
Support for Adaptive and Distributed Deployment of CEP
Continuous Queries for the IoMT

Fernando B. Veras Magalhães1, Francisco J. da Silva e Silva2, Markus Endler1

1Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)

Caixa Postal 38097 – Rio de Janeiro – RJ – Brasil

2Departamento de Informática – Universidade Federal do Maranhão (UFMA)
São Luı́s – MA – Brasil

{fmagalhaes,endler}@inf.puc-rio.br, fssilva@lsdi.ufma.br

Abstract. The current dissemination of IoT increases the deployment of stream
processing solutions for monitoring and controlling elements of the real-world.
One of those solutions is Complex Event Processing (CEP), and to handle the
high volume, velocity and volatility of data streams from IoT sensors the CEP
pipeline should be distributed, preferably having CEP operators both in the
cloud/cluster and in edge devices. In this paper, we present a model for a dis-
tributed CEP platform and an implementation of this model called Global CEP
Manager (GCM). GCM is a service of the ContextNet middleware that supports
the deployment and dynamic rearrangement of CEP queries to CEP engines ex-
ecuting in the cloud and in M-Hubs, that are ContextNet’s mobile edge devices.

1. Introduction
The increasing demand to get relevant information about real-world processes, entities
and interactions faster, along with the ever-growing generation of data, drives the demand
for computer systems capable of processing of high volume data flows as fast as possible.
These systems constitute what [Cugola and Margara 2012] classify as Information Flows
Processing (IFP), or else, stream processing systems.

The authors of [Carney et al. 2002] highlight two essential characteristics of
stream processing: the analysis of data immediately on its receipt, and the ability to take
into account the temporal attribute of the data/events. The first characteristic is describ-
able as putting a focus on immediate, low latency responses. In contrast, the second
means that instead of processing the whole, historic set of received events, the stream
processing model will focus on analyzing and detecting specific patterns of events in
time-bounded sliding/batch windows, ignoring to observe variations among the current,
windowed data and the old data. As a manner to declare how the data streams should be
processed, stream processing technologies commonly offer continuous queries. Continu-
ous or standing queries are business logic rules that define how data should be processed
and outputted.

Many stream processing systems concentrate all data stream processing at a cen-
tralized site, such as a central server, a cluster or a cloud. Such configuration has the ad-
vantage of simpler maintenance, but suffers from the problem of overloading the network
access to the central site with the sending of a large volume of very basic data/events. And

since almost all stream processing systems essentially analyze data that “flows from the
periphery to the center” [Cugola and Margara 2012] it is only natural to think of stream
processing systems which divide the data processing between the nodes along the path of
the data flow [Balazinska et al. 2005].

This distributed approach has several benefits. For instance, it can reduce pro-
cessing bottlenecks since it is not concentrated at the cluster/cloud. It also supports local
processing queries that do not depend on external information, such as queries that op-
erate on data only from sensors directly connected to an edge node, and which may also
drive to some local action, such as raising an alarm. Moreover, the distributed approach
will probably be able to reduce the network bandwidth usage as it is common to cause
some filtering of the raw data stream at each processing step.

Many flavors and approaches for stream processing have been proposed. For in-
stance: Active Databases, Data Stream Management System (DSMS), and ultimately
Stream Reasoning and Complex Event Processing (CEP). CEP [Luckham 2002] has some
properties that favor it among the other approaches. One of them is the use of events to
encapsulate data. Events are meaningful pieces of data as they represent a fact or a status
update (e.g., a departure, an arrival, or a location update). Also, each event belongs to an
event type, which is characterized by a name (e.g., DepartureEvent) and a set of attributes
(e.g., timestamp, train, station).

Furthermore, CEP has a distinct power to detect the occurrence of patterns across
event streams. It means that CEP allows the declaration of (continuous) queries that iden-
tify a complex pattern of event occurrences, such as three or more events of type Tem-
peratureOutOfBounds, followed by one or more SmokeDetected event, all within a time
window of one minute. Another advantage of CEP is the possibility to produce complex
events upon the detection of of those complex patterns, e.g., a FireWarning event type
holding the average temperature readings of the original temperature events. Those com-
plex events will then constitute new event streams, meaning that other complex queries
can further process them.

