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Abstract. Optimizing resource distribution in datacenters can achieve several
economic benefits, including increasing energy efficiency, better workload per-
formance, and higher levels of job acceptance. Although some studies propose
strategies that increase resource utilization whilst meeting a certain QoS, there
is a perspective yet to be exploited: the Service Level Agreements (SLA) amor-
tization. We believe that keeping service levels far above the minimum agreed
is a missed opportunity to apply more aggressive strategies to reduce allocated
resource fragmentation and increase even further the benefits mentioned above.
In this work, we propose a novel server rebalancing strategy based on economic
systems, able to capitalize from the SLAs by keeping the harmony between the
aggressive competition of Free Markets and the safe control of Regulated Mar-
kets. The proposed strategy is evaluated with a modified version of CloudSim
Plus simulator. The outcomes show that the SLA exploitation strategy led to an
economy of 8.6% up to 23% for different mechanism configuration.

1. Introduction
There is increasing environmental concern about the energy needed to support data-
centers in the cloud computing industry. In 2014, U.S. datacenters consumed 1.8% of
the energy of the whole country [Shehabi et al. 2016]. However, this problem is not
novel. There has been extensive investigation on the issue of energy efficiency from
the perspective of virtual machine (VM) scheduling heuristics [Alahmadi et al. 2014,
Song et al. 2014] and host consolidation [Hameed et al. 2016, Lee and Zomaya 2010,
Usmani and Singh 2016]. Despite some of these strategies being able to save energy and
improve resource utilization, some can lead to a performance degradation due to resource
contention between VMs [Usmani and Singh 2016]. In some cases, the scarcity of re-
sources reaches such degree that the Service Level Agreements (SLAs) may be violated.

In this sense, there are already several works [Alahmadi et al. 2014,
Hameed et al. 2016, Usmani and Singh 2016] that avoid high levels of resource
contention between VMs through different host rebalancing strategies, conciliating
energy savings and Quality of Service (QoS). In addition to the conventional server
rebalancing and consolidation strategies, which typically migrate VMs from overloaded
hosts while maintaining a placement that favors host consolidation, our work exploits
the SLA of VMs to its edge.



Whenever a client leases VMs from a public Infrastructure-as-a-Service (IaaS)
cloud provider, she signs a virtual contract describing the responsibilities of the ser-
vice provider — the Service Level Agreements. Although there is no strict model of
which services and QoS levels different companies should address on their SLAs, there
is a recurrent pattern of promising minimum levels of resource availability or minimum
rates of performance. For instance, Microsoft Azure [Microsoft Azure 2019] and Ama-
zon Web Services [Amazon Web Services 2019] promises availability levels of 99.99%,
99.95%, 99.9% or 99% for different classes of VMs. Instead of always trying to provide
their clients with the best service availability/performance, we advocate that IaaS cloud
providers could push this value to the minimum promised in their SLAs, reducing costs
for both the client and the provider. Thus, we propose that the companies use this “safety
margin” to obtain more utilization efficiency by employing more efficient, but riskier, re-
source management strategies. If the client is not satisfied with the risks posed, then she
should pay a bit more for a more conservative SLA with higher levels of availability.

We achieve this goal by reducing the idleness of allocated resources, hereafter re-
ferred to as allocated resource fragmentation. However, since higher levels of resource
contention increase the odds of violating the contract, our main novelty is the strategy
employed to avoid a breach of contract. In our proposed SLA exploitation strategy, we
focus on guaranteeing Service Level Objectives (SLOs) of performance. We evaluate the
QoS by considering the SLO compliance rate: the percentage of time in which a VM
committed no SLO violations. Roughly, VMs with SLO compliance rate higher than the
minimum contracted are considered for server rebalancing, once they can occasionally
experiment momentary SLO violations without breaking their contracts. The remaining
period a VM can commit SLO violations without breaking the overall contract is called
credit time. For instance, a VM with no SLO violations and whose contract promises
to provide a minimum compliance rate of 99% would have 14 minutes of credit at the
end of a day – a time that could be used to decrease allocated resource fragmentation by
employing riskier resource provisioning strategies.

