

Architecture for Virtualization and Collaboration in Edge

Computing: an implementation based on FIWARE building

blocks

Marcelo P. Alves1, Flavia C. Delicato2, Igor L. Santos3, Paulo F. Pires2

1Programa de Pós-graduação em Informática (PPGI) – Universidade Federal do Rio de

Janeiro (UFRJ) – Rio de Janeiro – Brazil

2Instituto de Computação – Universidade Federal Fluminense (UFF) – Niterói – RJ –

Brazil

3Programa de Pós-graduação em Engenharia de Produção e Sistemas (PPPRO) –

CEFET-RJ – Rio de Janeiro – RJ – Brazil.

{mpitanga,fdelicato,paulo.f.pires}@gmail.com, igor.santos@cefet-rj.br

Abstract. Edge Computing is a novel paradigm that allows moving the

computation closer to the end-users and/or data sources. In this paper, we

present a three-tier architecture for virtualization and collaboration of Virtual

Nodes that leverages the Edge tier to meet those emerging IoT applications that

demand requirements such as low latency, geo-localization, and energy

efficiency. Besides the Edge tier, our implementation is based on the mix of

lightweight virtualization and microservices using the building blocks from the

FIWARE platform to interact with the physical environment. Furthermore, we

presented two experiments to assess our architecture under severe and realistic

conditions, regarding the network latency and fault-tolerance.

1. Introduction

Despite the recent advances that have made IoT a reality, IoT devices typically have

limited capability of resources and present some drawbacks regarding reliability,

performance, security, and privacy. Thus, as the number of interconnected devices grows

in a huge pace, several challenges arise regarding the infrastructure for supporting IoT

applications. In this context, virtualized infrastructures such as Cloud Computing

(Armbrust et al., 2010), Cloud of Things (Cavalcante et al., 2016), Cloud of Sensors

(Santos et al., 2015), Fog/Edge Computing (Bonomi et al., 2014), and most recently Edge

Mesh (Sahni et al., 2017) have emerged as solutions for supporting IoT applications

regarding the storing, processing, and distribution of sensing data.

 In our previous work (Alves et al., 2019), we advanced the state-of-the-art in Edge

computing proposing LW-CoEdge, a lightweight virtualization model and collaboration

process for edge computing. LW-CoEdge encompasses a virtualization model for Edge

computing based on a novel concept of Virtual Node (VN). LW-CoEdge is based on the

mix of two technology assets: (i) lightweight virtualization approach (Morabito et al.,

2018) and (ii) microservices (Thönes, 2015). These two technologies are adopted to

design the software that concretizes our virtualization model as lightweight components

thereby facilitating their packaging, distribution and managing on the edge nodes.

Moreover, we leveraged our lightweight virtualization model with a flat P2P

collaboration process to allow both the data sharing and the distributed resource

management at the edge of the network. The data sharing allows the VN to share fresh

data with its neighboring VN. The VN can be located at the same edge node or at the

neighbor edge node. This approach improves energy and bandwidth consumption by

avoiding neighboring virtual nodes performing redundant access to the sensor device to

obtain the same data with a valid freshness (Santos et al., 2019). We also proposed

heuristic-based algorithms enhanced with the flat P2P collaboration to perform the

distributed resource management (resource allocation and resource provisioning) of

virtual nodes (VN) and the data sharing between VNs. LW-CoEdge principles and design

were validated and an initial evaluation showed that it succeeded in meeting its goals.

 Here in this paper, the goal is to present the implementation of LW-CoEdge based

on building blocks from the FIWARE platform. FIWARE is widely used by the academy

and industry to build IoT applications. It provides building blocks, called Generic

Enablers (GEs) (FIWARE GE, 2019), which are components of general purpose and

available to be used at the Cloud and at the Edge tiers. In addition, GEs use the FIWARE

NGSI protocol, a simple yet powerful open and RESTful API that facilitates dealing with

heterogeneity and interoperability issues. Therefore, FIWARE GEs reduce the effort to

design and integrate our lightweight components to interact with the physical

environment (IoT devices). Besides describing the implemented architecture in detail, in

this paper we present new experiments to assess LW-CoEdge under more severe and

realistic conditions than it was performed in our previous work (Alves et al., 2019),

regarding the network and execution context. Network latency is a critical factor in

defining the success of a collaborative approach for CoT systems in order to meet

application requests, particularly those related to time critical applications. Thus, we

assessed our proposal in terms of the impact that a network with high communication

latency values causes in our distributed resource management with the collaboration

process enabled. In addition, we assessed LW-CoEdge regarding fault tolerance. Fault

tolerance was achieved through the capability of collaboration/data sharing among the

edge nodes. Thus, our CoT system can deliver a continuous service to applications despite

fails in some edge nodes and/or end devices.

