
An adaptive rank-based approach for dynamic controller
selection in Fog Computing

Marcus V. S. Costa1,2, Vitor B. Souza2

1Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de
Minas Gerais (IF SUDESTE MG)

Muriaé, MG – Brasil

2Departamento de Informática – Universidade Federal de Viçosa
Viçosa, MG – Brasil

marcus.costa@ifsudestemg.edu.br, vitorbs@dpi.ufv.br

Abstract. The deployment of a dynamic and cooperative fog control plane,
where controllers are selected on-demand among the most suitable underlying
resources, has been recently proposed as a Control-as-a-Service (CaaS) model.
Albeit it is expected that real-time applications shall benefit from this concept,
mechanisms for QoS-aware controllers election is yet an open issue. In this
work, we propose an adaptive rank-based controller selection strategy that is
capable of tuning the weights employed for each characteristic of interest in
order to cope with the environment dynamism. Results have shown an average
controller exchange reduction of 37% when compared with a preliminary ap-
proach employing fixed weights in a dynamic scenario, as well as its efficiency
in battery and memory usage by controllers.

1. Introduction
In recent years, smart devices have significantly increased their ability to produce, pro-
cess and store data, piquing the interest of governments, academia and industry for the
development of innovative services, such as smart homes, smart cities, smart agriculture,
green energy, e-health, disaster management, among others [Aazam et al. 2018]. Aligned
with this evolution, the Internet of Things (IoT) brings a number of concepts, strategies
and solutions related to devices located at the edge of the network. The number of de-
ployed devices has reached impressive numbers in recent years and is expected to reach
29 billion connected devices by 2022 [Ericsson 2017]. Since these devices may have the
ability to both perform remote sensing and operate over environments, data traffic in the
network core is facing a huge increase due to the fact that data is traditionally stored and
processed in large Data-Centers (DC) infrastructure offered by cloud service providers.

Transferring most of the computational effort required to support applications to
the cloud may not be the most appropriate strategy in several cases. Applications requiring
low service response time (SRT), such as real-time applications, may experience signifi-
cant delays if the computational capacity is limited to the potential available at the core of
the network. Indeed, the exclusive employment of cloud-based architectures may hinder
the deployment of several IoT applications presenting strict QoS demands [Byers 2017].

Recent works have explored edge resource capabilities in order to deploy new
approaches for task offloading. The rationale behind these approaches is that several ap-
plications may benefit from edge resources as an active part of data processing, reducing

communication latency due to the physical proximity among end-points. Fog comput-
ing is a novel edge computing paradigm that aims at extending the cloud to the edge of
the network. Its main goal is to reduce communication delay whilst supporting system
heterogeneity, mobility, and scalability [Bonomi et al. 2012]. Fog nodes process tasks
collaboratively in a hierarchical architecture constituted by fog servers, clients, IoT de-
vices, and users in close proximity, providing computational flexibility, storage, better
communication, among others [Anawar et al. 2018].

In the fog control plane, edge controllers must discover underlying resources so
that service requests may be mapped to the most suitable ones. However, the burden
imposed on edge controllers is a challenging issue that is preventing fog providers to
meet QoS requirements [Jiang et al. 2018]. Aligned to this, [Souza et al. 2017] proposed
a distributed and collaborative control model, so-called Control-as-a-Service (CaaS), in
order to dynamically deploy a QoS-aware control plane at the edge. Albeit the benefits
coming from the deployment of on-demand controllers are shown in that work, authors
do not propose a strategy for electing the best resources to play the controller role.

In [Costa et al. 2019], authors propose an approach for selecting, in real-time, the
most suitable nodes to play as controllers in dynamic and heterogeneous fog domains.
The rank-based approach weighs some key characteristics to measure a node’s ability to
become a controller while not affecting service performance and minimizing the overhead
imposed by the need for controller exchanges. Although that work has presented satisfac-
tory results regarding the convergence time and the number of controller exchanges, there
is still room for significant improvement. Notice that fog dynamism and heterogeneity
can generate an excessive number of controller exchanges on a short-term basis. Indeed,
a node can have the highest rank value (RV) at one instant, hence, becoming controller,
and have its RV decreased in a short time frame, being surpassed by another node, which
becomes the new controller. On the other way around, if it subsequently suffers a new
RV increase, it shall assume the controller role one more time. Excessive controller ex-
changes can increase overhead and degrade QoS. In addition, the original weight-based
ranking scheme employs fixed weight for each node characteristic, not considering the
intrinsic dynamism due to, for instance, the rate of moving nodes or with low battery. As
an example, let us consider a scenario where most nodes are significantly constrained in
terms of battery capacity. In such a case, the weight applied to this characteristic should
be increased over others in order to prioritize the selection of candidates presenting higher
battery levels.