The process of designing and deploying distributed CEP solutions presents some
challenges. For instance, it is frequent to make modifications to a CEP query both before
and after its deployment. Commonly, the developer may need to adjust the event window
or the event pattern to ensure that the query will trigger on the desired situations. There-
fore, a distributed CEP system should support the upload of new versions of a query and
grant that the new version will be propagated to the necessary processing nodes.

Also, to ensure the event type-oriented coupling of the queries dispersed in the
system, it is essential to ensure that event type definitions are already known in the pro-
cessing nodes that will consume those events. For instance, if query A produces events
that will be consumed by a subsequent query B (that may be in by a different node), the
characteristics of the events produced by A should be previously known by the node that
implements B.

Moreover, an essential step in distributed stream processing is the actual partition
of the processing load. In distributed CEP, that means allocating or relocating queries
to the nodes. The system may require the developer to choose himself/herself explicitly
a node to run each query. However, the system may also provide the option to assign

or reassign queries to the nodes automatically. This automatic reassignment can be es-
pecially useful on the Internet Of Mobile Things (IoMT), where smart objects and edge
gateways can be mobile. That is for two main reasons: First, because mobile nodes are
more susceptible to disconnections, therefore the reassignment of queries from a discon-
nected node to an available node is frequent; Second, because it enables the assignment
of queries depending on the node’s location.

The main contributions of this paper are: (i) a model for a distributed CEP plat-
form and (ii) an implementation of this model called Global CEP Manager (GCM), and
(iii) some initial performance tests of GCM. Our model is composed of a core component
that handles query distribution and a processing component that does the actual process-
ing of data. While the core component runs on a central node, the processing component
can be instantiated on cloud/cluster nodes, as well as on edge nodes, stationary or mobile
smartphones. The general goal of GCM is to facilitate the creation of such distributed
applications while also checking if the queries will function properly on a processing
pipeline before their distribution.

The remainder of the paper is goes as follows: In Section 2 we present the basis
used to produce this work, that is, CEP and event processing networks ,and the ContextNet
middleware. We discuss some related work in Section 3. Then, in Section 4 we present
our model for a distributed CEP platform, followed by 5 were we present the Global CEP
Manager, an implementation of this model. As evaluation, in Section 6 we demonstrate
an use case and the results of our initial performance tests. Finally, Section 7 summarizes
this paper and presents future work.

2. Fundamental Basis
2.1. CEP and Event Processing Networks
Complex Event Processing (CEP) is a software technology for the dynamic analysis of
large amounts of data or event flows in near real-time. An event can represent the change
of state of an analyzed entity or the regular measurement of one or more properties of that
entity. CEP analyzes events based on CEP rules or queries, which are similar to queries
to a database. However, while in database systems queries are made to information al-
ready stored, CEP uses continuous queries, that is, every new event received is tested
against queries that had already been instantiated before the arrival of the event. Each
continuous query uses one or more stream operators, such as filter, aggregation, and pat-
tern recognition. The output of a continuous query may constitute a complex event since
it represents higher-level information [Luckham 2011]. Those complex events can then
be consumed by subsequent queries constituting a multi-level processing pipeline. This
pipeline can be represented as a directed graph called Event Processing Network (EPN)
[Etzion et al. 2011]. In this graph, each vertex is called an Event Processing Agent (EPA),
which is the processing stage of a query. Also, each directed edge (x, y) on the EPN rep-
resents that the EPA y consumes the output of the EPA x. Finally, representing a CEP
processing pipeline as an EPN can facilitate the construction of a distributed CEP system
since EPAs can be deployed on different devices.

