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Abstract. With the growth of the Internet of Things (IoT) and Smart Homes,
there is an ever-growing amount of data coming from within people’s houses.
These data are valuable for analysis and to discover patterns in order to im-
prove services and produce resources more efficiently, e.g., using smart meter
data to generate energy with less waste. Despite their high value for analysis,
these data are intrinsically private and should be treated carefully. IoT data
are fundamentally infinite, and this property makes it even more challenging to
apply conventional models to achieve privacy. In this work, we propose a differ-
entially private strategy to estimate frequencies of values in the context of Smart
Home data, considering the infinite property of the data and focusing on getting
better utility than state of the art.

1. Introduction
With the popularization of the Internet of Things (IoT) and the greater availability of var-
ious kinds of sensors in the market, there is an increasing amount of data being generated.
It is expected that by the year 2021, the amount of data generated by IoT devices, people,
and machines reaches the magnitude of zettabytes [Networking 2016]. These data can
be beneficial for improving services, for example, by using Smart Meters data to gain a
better understanding of the energy usage in a city or using health sensors to recognize
activities through health monitoring.

Most of the IoT data arrives as streaming data, which brings some challenges due
to its intrinsic characteristics, i.e., the data is potentially unbounded and happens in a
non-predictable order. Besides that, it requires fast processing, which turns the traditional
solution of sending data to be processed at a cloud server unfeasible. An alternative
for cloud computing is to process data at the edge of the network, which motivates the
emergence of edge computing [Shi et al. 2016].

Although these data can be beneficial for improving services, careful attention to
privacy issues is becoming more urgent. The lack of care with the individual’s privacy can
lead to severe problems, such as a malicious edge server eavesdropping sensitive data. As
shown in [Molina-Markham et al. 2010], through relatively simple statistical methods, an
adversary is able to identify crucial private information, such as if the household has left
her child home alone or even if her last breakfast was eaten hot or cold.



Many works in the literature implement privacy through a trusted third party entity
that has access to the raw data of a set of users. However, in real-world scenarios, it is
often not reasonable to depend on such an entity for privacy reasons. The third-party entity
may be malicious or be hacked and expose users’ personal information, for example.
More recent works focus on the local perspective of privacy, where the privacy process is
performed closer to the user without depending on a trusted third party entity.

In Differential Privacy (DP) [Dwork 2006], a mechanismM is said to be differ-
entially private if the probability of any output of M does not vary significantly, by a
threshold of ε, independent of the input. DP was initially proposed to work as an interac-
tive model [Dwork et al. 2006], responding privately to statistical queries in a database.
In this interactive scenario, a trusted entity that has access to the raw data is necessary.
However, in more recent work, such as [Erlingsson et al. 2014], there has been significant
interest in the local setting of this model, called Local Differential Privacy (LDP), where
a randomization process is done locally to ensure the definition of DP.

In this paper, we describe ProTECting, an application of privacy protocols that
guarantees the Local Differential Privacy properties for estimating frequencies of values
in the context of Smart Homes at the edge over infinite streams. One of the reasons why
infinite streams make it more challenging to achieve the Differential Privacy property is
that a priori, the privacy budget should be consumed by each interaction of the random-
ization mechanism, which could make it inapplicable for multiple uses unless one works
through this issue. Differently from state of the art, ProTECting reaches better utility lev-
els by leveraging optimized privacy protocols. In this context, utility is measured by how
close the estimated frequencies are to the real ones. An optimized protocol is one that
minimizes the variance of the outputs, therefore resulting in outputs with less error and
better utility.

The outline of this paper is defined as follows. Section 3 discuss the state of the
art, focusing on the most similar approaches regarding DP, IoT, and edge computing.
Section 2 explains the theoretical background about the networking environment, related
to IoT and edge computing, and the DP settings. In Section 4, we present ProTECting
as a solution to ensure privacy in IoT scenarios at the edge. To evaluate the performance
of ProTECting, Section 5 reports the preliminary experimental results, applied on real
sensor data from Smart Meters [UK Power Networks 2015]. Finally, Section 6 presents
conclusions and gives future research directions.