In order to address this issue, this paper proposes an adaptive scheme where RV
weights are tailored according to the fog scenario demands. Therefore, we propose an
approach to select controllers on-demand in fog environments for CaaS provisioning, tak-
ing into account the environment characteristics to minimize the number of controller
exchanges, decreasing overhead and better meeting QoS requirements. The main contri-
butions of this work are:

• Extending the rank-based model proposed in [Costa et al. 2019] to dynamically
tune the employed weights aiming at selecting the best resources to play the con-
troller role according to environment constraints.
• Minimizing the frequency of controller exchanging in order to enable efficient

CaaS provisioning whilst meeting QoS requirements in real-time applications.

This paper is organized as follows. Section 2 reviews resource selection proposals
in distinct scenarios. Section 3 presents a enhanced rank-based approach for selecting
controllers in dynamic and heterogeneous environments, such as in fog. In Section 4, we
evaluate the proposed approach with experimental results. Section 5 concludes the paper
and suggests avenues for future work.

2. Related work

A number of recent works have been devoted to solutions for the underlying resource
selection problem. A widespread approach in the literature is to employ centralized con-
trollers in distributed scenarios seeking to solve different objectives, for instance, opti-
mizing the consumption of computational resources, reducing latency, network mapping,
energy efficiency, just to name a few.

In Software Defined Networks (SDN) scenario, [Jiménez et al. 2015] propose a
resource discovery protocol, so-called SDN-RDP, in order to allow controller nodes to
discover the network topology by creating a control layer based on tree topology. An
approach for controller selection in a wireless mesh SDN (wmSDN) architecture is pro-
posed by [Salsano et al. 2014]. The proposal allows Wireless Mesh Routers (WMR) to
select controllers through a priority list.

Works that relate controllers to switches in SDN are found to solve the
QoS-guaranteed controller placement problem [Cheng et al. 2015] and minimize over-
all flow setup time in the network through a switch-controller mapping scheme
[Sridharan et al. 2017]. The focus of both works is traditional SDN architectures, hence,
switch and controller nodes are well defined.

In [Lee et al. 2017], the authors proposed a framework in which a fog node selects
potential neighboring nodes in order to form a dynamic fog network for service offload-
ing. Unfortunately, no strategy for selecting the first node is presented. A dynamic market
game for fog environments was formulated by [Kim et al. 2018]. Authors evaluate eco-
nomic aspects among end service-users (SU), edge resource owners (ERO) and ISP. The
approach considers the ISP as a static controller leveraging dynamic edge resources for
services allocation.

A cluster-based approach for resource discovery in Mobile Cloud Computing
(MCC) is proposed in [Athwani and Vidyarthi 2015]. Battery power, signal strength, and
mobility are parameters used to create a cluster-head (CH) selection function. Each CH
manages resources in its cluster in order to select potential nodes for the service execution.
Authors present no policy to update underlying cluster resources. [Arkian et al. 2014]
also address the resource selection problem in vehicular cloud architecture. The cluster-
based approach selects vehicles to perform the role of CH using fuzzy logic and rein-
forcement learning. Nodes’ memory and the processing capacity are not evaluated for
CH selection in both jobs, allowing to select CH with high processing capacity or low
memory capacity, which can impair task offloading.

3. Enhanced model for controller selection

In this section, a rank-based strategy for selecting on-demand controllers in dynamic and
heterogeneous distributed computing scenarios is presented. This strategy is an extension

of the one presented in [Costa et al. 2019]. The following subsection details each charac-
teristic of interest (CI) considered for selecting potential controllers, then, it is presented
how CIs are dynamically weighed in order to minimize controller exchanges and, finally,
it is discussed on the process of selecting and exchanging controllers.