2.2. ContextNet and M-Hub
The ContextNet [Endler and e Silva 2018] is a scalable middleware focused on supporting
IoT and IoMT environments. It offers two main protocols of communication SDDL and

MRUDP. SDDL is a protocol based on the Data Distribution System (DDS) pattern for
communication between cloud-based services. MRUPD is a protocol for establishing a
connection between gateways, that also run SDDL, and client devices. The M-Hub is an
Android application that acts as a mobile edge gateway for the ContextNet. Two main
services of the M-Hub were relevant to our work. The first one was the S2PA; it has
the ability to discover and connect to smart things with Bluetooth WPAN automatically.
S2PA enables the M-Hub to collect sensor data automatically that will feed the input
of our distributed CEP solution. The second one is the MEPA service, which is a CEP
service that uses Asper1, an Android port of the Esper2 engine. We adapted the MEPA
service to ensure it implements the processing node we displayed on our model and is
compatible with GCM.

3. Related Work

Distributed CEP is already well established among information processing technologies,
for instance, [Pietzuch et al. 2003] dates back to 2003 and presents a framework for Dis-
tributed CEP implementation. However, this section will focus on works that are more
representative of the current development state on distributed CEP systems. Another rele-
vant work on the subject is Wihidum [Jayasekara et al. 2015], it distributes the processing
load using pipelines and distributed operators. Pipelines are ordered series of simple op-
erations (e.g.: filtering and mapping) where each operation can be executed on one node
and them send the output to the node that is responsible for the next operation on the
pipeline, it requires the specification of each simple operation and their other of execu-
tion. Distributed operations supported are join and pattern matching. For instance, a
distributed join of RoomTemperatureStream and RoomHumidityStream on the roomId
attribute would partition the events of those streams among the processing nodes in a way
that events with the same roomId would be directed to the same node.

A relatively new approach on distributed CEP is the use of mobile devices as
processing nodes, this approach can be especially effective in the ContextNet environ-
ment since it uses the M-Hub to establish a link with sensors and actuators. Thus the
processing would be closer to the physical objects that receive information of and in-
teract with the external world. Also as indicated by Talavera [Rios et al. 2016], local
processing can reduce the smartphone’s data and battery usage. In this subject we found
[Starks and Plagemann 2015] a work that focuses on distributed CEP in Mobile Adhoc
networks (MANETs) it provides a mechanism for an automatic statement of CEP rules
on the mobile processing nodes closest to the source. However, that work consists of a
prototype developed on a network simulator, it does not provide a solution usable in the
real world.

Our work proposes a solution that combines stationary edge nodes, mobile edge
nodes and cloud or clustered processing nodes. This approach can work very well in the
ContexNet environment since the M-Hub run on Android devices and has the capabilities
of acquiring data from sensors, local CEP processing and sending resulting events to
ContexNet gateways.

1Asper, Android port of Esper. https://github.com/mobile-event-processing/Asper
2Esper CEP is an open-source CEP engine. http://www.espertech.com/esper/

https://github.com/mobile-event-processing/Asper
http://www.espertech.com/esper/

4. A Model for a Distributed CEP Platform

The first contribution of this paper is a conceptual model for a platform to build distributed
CEP applications. It supports the deployment of continuous queries on heterogeneous
devices in an Internet of Mobile Things (IoMT) environment. The idea is to create a
connected Event Processing Network (EPN) that distributes the data processing among
nodes in different layers (e.g., Edge and Cloud) and with different processing capabilities.
Our model focuses on the following aspects:

• A Simple System Management Interface: Our model comprises an interface for
stating and allocating queries. It also allows checking aspects of the system status,
for instance, the active nodes and queries.

• Support for heterogeneous devices dispersed in the cloud and edge of the
IoMT: Our solution supports the deployment of queries to mobile or stationary
edge nodes that are generally closer to the data sources, but lack processing power.
It also supports the deployment of queries to cloud nodes, which can generally
perform complex operations that consume the output of edge nodes.

• Facilitate query connection: Each query will produce events as its output. Those
events should then be distributed to the nodes that may process them. However,
before receiving the events, the nodes should already be able to recognize their
event type (e.g., the event name and its set of attributes). Our solution ensures
that the nodes that consume the output of a query will receive both the type of the
outputted events and the events themselves.

