider the papers closest to our proposal identified in the Systematic Literature Re-
view (view Subsection 3) [Sheneamer 2020], [Yue et al. 2018], [Imazato et al. 2017]. We
envisage to use the well-know metrics like accuracy, precision and recall.

How accurate is our approach compared with well-known tools not based on Ma-
chine Learning techniques? We will consider the JDeodorant tool [Fokaefs et al. 2007]
that is heuristic-based and a well known tool used for evaluation purposes in SLR (see
the Table 2). This tool is an open source Eclipse plugin for Java able to detect five code
smells. Thus, for comparison, we must limit the comparison for the same refactorings and
for solving the same problem.

Does the use of explainability elements increase the acceptance of the refactoring
recommendations? We plan to run a controlled experiment with participants. The initial
idea is to divide the participants in two groups and present to them different recommen-
dations, with and without explanations. So we can measure the acceptance, rejection and
ignored rate of the recommendations.

7. Status of the Work
At this moment we have developed a tool that is able to identify in the history of the
project: all the types of refactorings that were applied and all the ”Extract Method” refac-
torings that were applied. To do that, we explore the use of two well-known mining
tools Rminer [Tsantalis et al. 2022] and ReffDiff [Silva et al. 2020]. This is the initial
step for defining the features and building the initial Dataset. The progress of this project
is available in https://github.com/Advanse-Lab/Jgit_Project and it can
be executed using the command Prompt (CMD).
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