3.1. Identifying controller’s requirements
In a distributed computing scenario, one of the main controller duties is to map service
requests into the most suitable resources. The controller is not responsible for performing
the service itself, but, in a highly dynamic and heterogeneous scenario, it must be able to
keep an updated view of the underlying resource characteristics. Moreover, the selection
of controllers should occur optimally so that it shall not impair the performance of the
service. On the one hand, devices with powerful processors and larger memory are bet-
ter suited for process offloading since service execution may be highly demanding. On
the other hand, nodes endowed with low energy resources or presenting high displace-
ment probabilities are more susceptible to unavailability and should not be employed as
controllers, preventing QoS degrading.

Therefore, a strategy for selecting controllers has to consider the minimum re-
quirements candidates should present to make them capable of processing and storing
data referring to other nodes of the network, without compromising the execution of the
service, prioritizing the control function. The key CIs considered in this work for selecting
potential controllers are as follows.

• mobility: nodes with a higher probability of displacement are more likely to be-
come unavailable, thus, they are less suitable to play the controller role;
• energy capacity: low battery power increases nodes volatility, reducing potential

controllers availability;
• signal strength: low signal strength can increase packet loss, QoS degradation,

and even connection disruption;
• processing and memory capacity: employing the most powerful devices as con-

trollers may reduce the availability of powerful resources for service execution,
increasing SRT.
Current edge devices can differ greatly in terms of memory, processing, power

capacity, and mobility. Therefore, we propose a rank-based metric that weighs the het-
erogeneous CI mentioned above to select the best nodes to perform the controller role in
a dynamic computing scenario.

3.2. RV calculation
Each node j has a set of CIs, denoted byCj = {c1, c2, c3, ..., cn}, related to a set of weights
W = {w1, w2, w3, ..., wn}, where n is the number of considered CIs, 0 ≤ ci ≤ 100 and
0 ≤ wi ≤ 1, where 1 ≤ i ≤ n. Therefore, the RV of a candidate node j is given by

RVj =
n∑

i=1

(ci × wi)− pj (1)

where pj is a punishment factor applied to a node j in order to minimize exchanges and
is given by

pj =

0 , if j is the current controller
max{0, (RVdiff)−1 × 100− (Rc + Rn)} , if j has been a controller earlier
0 , otherwise

(2)

whereRVdiff is the average difference betweenRVj andRVnew controller considering each
time node j releases the controller role in favor of new controller, Rc is the number of
consecutive rounds in which node j remained as controller within the last time it assumed
that role, and Rn is the number of elapsed rounds since the last time node j released the
controller role. According to (2), the current controller is not affected by the punishment
factor. The strategy is to apply greater punishments to nodes that left the controller role
with smaller RVdiff values or assumed as a controller only for a few rounds. These nodes
are more likely to take over and lose the controller function many times in a few rounds
and increase the number of exchanges.

As previously mentioned, this work considers processing, available memory, bat-
tery level, mobility, and signal strength as CIs for classifying nodes and selecting the
best suited to perform the controller function. In the following lines, a comprehensive
discussion on each CI is presented as well as how each one is quantified.

• Available memory (M) is the memory a candidate can share for executing con-
troller duties. To play the controller role, a node must have enough memory to
store information regarding resources shared by underlying nodes. The available
memory value is classified into six levels. Therefore, M is given by

M =

0, if Tlevel1

20, if Tlevel2

40, if Tlevel3

60, if Tlevel4

80, if Tlevel5

100, if Tlevel6

(3)

• The mobility metric (D) sets higher scores to devices with reduced displacements.
It is given by

D = 100− Fd (4)

where Fd is a displacement factor of a node, which is a normalized variation of
its coordinates – obtained by means of positioning techniques, such as GPS or
triangulation – within a time interval ∆t = t2 − t1. Therefore, Fd is given by