• Validation of rules before they are deployed: Our model considers a validation
step previous to the actual query deployment. The validation checks the syntax
of queries and if they consume valid event types. We consider valid event types
that are produced by a previous query or originated in a data source (e.g., a sensor
event).

• Easy modification of executing queries: During the development of an EPN, it
is common to make adjustments to an already running query. In our solution it
is possible to issue a new version of a query. We ensure the distribution of the
new version to every connected processing component that was running the old
version.

• Adaptability: Our solution aims to offer adaptable EPNs as it provides automatic
query reallocation. First, it considers query relocation in case of node disconnec-
tion. It also considers associating the query with a context (e.g., a location). The
system should then allocate the query to a node that meets the context and relocate
if necessary (e.g., if the device moves out of the location).

The Figure 1 displays a general view of the model established in this work. We
propose the use of middleware with reliable delivery of messages as a communication
bus, and our model is composed of two elements, a processing component and a core
component. The processing component does the processing of data and can have multiple
implementations for different, heterogeneous devices. In the figure, both Cloud Process-
ing Nodes and Edge Processing Nodes run implementations of the processing component.
They receive queries and may produce events to be consumed on other processing com-
ponents. The core component handles the continuous query distribution and ensures the
correct coupling of the EPN parts. In the figure, the Core Node implements the core

Core Node

C
om

m
un

ic
at

io
n

Bu
s

Cloud
Event Processing Nodes

Edge
Event Processing Nodes

Events

Queries

Queries

Queries

Events

SoC

Figure 1. The general architecture of the proposed model.

component. A system manager interacts with the core component to issue queries and
allocate them to processing components. We will further detail each of those components
on the next two subsections.

4.1. The core component
The core component is responsible for offering a system management interface while also
handling the distribution of queries and events. The Figure 2 contains the representation
of the core component and its modules.

Input
Interface

Validation
Module

Distribution
Module

Communication
Module

Persistent
Storage

System
Status
Monitor Processing Component

connection status

User
Requests

CEP Rules
Event Types

Messages

Monitoring
Interface

S
ys

te
m

 M
an

ag
em

en
t

R
elocation

Database write/read Communication between modules

Figure 2. The Core Component.

Our solution offers two interfaces for system management: a monitoring inter-
face and an input interface. The monitoring interface allows consulting the status of
queries and processing components. For instance, it is possible to check which pro-
cessing components are running a query and which queries are running in a processing
component. The input interface allows creating and updating queries and allocating or
deallocating it from processing components.

The validation module receives user requests (queries and allocations) from the
input interface and verifies them before they are shipped to the processing components. It

will check the syntax of queries and ensure they consult existing event types, that is, event
types that are produced by previous queries or by data sources. Also, prior to the query
allocation, the validation module will check if the designated processing component is
valid and known. After validation, the persistent storage is updated and the distribution
module handles the query shipping. It encapsulates the queries in messages and requests
the communication module to send them to each designated processing component.

The connection module handles all communication with the processing compo-
nents. It also reports connections, disconnections and context updates of processing com-
ponents to the system status monitor. When a processing component connects/recon-
nects, the system status monitor saves/updates its information on the persistent storage
and makes sure that it has the latest version of every query allocated to it. When a pro-
cessing component disconnects, the system status monitor relocates its queries to another
component if possible. If a processing component was running a query associated to a
context and it the component reports a change in its context, the system status monitor
will check it and may relocate the query.

4.2. The Processing Component

We propose a general processing component model that can have specific implementa-
tions for heterogeneous devices. This model is pictured in the Figure 3:

Message
Manager

Communication
Module

Messages

Event Handler

CEP Engine

Remote
Events

CEP Rules
Event TypesLocal

Events

Local Event
Source Generated Events

Figure 3. The processing component.

Similar to the core component, the connection module handles all external com-
munication. When it receives a message, it is forwarded to the message handler. The
handler then unwraps the message and extracts its contents. The messages may contain
queries, the definition of event types, or external events. The CEP engine instantiates the
new queries and registers the event types. If the message contains an event, it is processed
based on the previously instantiated queries. If the processing component receives a new
version of a query that it is already executing, it removes the old version and instantiates
the new version of the query. The messages containing queries also contain a tag indi-
cating if the outputted events should be handled locally, distributed to other processing
components, or both.