In this work, we leverage the Economic Analysis Framework
[Huberman and Hogg 1995] to devise a novel resource provision strategy: SL-Tight.
The basic and most used resource provision approach is a server allocating all the
resources requested to its hosting VMs, which typically assures high QoS but may lead
to resource underutilization. We call this conventional strategy the SL-Loose approach
since the SLO compliance rates are far above the promised on the SLAs. By analogy,
this is precisely the behavior of a government ruling a Regulated Market economy and,
therefore, in the SL-Loose strategy, VMs are always hosted in what we call regulated
market servers. In the SL-Tight approach, VMs without credit are also hosted in servers
following the “regulated market” approach, so that there are no risks of contract breach.
However, we propose that VMs with enough credit should be placed in servers following
the “free market” approach, i.e., servers in which VMs contend for resources likewise
companies do in Free Market economic systems.

The main goal of this work is to assess the positive and negative impacts brought
by the SL-Tight approach in relation to the SL-Loose: i) how much energy can be saved,
ii) the impacts on workload performance, iii) the impacts on the SLO compliance rates,
and iv) the impacts on the allocated resource fragmentation. Here we use the CloudSim



Plus simulator [Filho et al. 2017] in our assessment. The primary outcomes are the de-
crease of allocated resource fragmentation that generates, through host consolidation, an
energy saving of 8.6% up to 23%, and that under some settings there is no contract breach
even though SLAs has been exploited.

The rest of this paper is organized as follows. Section 2 presents the Economic
Analysis Framework we rely on to conceive our novel resource provision mechanism. Our
proposed SLA exploitation strategy is described in Section 3, followed by the problem
and solution statements. A description of the simulator used is provided in Section 4. In
Section 5 we present the experiment design. Simulation results and their corresponding
analysis are presented in Section 6. The most relevant related work are presented in
Section 7. Finally, in Section 8, we put forward the main conclusions.

2. Economic Analysis Framework
From an economic perspective, one may notice that cloud providers naturally behave as
markets. A client must choose how much she wants to pay for a service, in accordance
with her needs. Still, although the underlying infrastructure – the datacenter – is also
analogous to a market, it is not treated as one. Therefore, in order to throw a glance at the
datacenter resource provisioning using theories from the Economic Analysis Framework,
the Regulated Market and Free Market Economies are briefly described next.

2.1. Regulated Market Economy

A Regulated Market is an economic system where the government zealously controls the
forces of supply and demand, such as who is allowed to join the market and the prices
to be practiced [Helms 2005]. In cloud datacenters, as each VM intends to consume
resources, each resource provider, acting as the government, regulates the supply to not
overflow what was agreed in the SLA. On the one hand, this regulation allows the cloud
provider to manage the resource distribution comfortably and prevents neighboring VMs
from interfering with each other [Ibidunmoye et al. 2015]. On the other hand, in some
cases, a VM could be using fewer goods, creating a surplus for the cloud and although
the provider is complying with the contract, having these idle and fragmented resources
allocated leads to overall cloud inefficiency.

2.2. Free Market Economy

A Free Market is an economic system based on supply and demand laws. Applying it in
a datacenter means that the resource provisioner will only guarantee that the VM will not
starve for resources or be preempted for the benefit of a third-party. It also means that
those competing for resources do so in equal terms.

Each VM, as an ultimate selfish entity, tries to consume all the resources it wants.
As the competition is perfect, if two VMs are willing to consume all the resources of
a server, each will get half. However, having a host share resources as a Free Market
economy can lead to extreme resource depletion. Assume, for instance, a given host can
supply 1 Gbit/s. If in a given moment, there are 1000 VMs, each will get 1 Mbit/s, a rate
that could degrade the overall performance depending on the type of workload.

A Free Market economy host (FM host, for short) will not prevent the situation
mentioned above because its government policy inhibits any interference on the competi-



tion. Still, a Regulated Market economy host (RM host) will not allow the placement of
another consumer as it is unable to guarantee the SLA of all VMs.

3. SLA Exploitation

IaaS cloud providers could use a less conservative approach to ensure the agreed Service
Level (SL), here called SL-Tight, instead of the most commonly used strategy, namely
the SL-Loose approach, in which the service provider always tries to ensure the customer
the Optimal SL. The basic idea is to provide, throughout the billing month, a tight SL, in
the sense that the SL cumulatively provided gets closer to the minimum promised level
(SLO). Figure 1 illustrates the SLO compliance rate provided by both strategies.