Fd = min{100,
100

dmax

√
(xt2 − xt1)2 + (yt2 − yt1)2} (5)

where (xt1,yt1) and (xt2,yt2) are the location coordinates at the instants t1 and t2,
respectively, while dmax is a predefined constraint for normalizing the computed
distance according to the maximum displacement expected or allowed for a device
playing the controller role within the interval ∆t.
• Battery level (B) is computed by the percentage of total battery b currently avail-

able for a candidate – ranging from 1% to 100%. In addition, a controller can-
didate must have b greater than a predefined threshold bmin. Similarly, when a
controller has b lower than bmin, a new controller must be selected to prevent the
current one from running out of battery. Therefore, B is given by

B =

{
100× b , if b ≥ bmin

0 , otherwise (6)

• To measure the signal strength (S) for each node, the Signal-to-Noise Ratio (SNR),
normalized according to a predefined base value smax, is used. Hence, S is given
by

S = min{100,
100

smax

× SNR} (7)

• The processing capacity (P) of each candidate is measured in MIPS. Similar to M,
the value for processing performance is also classified into levels. However, for
processing, eight distinct levels are proposed where the maximum value (P=100)
is attributed to Plevel4 whilst the attributed value is reduced as the processing ca-
pacity is either increased or decreased. Hence, P is given by

P =

0, if Plevel1

50, if Plevel2

75, if Plevel3

100, if Plevel4

90, if Plevel5

60, if Plevel6

20, if Plevel7

5, if Plevel8

(8)

On the one hand, Plevel2 is considered the minimum processing capacity required
for a candidate to be used as a controller. On the other hand, Plevel4 is the desired pro-
cessing capacity for the proper execution of controller tasks without loss of QoS due to
processing overhead. Our goal is to allocate resources that comply with the minimum
processing requirements for controllers while preserving the most powerful resources for
the service execution.

Therefore, the complete equation for obtaining the RV of each node j is given by

RVj = ((Dj × wD) + (Mj × wM) + (Bj × wB) + (Sj × wS) + (Pj × wP))− pj (9)

where wD, wM , wB, wS and wP are the respective weights applied to Dj , Mj , Bj , Sj and
Pj .

3.3. Computing RV weights dynamically

As described in the previous subsections, calculating the RV consists of obtaining and
classifying nodes’ CIs followed by each weight assignment. This is performed after every
time period (hereinafter referred to as rounds) when underlying nodes send their CIs to
the current controller. In this work, we propose to define weights dynamically, after
each round, according to the scenario’s demands. This is a challenging task because,
in very dynamic environments, CIs can switch quickly. Furthermore, acknowledged the
heterogeneity of underlying devices, an improper strategy for weighing CIs shall, for sure,
lead to under-utilization of available resources due to the selection of bad candidates to
play as controllers, violating QoS requirements.

Figure 1 shows an analysis of some CIs variation for five random nodes within
two hundred simulation rounds. The observed nodes have high displacement probability,
impacting on a large variation of SNR and the employed mobility metric (see (4) and (5)),
as shown respectively in Figure 1(c) and Figure 1(d). On the other hand, albeit available

memory (see Figure 1(b)) has had a high variation in some nodes, its contribution to large
variations in RV tends to be considerably smaller. Therefore, to minimize unnecessary
exchanges due to RV fluctuation, the weights assigned for D and S must be lower. Nev-
ertheless, these CIs cannot be neglected as they are important to assess a node availability
at a given time, hence, the respective weights should not be underestimated.

(a) (b)

(c) (d)

Figure 1. Variation of CIs in arbitrary nodes: (a) Battery level, (b) Available
memory, (c) SNR and (d) Mobility.

In the deployed strategy, the weight applied to the node’s mobility (wD) is
scenario-dependent. Hence, the higher the number of nodes with low signal strength,
the higher the weight attributed to this CI. The rationale behind this approach is to pri-
oritize nodes with low mobility since there is a higher chance of increasing packet loss
due to mobility. Moreover, this strategy reflects the need for prioritizing controllers of-
fering both high availability and, as far as possible, large available memory. The weights
dynamically applied to RV computation are given by

wD (mobility) = 0.10 + (Rsmin × 0.05)

wB (battery level) = 0.35 + (Rbmin × 0.05)

wM (memory available) = 0.35− wD

wS (signal strength) = 0.50− wB

wP (processing capacity) = 1− (wD + wB + wM + wS)

(10)

where Rsmin is the ratio of nodes presenting S less than a predefined
low signal strength threshold and Rbmin is the ratio of nodes presenting B less
than a predefined low battery level threshold. Notice that a tradeoff comes to light
according to the number of nodes above Rsmin and Rbmin thresholds. In fact, the weight
applied for mobility and available memory is inversely proportional. The same occurs
between the battery and signal strength. In this particular case, a balance is proposed: the
battery may increase or maintain its priority over the node’s indicators of displacement
(signal strength and mobility) proportionally to the number of nodes below the threshold
Rbmin.