 The remainder of this paper is organized as follows. Section 2 presents related

work. Section 3 presents our implementation architecture for the virtualization model and

collaboration process. Sections 4 and 5 describe the evaluation methodology and results.

Section 6 presents final remarks and future work.

2. Related work

Madria et al. (2014) proposed a centralized virtualization model, which encompasses

Virtual Sensors and provides sensing as a service for the users (SaaS). Unlike Madria et

al. (2014), we implement a decentralized virtualization model tailored to meet

requirements of emergent IoT applications such as low latency and location-awareness.

 Santos et al. (2019) extended their original design of Olympus (Santos et al., 2015)

to create a three-tier CoS infrastructure by including the edge tier to provision Virtual

Nodes (VN) at the edge of the network. Our proposal differs from Olympus in two

essential aspects. First, we provide a process of collaboration between the VNs to actively

share fresh data with neighboring VNs. Thus, we avoid re-reading the sensors to get the

same data, thereby improving response time, latency, bandwidth, and sensor lifespan.

Second, Olympus defines the VN as a program capable of performing a set of information

fusion techniques based on application requirements. Our model provides predefined

types of VNs representing each datatype provided to serve the application requests. This

is important to favor the collaboration process among virtual nodes.

 Shen et al. (2019) propose an information-centric collaborative Fog (ICCF)

platform. In their work, a new in-network self-learning algorithm to run on Fog nodes is

presented. By using a Fog-to-Fog connection, the Fog nodes communicate with each

other to collect only the data required from their neighbor nodes. Moreover, the authors

present a novel naming schema for sensor data content by utilizing ICCF characteristics

and aiming to reduce the data communication load and delay that occur in IoT networks.

Our proposal has a point of convergence with this work concerning the collaboration

between fog/edge nodes for data sharing. However, it differs in one aspect. We provide a

virtualization model with fully distributed resource management (allocation and

provisioning) of virtual nodes (VN) and data sharing at the edge of the network. In our

data sharing mechanism, the VN only connects with its neighbor VNs that provide the

same data semantics. Unlike ICCF where a node requests data to its neighbors, our data

sharing approach is active, i.e., the VNs are actively sending fresh data to their neighbors.

 Wang et al. (2017) present the Edge Node Resource Management (ENORM), a

framework for handling the application requests and performing the workload offloading

from the Cloud to running at the Edge network. ENORM addresses the resource

management problem through a provisioning and deployment mechanism to integrate an

edge node with a cloud server, and an auto-scaling tool to dynamically manage edge

resources. Although we provide a resource management approach inspired by ENORM,

our proposal is fully decentralized at the edge network. Such feature enables the edge

nodes to find or provision the best VNs for providing either raw or aggregated sensing

data, or performing actuation in response to the user application requests arriving from

the cloud or the edge of the network.

3. LW-CoEdge architecture

In this section, we describe the software components that encompass the proposed

architecture to concretize the concepts behind the LW-CoEdge model (Alves et al., 2019).

 In LW-CoEdge, the Virtual Node (VN) is the core computational unit of our

virtualization model to provide sensing data or perform actuation in response to the

application requests. We leverage the Edge tier for the provision of VNs closer to the data

source (end devices). Moreover, LW-CoEdge includes a flat P2P collaboration process

entirely distributed at the edge tier. This process is used in two activities of the CoT

infrastructure operation. First, in the data sharing, that allows a VN to actively share its

fresh data with neighboring VNs. Second, in the distributed resource management that

provides for each edge node the capability of decision-making to engage neighboring

edge nodes to allocate or provision VNs whenever it is necessary.

 Figure 1 illustrates the LWCoEdge components, the third-party components, their

services, and relationships, as well as the tier in which they are deployed considering the

Cloud, Edge, and Sensor tier of our 3-tier architecture. Our architecture builds on two

technology assets: lightweight virtualization and microservices. Lightweight

virtualization (Morabito et al., 2018) allows packaging and deploying our components in

containers. Furthermore, we use the microservices concepts (Thönes, 2015) to develop

the components of the proposed architecture. Hence, they become lightweight-

components since they implement a unique responsibility and are appropriate to be

packaged in lightweight-images. Such a mix of technology assets is suitable to run on

resource-constrained devices.

 As third-party components, we adopted FIWARE (FIWARE GE, 2019).