Figure 1. Strategies for ensuring the SLO.

Consider Figure 1. A specific VM accumulates a sufficient amount of credit time
until time t1, and after t1 the VM is migrated to an FM host. During the time interval
[t1, t2[ there is a steep drop in the SLO compliance rate, which could be, for instance, a
consequence of resource contention. Finally, at t2, it starts to increase again. This upsurge
can be caused by a preemptive migration to an RM host or due to a decrease in resource
contention in the FM host.

This problem is more formally defined next.

3.1. Problem Statement

With the goal of easing comprehension, we first present Table 1, containing the symbols
used in this work and their corresponding descriptions.

A cloud datacenter is comprised by a set of hosts H, where HRM ⊆ H denotes the set
of RM hosts and HFM ⊆ H stands for the set of FM hosts. Let V be the set of VMs and
R = {iops, bandwidth, cpu, ram, storage} the set of resources each machine (host or VM)
has. Assume a given SL Objective o ∈ O is defined by a tuple (r, κmin, δ), where r ∈ R,
κmin ∈ R]0,1] is the minimum compliance rate and δ ∈ R is a constant defining the amount of
demanded resources. Consider also that θ : O→ R, µ : O→ R and ρ : O→ R are functions that
return the type of resource (r), the minimum compliance rate (κmin) and the amount of requested
resources (δ) of a given SLO.

To better understand what an SLO violation is, we formalize the allocation and workload
utilization functions. For the sake of simplification, we assume that time is discrete and use step
functions to formalize allocation as α : V×R× N→ R and the workload utilization function as
ω : V×R×N→ R. For instance, α(vmA, iops, t) denotes the amount of IOPS allocated to VM
A during time step t, and ω(vmA, iops, t) denotes the IOPS utilization needed by the workload
ran by VM A during time step t. Thus, the SLO violation function γ : V × O × N → {0, 1} is



Symbol Description
HRM set of RM hosts
HFM set of FM hosts
V set of VMs
R set of resources
κmin minimum compliance rate
δ constant defining the amount of demanded resources
O set of SLOs

α(v, r, t) allocation of resource of type r for VM v in time t
ω(v, r, t) workload utilization of resource of type r, for VM v, in time t
γ(v, o, t) occurrence of violation for SLO o and VM v, in time t
κ(v, o, t) SLO compliance rate for SLO o, and VM v, in time t
Φ(r, π, t) allocated fragmentation of resource r, with placement π, in time t
τ(v, o, t) credit time of VM v, with respect to SLO o, in time t
Lmax max amount of hosts that can be turned into an FM host
η no. of VMs with enough credit to trigger a change from RM into FM host
λ constant defining the duration of any VM migration
σ safety time margin considered to avoid SLA breach
∆ factor of change, in percentage, when scaling

[Smin,Smax] range of proper values for workload utilization (ω(v, r, t))

Table 1: Table of symbols.

defined as:

γ(v, o, t) =

{
1, if α(v, r, t) < ρ(o) and α(v, r, t) < ω(v, r, t)

0, otherwise,
(1)

where r is θ(o). Note that a momentary SLO violation is different from a contract breach.

The SLO compliance rate function is formalized as κ : V × O × N≥1 → R[0,1]. At the
beginning of time t, considering we apply a mod operator so that t is always within the seconds of
a month, the SLO compliance rate is computed by:

κ(v, o, t) =
t−

∑t−1
i=0 γ(v, o, i)

t
. (2)

Thus, whenever κ(v, o, t) < µ(o) we say there is a breach of contract (or SLA violation).

A placement π is a tuple (V, h), comprised by a set V of VMs allocated to a given host
h. Also, let S = {SL − Loose, SL − Tight} denote the set of strategies that can be used by
a placement. Computing π using a strategy s ∈ S, for each host h ∈ H, generates Π, the set
comprising the placements of the datacenter’s VMs into hosts.