3.4. Controllers selection
This subsection details the decentralized controller selection process for CaaS provision-
ing as well as the controller exchanging process. Initially, each node calculates its own

RV. Since, originally, candidates do not know each other, it is not possible to tailor weight
values according to the current scenario prior to the first controller selection. Therefore,
all nodes assume predefined weight values to compute their RV for the first time. Every
node presenting one or more CIs equal to zero gives up the selection process. Addition-
ally, since mobility computing takes a time ∆t, it is not considered in the first controller
election, preventing latency increase. Hence, the mobility weight is initially set to 0
(zero).

Each candidate node broadcasts its calculated RV and waits for the reception of
other candidates RVs. Due to the large variation expected on the number of devices,
each controller candidate sets a timeout interval in which it listens to other candidates’
messages. Upon receiving a RV from another node, the candidate compares it with its
own RV. If it is greater than or equal to the received one, it resets the timeout timer and
continues to wait for messages from other candidates. Otherwise, it gives up being a
controller by canceling the scheduled timeout event.

The candidate with the highest RV shall be the only node persisting in the selection
after message exchanges. As soon as the timeout event is triggered, the node broadcasts its
controller status. With this approach, a candidate must reset its timeout at most n-1 times
before becoming a controller, where n is the number of candidates. In the hypothesis of
candidates presenting the same RV, the contention is resolved through the highest battery
level. Involved nodes exchange extra messages containing the battery level and an extra
2 bytes random number to be used in case of equal battery levels. In this case, the node
with the largest random number wins the contention. If two or more nodes announce
themselves as controllers at the end of the selection process, the same tie-breaking process
is employed.

After the elected controller broadcasts its status, the resource discovery phase
starts. Within one round, each non-controller node unicasts a message to the controller
informing its characteristics, including the CIs used for the controller selection and its
punishment factor (calculated by the nodes). Thus, the controller builds its local database
so it can map received requests into the most suitable resources according to the service
requirements. It is worth mentioning that extra characteristics may be included apart from
the characteristics used for controller selection, but, since they are service-specific, they
are out of the scope of this work.

In addition, non-controller nodes send their CI and punishment factor at each
round enabling the controller to keep an up-to-date database. At the end of each round,
the controller computes both the amount of nodes with a low battery level and the amount
of nodes with signal strength bellow the defined threshold and determines the weights
for each CI. Then, the weights are employed to calculate the RV of each node, including
its own. If one node has a RV higher than the controller’s one, the controller unicasts a
message informing it shall be the next controller. After acknowledging the message, it an-
nounces itself as the new controller. The message sent by the previous controller informs
which weights were used in the last round so that the new controller updates its weight
values.

In order to prevent (RVdiff)−1 from assuming high values, making it impossible
for a node to be a controller candidate for hundreds of rounds, controller exchanging

takes place only if the node’s RV is higher than the controller’s RV in at least one unit.
The controller exchange is detailed by Algorithm 1. If a tie occurs when selecting the
new controller, the same criteria for solving a contention is employed. However, if nodes
have the same battery level, the current controller randomly chooses its successor.

Algorithm 1 Controller Exchange
1: l: controller node
2: N: set of non-controller nodes
3: t: predetermined round time
4: h: arbitrary node
5: procedure CONTROLLEREXCHANGE()
6: while True do
7: for each node j in N do
8: l collects j′s CI and j′s pf within a time t . performs concurrently
9: l determines the weights that will be applied to the RV
10: l calculates all nodes′ RV including its own
11: h← node with highest RV in l′s database
12: if h′s RV > l′s RV then . h can be a new controller
13: l informs h that it is the new controller and the weights used in the last round
14: break
15: h broadcasts its status to N
16: end

4. Performance analysis and comparative study
This section presents the experiments deployed for evaluating the proposed strategy. The
experiments assess the efficiency in reducing controller exchanges and aspects involving
QoS requirements. For instance, controllers are evaluated in terms of both availability and
capacity to store underlying resources information. In addition, the controller capability
to keep an updated view of those resources CI is further evaluated. For each experiment,
we compare, through obtained results, the proposed approach with a tailored version of a
resource selection strategy available in the literature.