2. Smart Homes and Data Privacy
2.1. Edge Computing and Internet of Things
Internet of Things (IoT) is a recent communication paradigm related to the interconnec-
tion of everyday objects to the Internet, which has strengthened with the evolution of
advanced wireless technologies. The basic idea behind IoT consists of a variety of phys-
ical objects provided with embedded systems, capable of interacting with each other and
with the users, which turns the Internet even more immersive and pervasive.

The use and interaction of these interconnected objects, such as home appliances,
surveillance cameras, monitoring sensors, machines, and more, which produces and trans-
ports data, leads to the development of a variety of applications that make use of this enor-
mous amount of generated data. This variety of applications beforehand mentioned may



find heterogeneous domains, such as home and industrial automation, energy and traffic
management, and more.

However, in this complex scenario, the enormous amount of information gener-
ated by objects and transported through the network alongside the heterogeneous fields of
application leads to challenging issues. These issues are comprised not only by network-
ing ones but also by privacy issues regarding the users, which could have their privacy
breached by an adversary, e.g., a malicious cloud server, that collects and analyzes data
produced by objects in a house in order to know when the house is empty. Examples
of networking issues are scalability and complexity in the system perspective due to the
need for a well-established network to maintains the IoT, services, and devices network
altogether. Regarding privacy concerns, it is closely related to the lack of care within
the gathered information related to daily human activities, which, combined with rela-
tively simple statistical methods, could reveal crucial private information, as previously
mentioned in Section 1.

Smart homes are a particular scenario of IoT, where network-connected objects
are located inside a house. A well-known application over smart homes consists of the
use of smart meters to measure and collect the energy consumption in a house. However,
since the information provided by devices are very sensitive, the household’s daily activ-
ities and behaviors can be revealed. It is desired that the smart meters report the house-
holds’ bills without revealing how the energy was used [Molina-Markham et al. 2010], as
it could breach excessive information that allows the energy provider, or an adversary,
to discover, for example, if any household watched TV on a given night. Neverthe-
less, smart meter data collection may be beneficial to the costumers since the provider
may learn from collective energy use to distribute and generate energy more efficiently.
Providers also need to periodically get the actual energy consumption of each house to bill
the customer. Therefore our approach does not interfere in the consumption information
collected by providers to charge costumers. Instead, we apply our data privacy techniques
to the streaming collection of energy use for data analysis by energy providers.

Edge Computing is a computing paradigm that brings the data processing closer
to where it is needed, at the edge of the network. In other words, instead of processing
data inside the cloud, all data processing is done locally at the edge [Shi et al. 2016]. In
smart home scenarios, edge computing can be seen in a home appliance that gathers and
process the data coming from all connected smart devices within the house. All data
gathered are processed through a sanitation algorithm before being sent to the entity of
interest. This flow is strictly recommended, as it does not depend on a hypothetical trusted
entity responsible for treating the raw data. In section 4, the home appliance will be called
edgeBox. These two terms are used interchangeably in this paper.

2.2. Differential Privacy

Differential Privacy (DP) is a mathematical model proposed by Dwork [Dwork 2006],
which gives strong privacy guarantees. It ensures that the probability of any output ofM
does not vary significantly, by a threshold of ε, independent of the presence or absence
of any individual in the data set [Dwork et al. 2014] that is, the addition or removal of an
individual will not substantially affect the outcome of any statistical analysis performed
in the data set [Domingo-Ferrer et al. 2016]. Thus an adversary should not be able to



learn anything about a specific individual that he could not have learned without access
to the data set. Differential Privacy is defined as follows:

Definition 1. A randomized algorithm (mechanism)M, gives ε-Differential Privacy (ε-
DP) if for all data sets D1 and D2, differing on at most one individual, and all S ⊆
Range(M),

Pr[M(D1) ∈ S]
Pr[M(D2) ∈ S]

≤ eε,

where the probability is taken over the randomness ofM.

There are several ways to achieve DP [Dwork 2008], that is, making the outputs of
two different neighboring databases (differing on at most one individual) computationally
indistinguishable, as stated in Definition 1. It is often based on the addition of noise to
the real answer. A mechanismM which satisfies ε-Differential Privacy is independent of
the computational power or even external information acquired by an adversary, offering
then a very powerful and strong privacy guarantee.