Let Φ : R×Π×N→ R[0,1] be a function where Φ(r, π, t) denotes the allocated fragmen-
tation of resource r, in the end of time step t, when the placement π is applied. Then, whenever
there is at least a unit of resource allocated, the normalized allocated resource fragmentation of a
host is defined as follows:

Φ(r, π, t) =

∑
v∈π1 max {0, α(v, r, t)− ω(v, r, t)}∑

v∈π1 α(v, r, t)
. (3)



We believe that a host with no allocated resource fragmentation (Φ(r, π, t) = 0) is opti-
mal, as there exists no resource allocated that is idle. Thus, the challenge is to generate such a set
of placements Π of VMs to hosts that at least a near-optimal allocated resource fragmentation is
reached and the SLA is respected. We summarize this optimization problem with the following
formulation:

minimize Φ(r, π, t)

subject to κ(v, o, t) ≥ κmin,
r ∈ R, π ∈ Π, v ∈ V,
o ∈ O, t ∈ N.

(4)

3.2. Solution Statement

The SL-Loose strategy applies the simple resource provision policy, in which a host accepts a VM
only if the host has the number of resources (either CPU, RAM, IOPS, and bandwidth) requested
by the VM. On the other hand, besides applying the simple resource provisioner for non-shared
resources (RAM), the SL-Tight strategy also applies what we call the shared resource provision
policy for shared resources (CPU, IOPS and bandwidth). In this policy, the only constraint that
can preclude a host from accepting VMs is the RAM. The other resources do not impose any
constraint because in FM hosts all available shared resources are divided equitably between all
VMs, as described on Algorithm 1.

Algorithm 1 Resource Provisioner Shared
1: Sort VMs list by requested resource in ascending order.
2: Get the next VM in which the requested resources (δ) are not fulfilled.
3: If the host has enough resources to allocate δ to all VMs which are still requesting

resources, allocate δ to all these VMs; go to 2.
4: If the host does not have enough resources to allocate δ to all VMs which are still

requesting resources, divide all available resources between all these VMs.

To decrease allocated resource fragmentation, our solution, the SL-Tight, relies on the
shared resource provision policy and on a novel server rebalancing heuristic, described next.

The SL-Tight strategy considers all VMs with a minimum amount of time credit to be
placed in the FM hosts. The credit time of VM v with respect to SLO o in time t can be computed
by the following function τ : V×O× N→ R:

τ(v, o, t) =
κ(v, o, t) · t · (1− µ(o))

µ(o)
− t · (1− κ(v, o, t)) (5)

In the SL-Tight, initially, |HFM | = 0 and |HRM | = |H|. The strategy requires the cloud
admin to define a limit Lmax ∈ N establishing the maximum amount of hosts that can be turned
into FM hosts. Besides, the cloud admin must also choose a constant η ∈ N defining the amount
of VMs with enough credit time that should be reached to consider converting an RM host into an
FM host. In our heuristic, for the sake of simplicity, once turned into an FM host, a server will
never be RM again.

The server rebalancing algorithm migrates VMs from HRM to HFM and vice-versa, based
on the credit time of VMs. VMs with more credit time are iteratively allocated to FM hosts,



prioritizing hosts with higher resource availability. Here we assume the migration of any VM is
performed in constant time λ. Thus, to avoid contract breach, in a given time t, only VMs that
satisfies the condition τ(v, o, t) > λ+σ, where σ is a safety margin, are considered for migration.
We consider live migrations: while migrating from an RM to an FM host, the migrating VM still
runs on the RM host and, besides, it has already provisioned resources from the FM host.

In a similar form, VMs that are about to violate their corresponding SLAs are migrated to
RM hosts. Any VM v with a SLO o is considered to be a candidate to migration iff κ(v, o, t) ≤
µ(o). However, since VM migrations are not instantaneous, we consider for migration any VM v
with time credit lesser than or equal to the average migration time plus a safety margin, τ(v, o, t) ≤
λ+ σ. Also, note that VMs with less credit time are prioritized.

Furthermore, we also consider before migrations trying RM hosts consolidation. The main
idea is to move VMs from hosts with higher resource availability to hosts with lower resource
availability so that, eventually, one of these hosts with low resource availability becomes empty,
allowing its power off.