4.1. Comparative resource selection strategy
For the sake of comparison, a CH selection strategy devoted to MCC scenarios, described
by [Athwani and Vidyarthi 2015], was tailored in order to fulfill the scenario considered
in this work. In the presented cluster-based approach, each selected CH is responsible
for acquiring and sharing knowledge about the resources available in the respective clus-
ter. For comparison, the proposed scheme is adapted from ad-hoc to an infra-structured
communication model. For instance, in the original model, a relative mobility function is
computed through the variation of the signal strength between each pair of neighboring
nodes. In the infra-structured communication model, the mobility is calculated individu-
ally by each node by means of the variation on the strength of beacons received from the
access point (AP). Notice that, since the interval between beacon messages is too short, Ts
is employed as the minimum time between two beacons considered for computing signal
variation. The adapted version is hereinafter referred to as a cluster-based model.

Nodes are elected by a cluster function given by

Clusfunc = w ∗Mob+ (1− w) ∗ (Bpower)
−1 (11)

where Mob is given by the node mobility function, Bpower is the battery power of a node,
w is a weight factor, subject to 0 ≤ w ≤ 1. Each node broadcasts its Clusfunc value and
the one with lower value is selected as CH.

Since the focus of this work is not on cluster formation, only one single cluster is
considered, with one single CH at a time. Another important difference is that the former
work does not consider the need for reelection when nodes’ parameters change over time.
Rather than that, a new CH takes place only after a node failure or if a node with a
better Clusfunc value gets in the cluster. As a result, it reduces the amount of controller
exchanges, however, QoS degradation is expected since, before failure, a controller may
suffer from low throughput and memory overload for some period, depending on the
cause of failure. Consequently, the controller may relinquish service requests.

4.2. Scenario Description
The conducted experiments emulate a fog environment with dynamic and heterogeneous
devices. Each edge node is emulated by a virtual machine whilst the IEEE 802.11b/g
connection among them is emulated by means of NetEm [Foundation 2018].

In this work, the same criteria adopted in [Costa et al. 2019] is used to classify the
nodes regarding their displacement profile, as shown in table 1. In this classification, type
1 nodes are more likely to suffer large variations in RV due to mobility and varying signal
strength.

Table 1. Nodes Classification

Node Type Displacement Probability Examples
Type 1 High Vehicles, drones
Type 2 Moderate Smartphones, embedded devices
Type 3 Low PCs, micro-servers

Regarding the heterogeneity of nodes characteristics, each node is endowed with
processing capacity ranging from 1500 to 35000 MIPS and available memory ranging
from 150MB to 3GB. Available memory, signal strength, mobility and battery level are
features that can vary throughout simulation time. The memory variation is simulated
through a probability density function (PDF) in inverse gamma distribution with shape
parameter α = 0.5 and scale parameter β = 10. A random mobility model is used while
SNR is calculated according to the current location of the node. For battery consumption,
a linear variation is employed. Table 2 shows the main parameters employed. It is worth
mentioning that the weights shown in the table are used for setting up the emulation start
and shall vary throughout the experiment time. The initial weights are inferred from
[Costa et al. 2019]. Table 3 shows the adopted classification for memory and processing
capabilities of nodes.

4.3. Results
In this section, the proposed approach is assessed in three different aspects: the number
of controller exchanges, the accuracy of controller knowledge regarding dynamic node
resources, and the availability of resources on employed controllers. Three distinct sce-
narios are considered for the proposed model.

• Scenario 1 is constituted by nodes with high displacement probability presenting
a distribution of 50% type 1 nodes and 50% type 2 nodes.
• Scenario 2 is constituted by 50% of type 3 nodes, 25% of type 1 nodes, and of

25% type 2 nodes.
• Scenario 3 is fully constituted by devices with a low probability of movement, i.e.,

100% of type 3 nodes.