This model was initially proposed to work in an interactive way
[Dwork et al. 2006], responding privately to statistical queries in a database. In
this interactive scenario, a trusted entity that has access to the raw data is necessary.
However, in more recent work, such as [Erlingsson et al. 2014, Wang et al. 2017], there
has been significant interest in the local setting of this model, known as Local Differential
Privacy (LDP), where the randomization process is done locally by the user to ensure the
definition of DP.

Definition 2. A randomized algorithm (mechanism) M, gives ε-Local Differential Pri-
vacy (ε-LDP) if for all pairs of values v1 and v2 and all S ⊆ Range(M),

Pr[M(v1) ∈ S]
Pr[M(v2) ∈ S]

≤ eε,

where the probability is taken over the randomness ofM.

Notice that LDP is a particular case of DP where the inputs of M are values,
instead of data sets. Therefore, two neighboring inputs are two possible values, in-
stead of data sets differing on at most one individual. LDP mechanisms, also known
as protocols, are often based on the Randomized Response (RR) process [Warner 1965],
which was formerly proposed in the context of surveys. RR has as objective to pro-
vide plausible deniability to questions that may harm participants in a survey. RR was
later proved to guarantee the definition of ε-LDP [Dwork et al. 2014] and has been used
as a foundation for almost every protocol in the context of Local Differential Privacy
[Erlingsson et al. 2014, Wang et al. 2017].

3. Related Work
The authors of [Molina-Markham et al. 2010] tackle the problem of privately charging en-
ergy consumption. In addition to proposing a statistical procedure capable of identifying
house activities in fine-grained measurements, showing that there must be a meticulous



privacy procedure to make use of smart meter data, they describe a protocol that allows
smart meters to report a bill without revealing how the energy was used. The procedure
uses cryptography and zero-knowledge proof to guarantee that the company will not have
access to the information from which house comes a given data, even though the com-
pany will be able to charge for the energy used. A downside of this work is that the
server still has access to what they call blinded data, which consists of the data from all
houses with the identification removed, and this is not enough for guaranteeing privacy
[Sweeney 2002].

The work [Ács and Castelluccia 2011] uses differential privacy to deal with the
problem of using consumption data to learn privately about users. The approach is based
on the Laplace Mechanism, which adds a noise sampled from a Laplace distribution to
the result of a numerical query. The authors propose a Distributed Laplace Mechanism
(DLM). The information they want to learn privately in this work is the consumption
summation of M houses in a given time. To do this, each house adds a small noise n to its
consumption c (which is not enough to guarantee DP) and encrypts the report r = c + n
in a way that the server is not able to decrypt a report alone, but it is able to decrypt the
summation of the reports. The server, then, has S =

∑M
h=1 ch + nh =

∑M
h=1 ch + N ,

where N is a noise that follows the Laplace distribution as previously presented, i.e.,
that is enough to guarantee DP. This strategy is useful for learning the summation of
consumption, but cannot be used to learn more information than that. This strategy also
does not consider the infinite property of IoT data, focusing on finding a solution for a
given timestamp.

IoT data often appear as data streams. Works that deal with the problem of guar-
anteeing privacy in the context of streaming data deal with additional complexity because
streaming data is potentially unbounded and continuously generated at rapid rates. The
work [Leal et al. 2018] proposes a strategy to estimate the sensitivity and also presents
a microaggregation algorithm that is capable of enhancing the utility for publishing dif-
ferentially private data using the Laplace Mechanism in the context of streaming data.
This work depends on a trusted third party entity to achieve its privacy, which may not be
acceptable in the context of IoT data and smart homes.

The work [Cao and Yoshikawa 2015] uses differential privacy to publish statistics
about the streaming of trajectories. The objective is to publish, for a defined set of possible
locations, how many people are in each location at a given time. As in the context of
streaming data the order in which the data appears is unpredictable, it is not possible to
know beforehand in which timestamps a given trajectory will appear. It is also not possible
to know how long a trajectory can least. To overcome these difficulties, the authors use
the concept of a l-trajectory, i.e., a trajectory of size l. They show that it is possible to
guarantee that a l-trajectory is ε-DP. On the other hand, this work, besides depending on
a third party trusted entity, need to know beforehand the set of locations, which may not
be reasonable in real-world scenarios. The solution also does not consider the infinite
property of IoT data, using a windowed strategy to simplify the problem.