If the message indicates that the outputted events should be distributed, the mes-
sage handler will subscribe to the instantiated query. The generated events are then en-
capsulated in messages and the message handler requests the communication module to
transmit them.

Query Input Query
Validation

Query
Distribution

Query
Execution

Disconnection /
Change of Context

Figure 4. Query deployment sequence.

If the query tag indicates that the output should be handled locally, the outputted
events can be further processed by other continuous queries on the same processing com-
ponent. Also, the event handler subscribes to those queries. The event handlers on the
processing components function as the sinks of the EPN. They are the interface that appli-
cations developed based on our model can use to obtain the output of the data processing.

The data input occurs in the local event source of processing components. The
local event sources generate events that are fed to the CEP Engine. For instance, a local
event source may gather sensor readings or get information from online data sources.
Our model does not contain a direct connection between the local event source and
the message manager. We stimulate pre-processing the events locally before distribut-
ing them. This pre-processing can reduce network band consumption and even save
energy[Rios et al. 2016].

4.3. Query Deployment Sequence

In our model, the query deployment can be divided into four steps, which are depicted in
the Figure 4.

The system receives continuous queries to be deployed in the query input step.
This step also comprises the definition of where the query should be allocated. We con-
sider the specification of queries to a particular processing component, to an IoMT layer,
or a context. By the IoMT layer, we mean cloud, stationary edge, and mobile edge. A
context, however, may include many aspects, for instance, location, minimum battery
level, or sensor availability.

After the query input, the query is validated and distributed to a specific processing
component. If the query was allocated to a layer or a context, the distribution step also
comprises choosing a processing component to execute the query. That means checking
if one of the connected processing components fills the allocation specification. If there
is none, the system will wait until one is available to deploy the query.

The last step is the actual query execution. However, the device that was choosen
to execute a query may disconnect or change its context; for example, move out of the
query’s location. In those cases, the query is deallocated from the old processing compo-
nent and goes back to the query distribution step.

5. The Global CEP Manager
To implement the proposed model, we developed the Global CEP Manager (GCM). GCM
is a distributed CEP platform for ContextNet nodes. We implemented the core compo-
nent has the GCM Core, a service that runs in a ContexNet SDDL node. We developed

distinct implementations of the processing component for different devices; we call then
Processing Agents (PA). We developed a cloud PA for regular computers or servers and
an edge PA for the Raspberry Pi. Furthermore, we also adapted the M-Hub and the MEPA
service to make it compatible with GCM as a mobile PA.

We adopted the Esper CEP engine as it is open source and uses Event Processing
Language (EPL) similar to SQL to describe continuous queries. In our implementation,
each continuous query has the following meta-information:

• A user provided label that identifies the query.
• A user-provided tag that identifies which IoT layer should receive the query out-

put. We support five tags: Cloud, S Edge, M Edge Local, and Global. Cloud:
the cloud PAs will receive the query output. S Edge or M Edge: the stationary or
mobile edge PAs respectivelly will receive the query output. Local: the output is
not distributed and is handled locally on the processing agent. Global includes all
PAs.

• A timestamp of the query creation or modification. This timestamp is automati-
cally generated on the GCM Core and represents the query version since we sup-
port query updates.

The Global CEP Manager Core functions as the core component we defined in our
model. The Figure 5 displays the architecture of the GCM Core.

Validator Query
Shipper

PostgreSQL
Database

PA Monitor

GCM Core
API

Query/
Allocation

Event name/
Syntax error

Insert query
or event type

Query label
and PA ID

Insert PA /
Update PA

D
is

co
nn

ec
tio

n
re

po
rt

Database
Handler

SQL
requests
Database
response

ContextNet
Interface

Allo
ca

tio
n

Que
ry

/ P
A in

fo

Connections/

Disconnections

Messages

Event type

Figure 5. The Global CEP Manager Core.