Table 2. Experiment parameters

Number of nodes 100
Experiment time 900 rounds
wD (weight for mobility) 0.2
wB (weight for battery level) 0.25
wM (weight for memory available) 0.25
wS (weight for signal strength) 0.1
wP (weight for processing capacity) 0.2
bmin 10%
∆t = Ts 5 rounds
dmax 100m
smax 20db
low signal strength (relative to S metric) 35
low battery level 30%
w (weight factor for cluster-based model) 0.5

Table 3. Available memory (M) and processing capacity (P) levels

Memory Processing
M Level Memory (MB) P level MIPS
Tlevel1 less than 128 Plevel1 less than 4375
Tlevel2 from 128 to 256 Plevel2 from 4375 to 8750
Tlevel3 from 257 to 512 Plevel3 from 8751 to 13125
Tlevel4 from 513 to 768 Plevel4 from 13126 to 17500
Tlevel5 from 769 to 1024 Plevel5 from 17501 to 21875
Tlevel6 more than 1024 Plevel6 from 21876 to 26250

Plevel7 from 26251 to 30625
Plevel8 more than 30625

In the cluster-based model emulation, all nodes are considered to have a high
probability of movement since the work in which it is based is focused on scenarios with
high mobility. Therefore, the nodes’ configuration is similar to Scenario 1, i.e., 50% are
type 1 nodes while 50% are type 2 nodes.

In the first experiment, the amount of controller exchanges is evaluated. For
comparison purposes, both versions of the proposed model are considered. The origi-
nal version ([Costa et al. 2019]), hereinafter referred to as a former model, makes use of
fixed weights and no punishment factor, whilst the one proposed in this work implements
the punishment factor and adaptive weights. The amount of controller exchanges in the
cluster-based model, the former model, and the proposed adaptive model is shown in
Figure 2. For the former and adaptive models, three distinct scenarios are considered.

Figure 2. Controller exchanges

As expected, fewer changes are observed in the cluster-based model since changes
only occur when the connection fails or battery discharges. The adaptive weights strategy
for computing the RV, in collaboration with the punishment factor, led to a decrease of
approximately 37% on the amount of controller exchanges in scenario 1, which is more
conducive to exchanges, compared to the use of fixed weights. Some examples of the
variation of the employed weight within the experiment time are shown by Figure 3.

(a) (b) (c)

Figure 3. Weight variation. (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3

A mandatory requirement for QoS-aware controllers is to keep up-to-date infor-
mation regarding highly dynamic resources so that the most suitable ones can be em-
ployed for supporting service requests. In the second experiment, the adaptive model is
compared with the cluster-based model on this behalf. Distinct characteristics collected
by controllers from one non-controller node are shown in Figure 4, where a blue line
shows the actual value for each characteristic. Within 500 rounds, 70 samples of each CI
were randomly collected for both cluster-based and adaptive approaches. The proposed
adaptive approach presents better accuracy regarding the variations of node characteris-
tics than the comparative method. Indeed, the cluster-based approach expects edge nodes
to send messages about their available resources only when a new CH takes place.

(a) (b)

(c) (d)

Figure 4. Accuracy of controller knowledge of a node’s dynamic resources (a)
Battery level, (b) Available memory,(c) Signal-to-Noise and (d) Mobility

A critical requirement is that resources selected to play the controller role do not
adversely affect service performance. In the third experiment, characteristics of all de-

ployed controllers, collected at each round, are compared. Figure 5 shows battery and
memory availability in controllers. As can be seen from the results, the proposed ap-
proach is more efficient in selecting potential controllers for all scenarios evaluated than
the comparative method. Selecting controllers with higher battery levels enables them
to provide CaaS longer. In addition, controllers with more available memory are more
capable of managing large databases of edge resources.