The work [Erlingsson et al. 2014] proposes RAPPOR, a strategy to achieve ε-LDP
even when a client reports infinite times over a true value. In order to guarantee ε-LDP,
even if a value is reported multiple times, it uses two rounds of randomization. Sup-
pose a client wants to report a value v. It first encodes v into a Bloom Filter B, which



is then randomized using a protocol that guarantees that the result B′ is ε∞-LDP. Then,
B′ is memoized and reused every time the value v needs to be reported. The first ran-
domization process, known as Permanent Randomization, is responsible for guaranteeing
what the authors call Longitudinal Privacy. After the memoization step,B′ is randomized
again, using another protocol that guarantees ε1-LDP every time the value v is reported.
This step is called Instantaneous Randomization. However, the authors show that even if
multiple Instantaneous Randomization steps are executed, an attacker could learn at most
the true value of B′, which itself is also protected by an ε∞-LDP mechanism. The authors
do not argue how the protocols used for the Permanent and Instantaneous Randomization
were chosen.

In this paper, we present ProTECting, a strategy that makes use of the Edge Com-
puting paradigm to apply Local Differential Privacy (LDP) in the context of IoT data.
ProTECting uses two rounds of randomization and memoization to guarantee that even if
a user reports infinite values, their responses are still protected by the concept o LDP. In
order to obtain a better utility level, ProTECting uses optimized protocols. The strategy
will be detailed in Section 4.

4. ProTECting

Our approach, called ProTECting (Privacy for IoT and Edge Computing), was thought
to work over an edgeOS, i.e., a specialized operating system that runs in an edge gateway,
from now on called edgeBox, and manages smart devices. In this paper, we have omitted
the full architecture of an edgeOS, but [Shi et al. 2016] can be checked for more details.
For our proposal, what is important about an edgeOS is that there is a data abstraction
layer in it that gathers data produced by devices inside a house.

Our solution works between the data abstraction layer and all external communi-
cation to guarantee that all data that goes outside the house is private. A possible exception
for this is that for the Service Provider (SP) to be able to charge for the consumption, it
may need to have access to coarse-grained measurements. As shown in Section 3, there
are possible strategies to charge privately. Figure 1 shows the interactions between each
edgeBox and an SP that wants to learn privately with data generated by devices inside the
users’ houses. This figure shows the Privacy Gateway layer in which ProTECting runs
over.

In a recent work [Vidal et al. 2019], we have proposed a different strategy to guar-
antee ε-Local Differential Privacy in the context of Smart Homes, which uses the same
architecture shown in Figure 1. In this previous work, we use a window-based strategy
to simplify the problem in order to be able to achieve ε-LDP. The given guarantee is that
every data generated inside a sliding window of a defined size of w is ε-LDP. As this
strategy uses LDP, it does not depend on a trusted third party entity, which is close to
the goal of the present paper. On the other side, the window-based strategy used may
not be reasonable in real-world scenarios, since it does not consider the infinite property
of streaming data, which is essential in Smart Homes scenarios. To attack this problem,
we propose ProTECting, which considers the important property of infinite data streams
and focus on utility. Notice that ProTECting and [Vidal et al. 2019] could not be directly
compared, since the latter guarantees ε-LDP for a defined sliding window, while the for-
mer guarantees it for infinite reports, but since they are inserted in the same context, we



Figure 1. Communication between the Service Provider and the houses

present some of the results achieved in the previous work in Section 5.

ProTECting is built over the idea of using two randomization processes proposed
in [Erlingsson et al. 2014] in order to achieve privacy over time, and has as the primary
goal to improve utility. In order to obtain better utility levels, ProTECting uses optimized
privacy protocols.

The authors of [Wang et al. 2017] proposes a novel protocol, called Optimized
Unary Encoding (OUE), which optimizes the parameters p and q used in the Unary
Encoding (UE) protocol having as objective to minimize the variance. The semantic of
these parameters will be explained later in this Section. The UE protocol consists of
transforming a value v into a bit array representation of it in which all bits are set to zero,
except for the one representing v which is set to one. The definition of UE can be found
in Definition 3.

Definition 3. UE(v, d) = B = [0, . . . , 1, . . . , 0], where B is a bit array of size d where
only the v-th position is 1.