Finally, when the VMs are in an FM host, the scaling will be enabled so that VMs with
idle resources reduce their allocated capacity and VMs needing more resources could perform
upscaling. However, VMs already violating their SLOs (τ(v, o, t) ≤ λ + σ) are not allowed
to downscale since this would worsen the situation. In this work, scaling is done for the IOPS
resource, although the idea also applies to other shared resources such as bandwidth. The scaling
variables are ∆ ∈ [0, 1], Smin ∈ [0, 1], and Smax ∈ [0, 1]. Recalling that α(v, iops, t) and
ω(v, iops, t) are the amount of IOPS allocated and the amount of IOPS needed by the workload,
for VM v in time t, then, if ω(v, iops, t) < Smin·α(v, iops, t), the allocation of the next simulation
time will be decreased by ∆, i.e., α(v, iops, t + 1) = α(v, iops, t) − α(v, iops, t) · ∆. This
downscaling would release the allocation of idle resources, enabling overloaded VMs to benefit by
offloading. Similarly, if ω(v, iops, t) > Smax · α(v, iops, t), the allocation of the next simulation
time will be increased by 2 · ∆, i.e., α(v, iops, t + 1) = α(v, iops, t) + α(v, iops, t) · 2∆. We
consider this double-factor because such VMs may be violating or about to violate their SLO, and
thus, a quick reaction is required.

4. CloudSim Plus Simulator
To evaluate our proposed strategy we opted for simulations, in particular, for the CloudSim
Plus framework [Filho et al. 2017]. Our modified version of CloudSim is available at
https://git.lsd.ufcg.edu.br/lucascavalcante/cloudsimplus.

In CloudSim Plus, a datacenter is comprised of a set of hosts, that in our case can be RM
or FM. The broker acts as an abstraction of the user: it manages the submission and termination
of VMs as well as the submission of cloudlets to VMs. A cloudlet is a simple task that can be
executed by a VM. Cloudlets consume VMs’ resources (CPU, RAM, etc), and VMs consume
hosts’ resources. Thus, each cloudlet carries workload information such as the amount of IOPS
instructions to execute. The broker is also responsible for mapping VMs to hosts according to a
given allocation policy that, typically, considers the VMs’ resources requirements and the resource
availability on the hosts.

There are two policies that hosts and VMs use to define how its resources are scheduled:
time shared and space shared. The time shared policy allows a single resource to be allocated to
multiple entities, each having the possession of such resources during a fraction of time, while in
the space shared, a portion of resources is allocated only to a single entity. Furthermore, hosts
provision resources to VMs and VMs provision resources to cloudlets with the aid of the resource
provisioner. Provisioners can be either simple or shared (see Section 3.2).



The SLA monitor is the component that computes the credit time of each VM using the
SLO compliance rate, according to equations 1 and 5. Migration policies define the placement of
VMs to hosts. In the SL-Tight strategy, the algorithm considers the VMs’ credit time and hosts’
resource fragmentation.

To measure the energy consumption of a host there is the concept of Power Model. The
model requires values defining the power consumption (W) of given hardware when the CPU level
is at 0%, 10%, ..., 100%. In order to generate realistic results we conducted some experiments on a
single server (Intel(R) Xeon(R) CPU E5-2620 v3), in which every 5 minutes the CPU usage level
was raised by 10%. The results obtained are the following: {0% = 45W/s, 10% = 65W/s, 20%
= 75W/s, 30% = 80W/s, 40% = 85W/s, 50% = 88.33W/s, 60% = 90W/s, 70% = 95W/s, 80% =
95W/s, 90% = 96.66W/s, 100% = 100W/s}. Such power model is used in our simulations.

Utilization models define the utilization patterns of VM’s resources by cloudlets. In this
work it was used the full utilization model, the absolute utilization model and the normal utilization
model. In the full model, a cloudlet consumes all the allocated capacity, but in the absolute, it
consumes a constant amount of resources. When following the normal model, a cloudlet consumes
resources according to a normal distribution with specified mean and standard deviation.

5. Experiment Design
To evaluate the improvements brought by the SL-Tight strategy, we define two scenarios: i) base-
line scenario and ii) impacts of resource fragmentation. Roughly, we want to understand the
impacts of the SL-Tight on energy consumption, on workload running time, on VMs’ SLO com-
pliance rate, and on the allocated resource fragmentation.