(a) (b)

Figure 5. (a) Battery level and (b) Memory availability on controllers

5. Conclusion
This work proposed an adaptive weighting strategy for rank-based on-demand controller
selection aiming at CaaS provisioning in dynamic and heterogeneous scenarios, such as
fog. The proposed model makes use of dynamic weights for the characteristics considered
for selection in order to elect QoS-aware controllers whilst minimizing the number of
unnecessary controller exchanges. In the performed experiments, this strategy has proved
its efficiency when compared with a static weight approach. When compared to a cluster-
based model present in the literature, albeit the amount of controller exchanges has shown
to be higher, the model proposed by this work has overcome the cluster-based approach
both in terms of accuracy of underlying resources information, and efficiency on selecting
resources for playing the controller role, offering QoS-aware service allocation. As future
work, we aim at addressing the increasing overhead inherent to the need for keeping an
updated view of the available resources. We also aim at providing resilience to cope with
unexpected controller failures.

Acknowledgment
This work is supported by FAPEMIG, CNPq, and CAPES.

References
Aazam, M., Zeadally, S., and Harras, K. A. (2018). Offloading in fog computing for iot: Re-

view, enabling technologies, and research opportunities. Future Generation Computer Systems,
87:278 – 289.

Anawar, M. R., Wang, S., Zia, M. A., Jadoon, A. K., Akram, U., and Raza, S. (2018). Fog comput-
ing: An overview of big iot data analytics. Wireless Communications and Mobile Computing,
2018:7157192:1–7157192:22.

Arkian, H. R., Atani, R. E., and Pourkhalili, A. (2014). A cluster-based vehicular cloud architec-
ture with learning-based resource management. In 2014 IEEE 6th International Conference on
Cloud Computing Technology and Science, pages 162–167.

Athwani, P. and Vidyarthi, D. P. (2015). Resource discovery in mobile cloud computing: A
clustering based approach. In 2015 IEEE UP Section Conference on Electrical Computer and
Electronics (UPCON), pages 1–6.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the
internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, pages 13–16, New York, NY, USA. ACM.

Byers, C. C. (2017). Architectural imperatives for fog computing: Use cases, requirements,
and architectural techniques for fog-enabled iot networks. IEEE Communications Magazine,
55(8):14–20.

Cheng, T. Y., Wang, M., and Jia, X. (2015). QoS-guaranteed controller placement in SDN. In
2015 IEEE Global Communications Conference (GLOBECOM), pages 1–6.

Costa, M. V. S., Souza, V. B., and Júnior, S. S. A. (2019). Dynamic control-as-a-service provi-
sioning in fog computing. In 2019 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages 1–6.

Ericsson (2017). Ericsson mobility report. https://www.ericsson.
com/assets/local/mobility-report/documents/2017/
ericsson-mobility-report-june-2017.pdf. Accessed: 2019-10-08.

Foundation, L. (2018). Linux foundation wiki: netem. https://wiki.linuxfoundation.
org/networking/netem. Accessed: 2019-10-14.

Jiang, Y., Huang, Z., and Tsang, D. H. K. (2018). Challenges and solutions in fog computing
orchestration. IEEE Network, 32(3):122–129.

Jiménez, Y., Cervelló-Pastor, C., and Garcı́a, A. (2015). Dynamic resource discovery protocol for
software defined networks. IEEE Communications Letters, 19(5):743–746.

Kim, D., Lee, H., Song, H., Choi, N., and Yi, Y. (2018). On the economics of fog computing:
Inter-play among infrastructure and service providers, users, and edge resource owners. In
2018 IEEE International Conference on Communications (ICC), pages 1–6.

Lee, G., Saad, W., and Bennis, M. (2017). An online secretary framework for fog network forma-
tion with minimal latency. In 2017 IEEE International Conference on Communications (ICC),
pages 1–6.

Salsano, S., Siracusano, G., Detti, A., Pisa, C., Ventre, P. L., and Blefari-Melazzi, N. (2014).
Controller selection in a wireless mesh SDN under network partitioning and merging scenarios.
CoRR, abs/1406.2470.

Souza, V. B., Gomez, A., Masip-Bruin, X., Marin-Tordera, E., and Garcia, J. (2017). Towards a
fog-to-cloud control topology for qos-aware end-to-end communication. In 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS), pages 1–5.

Sridharan, V., Gurusamy, M., and Truong-Huu, T. (2017). On multiple controller mapping in soft-
ware defined networks with resilience constraints. IEEE Communications Letters, 21(8):1763–
1766.