The motivation for choosing the Unary Encoding protocol instead of encoding
it in a Bloom Filter is that in this work, we focus on utility, and the justification for
using Bloom Filters is to reduce communication cost at the cost of reducing accuracy
[Wang et al. 2017].

The randomization process performed in the Unary Encoding protocol consists in
bit-wise perturb the bit array B in the following manner:

B′[i] = 1

{
with probability p, if B[i] = 1

with probability q, if B[i] = 0

Therefore, we can conclude that the conditional probabilities of B′[i] given B[i]
are:



Pr[B′[i]|B[i]] =


Pr[B′[i] = 1|B[i] = 1] = p

Pr[B′[i] = 1|B[i] = 0] = q

Pr[B′[i] = 0|B[i] = 1] = 1− Pr[B′[i] = 1|B[i] = 1] = 1− p
Pr[B′[i] = 0|B[i] = 0] = 1− Pr[B′[i] = 1|B[i] = 0] = 1− q

As shown in [Wang et al. 2017], to minimize the variance of the UE protocol,
while still guaranteeing the ε-LDP property, the values of p and q should be: p = 0.5
and q = 1

eε+1
. The proof that the Unary Encode protocol satisfies ε-LDP is known in

the literature and can be found in [Erlingsson et al. 2014, Wang et al. 2017]. The Opti-
mized Unary Encoding protocol, which consists of the UE with the probabilities set to
the previously mentioned values, is a special case of UE and, therefore, follows the same
proof.

As presented in Definition 3, the UE strategy can be directly applied for integer
values, which may not be true in the context of IoT, since IoT data is likely to be composed
of real numbers. In order to work around this issue, we use a discrete representation of the
values, which can be seen as a histogram representation of them. For having this discrete
representation, it is necessary to have a defined number of bins (d) and a range of values
(min value,max value). Therefore, Hist UE shown in Line 3 of Algorithm 1 outputs
a bit-array of size d with the corresponding bin of value v set to one. The range values are
supposed to be known in advance, and the choice of (d) could impact the utility obtained.

Algorithm 1: PROTECTING

Input: v, ε1,min value,max value, d
Output: S

1 p← 0.5
2 q ← 1

eε1+1

3 B[v]← Hist UE(v,min value,max value, d)
4 if B′[v] == ∅ then
5 PERMANENT-RANDOMIZATION(B[v], p, q)

6 S ← INSTANTANEOUS-RANDOMIZATION(B′[v], p, q)
7 return S

The Algorithm 1 is performed for each value that needs to be sent to a cloud server,
and is detailed as follows. It receives as input a value v, the privacy budget ε1, the range
of values min value, max value and the number of bins d used in the UE representation.
The output S is an anonymized bit-array of v. Lines 1-2 sets the optimal probability
values of p and q regarding ε1 based on [Wang et al. 2017]. Line 3 converts the input
value v to its UE histogram representation. Line 4 checks if already exist the anonymized
memoized versionB′[v] ofB[v], i.e., the same value v has previously been reported for the
first time, otherwise B′[v] must be generated once through the Permanent Randomization
step. Finally, Line 6 calculates the output S through the Instantaneous Randomization
step, which uses the memoized bit-array B′, and returns it in Line 7.



Notice that the Permanent Randomization step is ε1-LDP because it uses the OUE
protocol. Next, we show that the Instantaneous Randomization (IR) step guarantees ε2-
LDP.
Theorem 1 (Instantaneous Randomization step satisfies ε2- DP).

Proof. To prove that the IR step is ε2-LDP, we need the conditional probabilities of S[i]
givenB[i]. Notice that to calculate these probabilities, we need to consider the Permanent
Randomization step and its conditional probabilities given B. Those probabilities were
presented earlier in this section. We also need Pr[S[i]|B′[i], which is given by:

Pr[S[i]|B′[i]] =


Pr[S[i] = 1|B′[i] = 1] = p

Pr[S[i] = 1|B′[i] = 0] = q

Pr[S[i] = 0|B′[i] = 1] = 1− Pr[S[i] = 1|B[i] = 1] = 1− p
Pr[S[i] = 0|B′[i] = 0] = 1− Pr[S[i] = 1|B[i] = 0] = 1− q

Therefore, Pr[S[i]|B[i]] is calculated as follows:

Pr[S[i] = 1|B[i] = 1] = Pr[B′[i] = 1|B[i] = 1] ∗ Pr[S[i] = 1|B′[i] = 1]+ (1)
Pr[B′[i] = 0|B[i] = 1] ∗ Pr[S[i] = 1|B′[i] = 0]

Pr[S[i] = 1|B[i] = 0] = P [B′[i] = 0|B[i] = 0] ∗ P [S[i] = 1|B′[i] = 0]+ (2)
P [B′[i] = 1|B[i] = 0] ∗ P [S[i] = 1|B′[i] = 1]

Pr[S[i] = 0|B[i] = 1] = 1− Pr[S[i] = 1|B[i] = 1] (3)

Pr[S[i] = 0|B[i] = 0] = 1− Pr[S[i] = 1|B[i] = 0] (4)

Let p∗ = Pr[S[i] = 1|B[i] = 1] and q∗ = Pr[S[i] = 1|B[i] = 0]. In or-
der to prove that this protocol satisfies Local Differential Privacy, we need to show that
Pr[S=s|B=B1]
Pr[S=s|B=B2]

≤ eε2 . This is shown as follows:

Pr[S = s|B = B1]

Pr[S = s|B = B2]
=

∏d
i=1 Pr[s[i]|B1[i]]∏d
i=1 Pr[s[i]|B2[i]]

(5)

≤ Pr[s[v1] = 1|B1[v1] = 1]Pr[s[v2] = 0|B1[v2] = 0]

Pr[s[v1] = 1|B2[v1] = 0]Pr[s[v2] = 0|B2[v2] = 1]
(6)

=
p∗(1− q∗)
q∗(1− p∗)

= eε2 (7)



Equation 5 comes from the fact that each bit in S is perturbed independently.

The bit arraysB1 andB2 come from the real values v1 and v2, respectively. Notice
that these two arrays differ only in positions v1 and v2. Keeping the positions v1 and v2 of
S as one and zero, respectively, maximizes the ratio in Equation 6.

Finally, Equation 7 comes from the probabilities presented in Equation 1-4.

Observe that the Permanent and the Instantaneous Randomization steps both use
the Optimized Unary Encoding protocol, having as the difference the input bit array,
which gives to each protocol a different level o privacy (ε). Notice that ε2 is limited
by ε1 since the IR uses as input the output of the PR.

The next and last step remains for the Service Provider to estimate the frequencies
of each bin using the randomized reports received. The unbiased estimation is obtained
using Equation 9, which was shown in [Wang et al. 2017] to yield an unbiased estimation.
The frequency estimation will be better explained later in Section 5.

5. Experimental Results
This section describes the experiments conducted to evaluate the accuracy of ProTECting
in terms of utility. We have considered the Histogram Intersection (Equation 8) between
the real histogram and its privatized version as the utility metric.

Hist Intersec(Hist, Unb Hist) =

∑d
i=1min(Hist[i], Unb Hist[i])∑d

i=1 Unb Hist[i]
(8)

Section 5.1 shows the experimental setup and detailed information about the data
set used. Section 5.2 assesses the data utility of ProTECting by quantifying the impact
of the ε parameter and, then, compares the obtained results with RAPPOR, the baseline.
It also presents results for the window based strategy proposed in [Vidal et al. 2019]. As
mentioned in Section 4, this strategy cannot be directly compared with the one proposed
in this paper, since it presents privacy guarantees for a simplified problem. Therefore, its
results are presented just as a guideline.

5.1. Experimental Setup

Our approach, ProTECting, the baseline, RAPPOR, and the window-based strategy were
all implemented in Python 3.6, running on a desktop machine with Ubuntu 18.04 OS,
Intel Core i5 (3.2 GHz) processor and 16GB of RAM. We have used real sensor (smart
meters) data that consists of energy consumption readings from 5,567 London households
generated between 2011 and 2014 as part of the Low Carbon London project, resulting in
167 million rows. We have used the attribute “KWH/hh (per half hour)” to report values.