The GCM Core API implements both the monitoring interface and the input in-
terface described in our model. It provides Java methods to create and update queries or
allocate them to PAs, as well as methods to check their status. The validator implements
the validation module. It checks if the queries are syntactically correct in Esper EPL and
if they process existing event streams. If the validation fails, the validator produces a syn-
tax error. If the validation is successful, the validation module generates the event type for
the events that will be generated by the query. Then it returns the name of the event type
and requests the query shipper to distribute the event type to the necessary PAs. Those
are the PAs related to the query output tag we described at the begin of this session. Then
the validator saves the query on the database.

Our present implementation supports assigning queries to a specific processing
agent, to all processing agents of a type (cloud PA’s, stationary Edge PAs or M-Hubs),

or one automatically selected processing agent of a type. Currently, the GCM does not
support assigning queries to a context. If the query is designated to a specific PA, the
validator checks if the designated PA is already registered on the database. Then the
query label and the assignment info are passed on to the query shipper. The query shipper
implements the distribution module and is responsible for shipping the query to the nec-
essary processing nodes. If the query was designated to a specific PA, the query shipper
just encapsulates the query in a message and requests the ContextNet interface to send it.
However, other designation options will require the query shipper to perform additional
steps. First, the query shipper will get information about the active processing agents of
the designated type from the database. If the query was designated to all nodes of the
type, the query shipper will request the ContextNet interface to send the message to each
one of them. If the query was designated to be executed in one automatically chosen PA
of a given type, the query shipper picks one randomly. Then the query shipper also saves
information about the query allocation on the database. That includes the PA currently
running the query and if the query is reallocatable.

The ContextNet interface is an implementation of the communication module
for the ContexNet middleware. The functions of the system status monitor were divided
between the PA Monitor and the Query Shipper. The ContextNet Interface reports PA
connections and disconnections to the PA Monitor. The PA monitor then inserts or updates
the PA information on the database. The PA Monitor also reports PA disconnections to
the Query Shipper. If the disconnected PA was running a query that was allocated to one
automatically chosen PA of its type, the query is reallocated. The query shipper picks
another PA of the same type currently active and ships the query to that PA.

We used a PostgreSQL database as persistent storage. Our implementation in-
cludes a database handler that offers methods for data access. The database handler per-
forms SQL requests to the database.

Message
Manager

ContextNet
Interface

Messages

Query
Subscriber
Interface

Engine
Manager

Remote
Events

CEP Rules
Event TypesQuery

Output

Event Input
Interface

Events

EsperCEP

GPIO
Sensor

GPIO
Actuator

M-Hub’s
S2PA

Figure 6. The Global CEP Manager Processing Agent.

The Figure 6 contains the general architecture of the PAs. This architecture is very

similar to the processing component proposed in our model. The event input interface
and query subscriber interface are implementations of the local event source and the
event handler, respectively. They are Java interfaces that can be implemented by the user
applications developed using our platform. In the edge PA that runs in Raspberry Pi
we included implementations of those interfaces that can use the sensors and actuators
connected to the General Purpose Input/Output (GPIO). We included an engine manager
that handles adding and removing continuous queries from the EsperCEP engine as well
as feeding it events and collecting the queries’ output.

Our implementation includes some additional operations to ensure consistency.
When a PA connects (or reconnects) to the GCM Core, the ContextNet Interface issues
a notification to other components in the PA using EventBus3. Upon receiving this no-
tification, the engine manager produces a list with the label and version of each query
running in the processing agent. This list will be sent through the system infrastructure
and ultimately reach the query shipper on the GCM core. The query shipper checks if the
list is consistent with the information on the database. If the database contains a query
that should be allocated to the PA that was not listed or there is a new version of the query,
the query is shipped. If the list contains a query that is not currently allocated to the PA
according to the database, the query shipper sends a message requesting the removal of
the query.