There are some simplifications common to both scenarios. All hosts belong to a single
datacenter and provision resources with the simple provisioner, except for FM hosts, which provi-
sion IOPS through a resource provisioner shared to reduce resource fragmentation. Besides, hosts
are set up with space shared policies for all the resources except for the CPU – this means that a
host accepts more VMs than its CPU capacity could handle, but each VM has a portion of the time
of the CPU. In other words, the CPU availability never precludes a host from accepting VMs, but
the other resources (RAM, IOPS, and bandwidth) do. VMs schedule cloudlets with space shared
policy, and we set up each cloudlet requirement so that VMs can handle only a single cloudlet.
Further, each cloudlet is set to finish after a 30-day interval if it stays in an RM host. When placed
in an FM host, it can finish earlier, if it consumes more resources than in the RM host (this de-
pends on the workload utilization model), or later, if the resource contention precludes it from
consuming as many resources as it was able to consume in an RM host.

In both designs, the scaling parameters are fixed in Smin = 0.9, Smax = 0.99 and
∆ = 0.01 – an aggressive setting that tries to avoid VMs to have more than 10% of allo-
cated resource fragmentation. We try out the most commonly used service levels, κmin ∈
{0.999, 0.9995, 0.9999}. Finally, for the sake of simplification, the migration time is fixed in
λ = 30s, and the safety margin is fixed in σ = 10s.

5.1. Baseline Scenario

For this setup, the infrastructure is comprised of two hosts and two VMs. We experiment scenarios
with SL-Loose and SL-Tight to check how the SLA exploitation strategy performs in comparison
to standard approaches. VMs are set with 100 IOPS SLO requirements, and they are launched
with the worst fit allocation policy. Hosts are set with 150 IOPS capacity, and thus, the RM host
can host a single VM, while the FM can host two VMs. What differs in each case is the IOPS
utilization model each cloudlet is set up.



5.1.1. Case I

One cloudlet is set with the full utilization model, and thus it consumes all the 100 IOPS allocated
to the VM. Meanwhile, the other cloudlet is set with an absolute utilization model of 25 IOPS.
Such setup allows host consolidation and, in addition, it optimizes the workload performance in
the FM host since the cloudlet with the full model will leverage the idle resources of the other one.

5.1.2. Case II

Both cloudlets are set up with an absolute utilization model of 76 IOPS. Therefore, although an
FM server can host both VMs, they will always be experiencing momentary SLO violations. Our
goal here is to check whether the SL-Tight breaks the overall SLA.

5.2. Impacts of Resource Fragmentation
In this design, we assess the impacts of the SL-Tight approach on VMs with different allocated re-
source fragmentation. Thus, a more significant setting is considered – the datacenter is comprised
by 10 hosts and 100 VMs evenly distributed among hosts. Half of this set of VMs are configured
with a normal utilization model with mean equal to 25 and the other half with mean on 75, all of
them with a standard deviation of 5.

Each host has 1000 IOPS capacity and 20GB of RAM, but each VM requests only 100
IOPS capacity and 1GB of RAM. Therefore, the FM hosts can allocate twice as many VMs than
RM hosts, since the IOPS is allocated with a shared provisioner. In this case, the unique constraint
in an FM host would be the RAM, because it uses a simple provisioner.

Another factor we want to evaluate is the impact of letting more hosts being turned into
FM hosts (Lmax). Whenever the SL-Tight is enabled, η = 11, meaning that 11 VMs with enough
time credit to migrate can trigger the transformation of an RM into FM. Recall also that when an
RM host becomes FM its IOPS provisioner is set to shared instead of simple, and all VMs on this
host try to upscale/downscale when overloaded/underloaded. For this design we ran experiments
with Lmax ∈ {1, 3}. For simplicity, κmin = 0.999. Finally, we try out a narrow and a wide safety
margin: σ ∈ {10, 10 + λ}.

6. Results and Analysis
6.1. Baseline Case I - saving energy and improving workload performance
Figure 2 shows the energy consumption of the datacenter over time, with SL-Tight and SL-Loose
strategies, and with different SLO levels (κmin).