5.2. Utility Evaluation

As stated above, we have adopted the histogram intersection as the metric to evaluate
our proposal, since it is a suitable strategy to understand how close the original data is
from its private version. This metric is also robust to negative frequencies due to the



use of the Unbiased Estimator (Equation 9), which is used to decode, i.e., estimate, the
frequencies from the reported values. In this estimator, Hist′[i] denotes the frequency
of the ith bin from the reported values within an anonymization protocol. R is the total
number of reports, given by N ∗ k, and p∗ and q∗ are the probabilities in function of ε1,
as previously defined in Section 4. Thus, as we are interested in frequencies of values,
negative frequencies do not make sense and, then, are set to zero, not affecting the utility
measure.

Unb Hist[i] = max(0,
Hist′[i]−R ∗ q∗

p∗ − q∗
) (9)

In order to better evaluate our proposal, we have sampled random rows from the
data set to simulate a fixed number of N = 1, 000 houses sending data collected from
their edgeBoxes. We stated the number of reports k that each house sends as being 1,000.
This value was arbitrarily chosen given that this work is inserted in the context of infinite
streams, and, in real-world applications, each report may be sent hourly, weekly, monthly,
or so on. Then, 1,000 reports is a reasonable number to simulate data streaming over
Smart Homes.

The number of bins d used to define the size of the UE histogram, as shown in
Definition 3, was fixed in 100. Setting a very low value for d ruins the quality of the
data since almost all values will be represented by the same bit in the UE representation.
Oppositely, a very high value for d excessively fragments the data, as the value represen-
tation using UE will become too sparse, being necessary massive quantities of reports to
obtain useful information. Hence, choosing the proper value for d may be a challenging
task. At last, the range of the reported values is comprised between zero and 10.76. This
information is required to properly define the range of each bin from the UE histogram
representation.

Figure 2 compares our approach, ProTECting, and the baseline, RAPPOR, in
terms of utility by varying the privacy budget parameter ε1. Since the IR step uses the
same parameters p and q used in the PR step, the value of ε2 of a report is defined in terms
of ε1 and can be calculated by Equation 7 in the proof of Theorem 1. The values of ε2
for each ε1 are presented in Table 1. Figure 2 also shows the utility for the window-based
strategy, for a window of size 10.

ε1 ε2
1.00 0.23
2.00 0.82
3.00 1.63
4.00 2.55
5.00 3.51

Table 1. Value of ε2 in terms of ε1.

As can be observed, the histogram intersection obtained by ProTECting performed
better utility levels in comparison to RAPPOR for all ε1 values, meaning that the frequen-
cies estimated through the unbiased estimator are closer to the real frequencies. This is
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Figure 2. Histogram intersection varying ε1 parameter.

expected since our approach makes use of an optimized protocol, the OUE, differently
from RAPPOR. The OUE intuition is to maintain the maximum amount of bits in the
UE representation of an input value unchanged after randomization steps. Since we are
adopting the UE representation, where only one bit is set to one and the remaining d− 1
bits are set to zero, the OUE uses probability values of p and q that maximizes the number
of bits reported as zero that was initially zero.

Notice that the histogram intersection of both approaches increases as the ε1 pa-
rameter increases. This is the expected behavior of the DP and LDP models. Higher
values of ε1 result in higher utility levels and, oppositely, lower values of ε1 results in
higher levels of privacy. Therefore, choosing the proper value of ε1 may be a challeng-
ing task. Observe that as the value of ε1 becomes higher, ProTECting’s utility comes
closer to the window-based strategy, which means that even though the problem solved
in this paper is more complex than in the window-based one, it can still achieve the same
level of utility as our guideline, while giving stronger privacy guarantees, since it does
not depend on the window size. Remember that ProTECting would still hold the ε-LDP
guarantee even when infinite reports are sent, while the window-based strategy only holds
its guarantee for a defined number of reports.

6. Conclusion
This paper presented ProTECting, a practical solution for solving the privacy issue in
Smart Homes, taking into consideration the infinite property of IoT data. ProTECting
makes use of the Edge Computing paradigm and of the concept of Local Differential
Privacy. It runs in the Privacy Gateway, over the Data Abstraction layer, and uses two
differentially private optimized protocols to give a formal privacy guarantee even when
infinite reports are sent by a user while keeping a good utility level. ProTECting achieves
better utility than the baseline and, as the available budget increases, becomes closer to
our guideline, which is the window-based strategy. As future work, we could mention
the evaluation of ProTECting using different metrics and experimentation with other real-
world sensor data.
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