6. Case Study

Core Node
Wireless Sensors

SoC

Presence Sensor

IR Transmitter

Heat/Cool AC

Figure 7. Use Case

We chose a smart home/office use case to demonstrate the adaptability or our
solution as well as to measure its communication overhead. The scenario, depicted in
Figure 7, contains two real temperature sensors that are connected to different M-Hubs
through Bluetooth Low Energy. It also contains a Raspberry Pi emulating a presence
sensor and an IR transmitter that controls a heat/cool AC system. Both the M-Hubs, the
Raspberry, and the Core node are all connected to the same wi-fi network.

The M-Hubs automatically produce SensorData events collected from the con-
nected sensor. We created a query that collects the average of the temperature sensor’s
readings and produces AverageTemperature events every 5 seconds and are sent to the
Core Node (running on a server). That query is displayed on the Listing 1 We used the

3EventBus is a library that offers a pub/sub protocol for loose coupling application classes that may run
in different threads. http://greenrobot.org/eventbus/

http://greenrobot.org/eventbus/

GCM to assign this first query to an automatically selected M-Hub and to distribute those
events to stationary edge nodes (e.g., the Raspberry Pi). We then configured the Rasp-
berry Pi to produce Presence events when the presence sensor is activated. We also used
the GCM to issue some queries to the Raspberry Pi displayed on Listing 2. The first query
detects when there are no Presence events for 20 minutes. This query produces TurnA-
COff events. Another query aggregates AverageTemperature events and Presence events.
This second query activates when a presence is detected, and the temperature is outside of
a comfortable interval (e.g.: between 22°C and 26°C). This query produces TurnACOn
events. We used a variable to store if the AC is on or off, to avoid sending multiple Tur-
nACOff or TurnACOn events. A query subscriber may consume either TurnACOff and
TurnACOn events and use the IR transmitter to turn AC off or turn it on at 24°C.

Listing 1. M-Hub query.� �
1 insert into AverageTemperature
2 select avg(sensorValue[1]) as temperature from
3 SensorData(sensorName=’Temperature’).win:time_batch(5 sec)� �

Listing 2. Raspbery queries.� �
1 -- There is no Presence event during an interval of 30 minutes,

and the AC is on
2 insert into TurnACOff select true from pattern
3 [every (timer:interval(30 minutes) AND NOT Presence)]
4 where var_isACOn=true
5

6 -- A Presence event is followed by an out of bounds
AverageTemperature event, and the AC is off

7 insert into TurnACOn select true from pattern
8 [every Presence ->
9 AverageTemperature(temperature not in [22:26])

10 where timer:within (20s)]
11 where var_isACOn=false
12

13 -- These queries change the value of the variable automatically
14 on TurnACOff set var_isACOn=false
15 on TurnACOn set var_isACOn=true� �

First, we measured the message overhead of our solution. We developed a static im-
plementation of the scenario composed of applications that implement the same queries
hard-coded on the same devices. Since the static implementation would not support query
relocation, we used only one M-Hub and one sensor. We compared the number of mes-
sages over time produced by our solution and the static implementation. Figure 8 displays
the results of this first test. As we can see, the message overhead only occurs in the be-
ginning, that is due to the initial steps performed when a PA connects. These steps are the
handshake between the PA and the Core Node as well as the actual query shipping pro-
cess. If we consider that the nodes are already connected and measure only the impact of

Test 1 2 3 4 5 6 7 8 9 10
Delay (s) 3.285 2.381 3.893 3.610 2.947 2.4260 3.594 3.899 3.659 2.562
Average 3.226

Table 1. Delay until the query is relocated.

shipping the queries, the overhead greatly reduces. This overhead is a natural consequence
of the dynamism and flexibility offered by our solution. On the static implementation, the
overhead does not occur; however, being hard-codded, it does not offer some key benefits
of our solution. Those benefits are: a central platform to distribute queries among devices
spread in multiple locations, easy modification of executing queries, and query relocation.
On the static implementation, it would be necessary to re-code, recompile, and reinstall
an application to include new queries or new versions of a query. Furthermore, in most
use cases, even if the system manager often issues new queries or new versions of queries,
the event distribution tends to surpass the network usage of the query distribution largely.