In this experiment, each server could host 2 VMs. When hosting a single VM, each
server was using half of its CPU capacity, consuming 88.33W/s. This situation is depicted by
the continuous red line (SL-Loose). When the SL-Tight is enabled (dashed blue line), one host
uses its full CPU capacity consuming 100W/s and the other one is powered off. In addition,
consolidation (steep drop of dashed line) is achieved faster for lower κmin values. This hap-
pens because the higher is κmin, the lower will be the amount of time credit a VM accumu-
lates per second. In this case, all VMs were committing no SLO violation once there is no re-
source contention, and thus they become eligible to migrate after 0.51, 1.02 and 5.14 days, for
κmin ∈ {0.999, 0.9995, 0.9999}.

Also, in the last five days there is a further decrease in energy consumption. This happened
because the VM with full IOPS utilization (VMA) was placed together with the VM with absolute



Figure 2. Case I: energy consumption of datacenter.

utilization of 25 IOPS (VMB) in the FM host. In the FM host, the scaling enables VMB to reduce
its IOPS allocation from 100 to 25 without compromising its performance. This action allows
VM A to improve its performance from 100 (in the RM host) to 125 IOPS (in the FM host),
leading to a faster workload termination (5 days earlier). Considering the average US energy
cost of $0.1042 per kWh [U.S. Energy Information Administration 2019], the SL-Loose approach
would cost $66.26 (635.97 kWh) and the SL-Tight could reduce it up to $38 (368.52 kWh) for
κmin = 0.999, an economy of 42.6%.

6.2. Baseline Case II - SLO analysis

Figure 3 shows the SLO compliance rate of VMs that always commit SLO violations when placed
in the FM host.

Figure 3. Case II: SLO compliance rate of VMs.

Case II shows it is possible for VMs to commit SLO violations but still comply with the
SLA. The SLO compliance rate of all three κmin never gets lower than the contracted. This is
achieved by migrating VMs about to break their SLAs from FM hosts to RM hosts. Note that
the steep drop of lines in Figure 3 denotes the SLO violation of VMs in the FM host, while the
increase stands for their stay on the RM host. Finally, we may also observe that VMs with higher
κmin increase their credit time slower, and for this reason, they migrate to FM host less frequently.
Thus, a shortcoming of FM servers hosting VMs in high resource contention scenarios is that VMs
with low κmin will experience a high number of migrations.

6.3. Impacts of Resource Fragmentation

Figure 4 presents the minimum, median and maximum SLO compliance rates of VMs with work-
load utilization mean equal to 75 IOPS, for scenarios with κmin = 0.999, σ ∈ {10, 40} and for



Lmax ∈ {1, 3}. Since all VMs with workload utilization mean equal to 25 IOPS committed no
SLO violation for having low levels of demand, they are not included in the plot so that the details
of results of the remaining VMs do not get masked due to summarization.

Figure 4. SLO compliance rates of VMs with mean IOPS equals to 75.

The first conclusion we can draw from Figure 4 is that depending on the parameters there
may happen a contract breach. However, just a few VMs violate their SLAs and for a tiny period
of time: 5, 8 and 6 VMs out of 100 VMs, for (σ = 10,Lmax = 1), (σ = 10,Lmax = 3) and
(σ = 40,Lmax = 3), respectively.

Even though there may happen brief SLA violations, some procedures can mitigate this
issue. IaaS providers could conceive their agreements with some service credit mechanism
[Muller 1999] where the customer accumulates service credit whenever the provider fails to com-
ply with the agreed SLO, credits which could later be spent. Another mitigation is using conser-
vative values for σ and Lmax, which is discussed next.

By comparing the columns of Figure 4 one can note that increasing the safety margin σ
has a positive impact on the SLO compliance rate of VMs indeed— the higher is σ, the lesser
is the VM stay in the FM host. Oppositely, the higher is Lmax, the higher are the risks of SLO
violations. Note that when Lmax = 1 only 19 VMs experienced the FM host while for Lmax = 3
all the VMs have been in an FM host. This is why, for Lmax = 3, the maximum values got closer
to the median and min SLO compliance rates.

Table 2 presents the energy cost and consumption of each scenario. The SL-Loose strategy
cost $333.38 (3199 kWh).

Table 2: Energy cost and consumption of the datacenter.

σ = 10 σ = 40

Lmax = 1 $304 (2920 kWh) $304 (2923 kWh)
Lmax = 3 $256 (2462 kWh) $275 (2641 kWh)

In terms of energy, increasing Lmax has higher economic impacts than decreasing σ. The
most economical scenario is the one set up with σ = 10 and Lmax = 3, an economy of 23%.