0

2

4

6

8

10

12

14

0s-10s 10s-20s 20s-30s 30s-40s 40s-50s 50s-60s

N
U

M
B

ER
 O

F
M

ES
SA

G
ES

INTERVALS OF 10 SECONDS

GCM(w/ handshake)

GCM(wo/ handshake)

Static Implementation

Figure 8. Message overhead.

To test the adaptability of our solution, we used the full scenario, with two M-
Hubs and two wireless sensors. After the queries are deployed, and the full system is
running, we simulated a disconnection. We turned off the wi-fi on the M-Hub running the
query. Then we waited until the query was redistributed to the other M-Hub. We repeated
this test ten times and measured how long does it take for the query to be automatically
redistributed to the other M-Hub. We display our measurements in Table 1, and on av-
erage, it takes 3.23 seconds. In the presented use case, this delay does not represent a
significant loss since the AverageTemperature events are outputted every 5 seconds. On
more time-critical applications, it would be necessary to detect the disconnection faster or
include redundancy.

7. Summary and Future Work
In this paper, we presented a model for a distributed CEP platform that facilitates the
engineering and deployment of distributed CEP solutions. We also presented GCM, an
implementation of this model that supports running queries on heterogeneous devices.
Our solution is flexible and adaptative as it supports issuing new queries and new versions
of queries that are automatically distributed and can automatically allocate and relocate
queries if necessary. We adopted a use case scenario to demonstrate the advantages of our

solution and also used this scenario to measure the message overhead generated by our
solution. This overhead concentrates on the start and does not impact the network over
time.

As future work, we are currently developing the support to assign queries to con-
texts, as discussed on or model, to the GCM. Then it will be possible to assign a query
to a specific location, for instance, and the system will automatically allocate or relocate
the query to devices on this location. We also intend to test the GCM on other scenarios
further.

References
Balazinska, M., Balakrishnan, H., Madden, S., and Stonebraker, M. (2005). Fault-

tolerance in the borealis distributed stream processing system. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, SIGMOD
’05, pages 13–24, New York, NY, USA. ACM.

Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., and Zdonik, S. (2002). Monitoring streams: A new class of
data management applications. In Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, pages 215–226. VLDB Endowment.

Cugola, G. and Margara, A. (2012). Processing flows of information: From data stream
to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62.

Endler, M. and e Silva, F. S. (2018). Past, present and future of the contextnet iomt
middleware. Open Journal of Internet Of Things (OJIOT), 4(1):7–23.

Etzion, O., Niblett, P., and Luckham, D. C. (2011). Event processing in action. Manning
Greenwich.

Jayasekara, S., Kannangara, S., Dahanayakage, T., Ranawaka, I., Perera, S., and
Nanayakkara, V. (2015). Wihidum: Distributed complex event processing. Journal
of Parallel and Distributed Computing, 79-80:42 – 51. Special Issue on Scalable Sys-
tems for Big Data Management and Analytics.

Luckham, D. (2002). The power of events, volume 204. Addison-Wesley Reading.

Luckham, D. C. (2011). Event processing for business: organizing the real-time enter-
prise. John Wiley & Sons.

Pietzuch, P. R., Shand, B., and Bacon, J. (2003). A framework for event composition
in distributed systems. In Proceedings of the ACM/IFIP/USENIX 2003 International
Conference on Middleware, Middleware ’03, pages 62–82, New York, NY, USA.
Springer-Verlag New York, Inc.

Rios, L. T., Endler, M., and Colcher, S. (2016). An energy-aware iot gateway, with
continuous processing of sensor data. In SBRC2016, XXXIV Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuı́dos - SBRC2016, Salvador, Brasil.

Starks, F. and Plagemann, T. P. (2015). Operator placement for efficient distributed com-
plex event processing in manets. In 2015 IEEE 11th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob), pages
83–90.

	Introduction
	Fundamental Basis
	CEP and Event Processing Networks
	ContextNet and M-Hub

	Related Work
	A Model for a Distributed CEP Platform
	The core component
	The Processing Component
	Query Deployment Sequence

	The Global CEP Manager
	Case Study
	Summary and Future Work