Figure 5 shows the aggregated allocated resource fragmentation of all VMs in all hosts for
each scenario. Since the allocated resource fragmentation has high variability, we ran a moving



average with a two-hour sample window. Here we normalize the allocated resource fragmentation
of each VM dividing it by the VM’s resource capacity.

Figure 5. SLO compliance rates of VMs with mean IOPS equals to 75.

As expected, the average allocated resource fragmentation for the SL-Loose is 50, since
half of VMs consumes 25% of their capacity and the other half consumes 75%. The SL-Tight
approach with Lmax = 1 decreases on average 5% of the allocated resource fragmentation, and
σ has a negligible impact in this case. However, for Lmax = 3 the value of σ has a considerable
impact: when σ = 40 the allocated resource fragmentation was reduced to an average of 37%, and
for σ = 10 the average allocated resource fragmentation is 34.6%.

7. Related Work
Two well-known IaaS providers use a similar scheduling strategy: AWS and Google. In
AWS, users can lease VMs with different service levels (on-demand, reserved, and spot in-
stances) [Amazon Web Services 2019], and Google maintains a cluster manager named Borg in
which jobs with different priority levels can be scheduled (production, batch, and best effort)
[Verma et al. 2015]. The idea is that VMs or jobs with lower service levels can be preempted to
give room for more profitable ones. Although such a strategy increases the income, it does not
exploits the SLAs as our strategy proposes.

Carvalho et al. (2017) state that there are three aspects to optimize the number of VMs
allocated: capacity planning, admission control, and scheduling. They propose a capacity planning
method that employs analytical models over the workload experienced in the past to find the
minimum capacity required to meet availability SLOs in the future. The creation of multiple
service classes allows better use of resources, yielding higher profitability. Instead of proposing
new SLAs, our strategy exploits existing SLAs by reducing resource fragmentation through server
rebalancing, allowing consolidation.

Svärd et al. (2015) rely on the fact that VM scheduling is an online problem, yielding
suboptimal results over time, to propose a continuous datacenter consolidation heuristic. In their
approach, any VM arrival/exit event triggers a set of algorithms that use VM profit as a priority
level to decide which VMs should be migrated or suspended to rearrange the datacenter. Silva et al.
(2019) also use a priority strategy, but taking the SLOs and availability delivered for each VM into
account when making decisions. Although Silva’s approach is similar to ours, the key difference
is the strategy we use to push the experienced SLO to the contracted one — they suspend VMs
while we migrate VMs to hosts with overbooking.

In the taxonomy proposed by Bittencourt et al. (2018), this work’s scheduler can be clas-
sified as having the objective of minimizing datacenter costs in the provider perspective. However,



such a taxonomy can be augmented with a “SLA exploitation” category, in which this work and
[Silva et al. 2019] would fit.

8. Concluding Remarks

Consolidation heuristics has been extensively adopted to reduce energy consumption by datacen-
ters. However, only Silva et al. (2019) does it from the perspective of SLA amortization. Keeping
SLO compliance rates far above the minimum agreed is a waste of resources. This slack could
then be leveraged for reconfiguring the system into more efficient configurations. In this work, we
propose a strategy to exploit VMs’ SLA based on Economic Systems. VMs join the Free Market
to amortize their SLOs rate and migrate back to a Regulated Market when the SLA is at risk.

With the aid of a simulation model, it was observed that such a strategy can lead to energy
savings and improve workload performance. In scenarios in which VMs have different resource
fragmentation, the SLA exploitation strategy may lead to SLA contract breach depending on the
parameter setup. An aggressive setup caused punctual SLA violations for 8% of VMs but produced
an economy of 23% in energy consumption. On the other hand, a conservative setting caused no
SLA violations and produced an energy saving of 8.6%.

Although simulations show positive results, some aspects are yet to be investigated. For
instance, one could analyze the number of migrations and devise heuristics to optimize this task. A
VM classifier could monitor the VMs’ resource utilization and try to forecast the migration time.
Thus, upon classification, some VMs could be discarded for migration. Another idea is creating
different levels of risk environments by controlling the level of overbooking in a given host.
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