Following the FIWARE programing model, all interactions with GEs and between GEs

use the FIWARE NGSI protocol. In LW-CoEdge, we used the GE Device Management

(FIWARE GE, 2019) and GE IoT Agent (FIWARE GE, 2019) to perform tasks related

to the physical environment, such as getting sensing data, performing actuation, and

managing and communicating with the end devices. In addition, the GE Orion Broker

(FIWARE GE, 2019) and the GE Short Time Historic (FIWARE GE, 2019) from

FIWARE Data/Context Management are used to enable the data persistence.

Figure 1. Architectural model

 During the boot of the edge device, except the virtual node container, all the other

components of the architecture are initialized. During the boot, the EdgeNodeManager

component loads the basic settings of the edge device and their neighbors and makes these

settings available to other components through some APIs. Moreover, it also sends these

settings to the Orion Broker at the Cloud tier to be used by AppMgr. Furthermore, the

GE IoTAgent begins to receive observations (or raw sensing data) from the End device

tier and sends them to the GE Orion Broker at the Edge tier.

 Following the strategy behind our virtualization model, at the time an application

request arrives in the system via an entry-point (at the Cloud or Edge tier), the resource

allocator component allocates a VN to meet such a request. As the VN receives a new

request to process, it can either interact with FIWARE GEs to get fresh data (raw or

processed), whenever the last data served is not valid (above a predefined data freshness

threshold) or perform actuation on the physical environment. Moreover, whenever the

VN has fresh data, it invokes the P2PDataSharing to share the new data with its neighbor

VNs. At the end, the VN sends the processing result to the request issuer.

 It is important to notice that, since in our architecture the components are

microservices packaged in lightweight images, we assume that each edge node already

has the container images necessary to run the VN to meet the respective datatype. In this

way, we avoid incurring in any network overhead and save bandwidth by not transferring

container images between edge nodes when the resource provisioning needs to provision

a new VN. In the next section, we describe the behavior of each building block, their

services, and the relationship among them.

3.1. The Building Blocks, their Services, and Relationships

In our architecture, the cloud is used to host and run GE Orion Broker and AppMgr. GE

Orion Broker (FIWARE GE, 2019) is the reference implementation of the

Publish/Subscribe Context Broker in charge of all data management in LW-CoEdge. Its

data persistence mechanism uses the MongoDB database (https://www.mongodb.com/).

MongoDB is an open-source document-oriented and distributed database (NoSQL) built

for the cloud era, and ideal for storing distinct data structures from several sources. This

GE provides an interface containing services to manage the lifecycle and distribute

context information (e.g., temperature, presence). AppMgr is the component in charge

of providing management services, discovering of datatypes and service to application

submit their requests. It presents both a cloud and an edge version. The AppMgr cloud

version has two essential functions. The first allows discovering and getting the list of the

available datatype descriptors in the global repository. The second allows the applications

to submit requests to the CoT system.

 Regarding the Edge tier, we can divide it into main groups of components, which

are: Data Management, Resource Management, Collaboration, Catalog Management,

Virtual Node, Device Management and Infrastructure of communication. We also provide

the components EdgeNodeManager, Monitor, NeighborhoodGen, VNInstanceCache and

AppMgr edge version. Data Management group encompasses the GE Orion Broker and

FIWARE Short Time Historic (GE STH-Comet). GE Orion Broker at the edge network

has two goals. The first goal is to serve as the repository for storing datatype descriptors.

The second goal is to store the raw sensing data from sensors. GE STH-Comet (FIWARE

GE, 2019) component enables raw historical data in our architecture at the edge network.

It provides a set of services through NGSI interface to save, retrieve and remove historical

context data and aggregated time series information regarding the evolution in time of

context data registered in the GE Orion Broker.

 EdgeNodeManager oversees the provision of essential services to support the

execution of other components such as ResourceProvisioner, P2PCollaboration, and LW-

CoEdgeMgr through the IEdgeMgr interface. These services are responsible for

performing the following tasks: (i) managing the virtual node lifecycle (container's start

and stop), (ii) configuring the edge node settings and its neighbors, (iii) scaling (up and

down) containers, and (iv) providing the minimum resources required to run each VN

component. The settings regarding the neighborhood are generated using the

NeighborhoodGen component. Moreover, EdgeNodeManager interacts with the

CatalogMgr using the IVNCat interface to get the details about the datatype to start the

container. Also, it interacts with the GE Orion Broker at the cloud using the NGSI

interface to register the edge node settings (e.g., hostname, IP, location, etc.).

 AppMgr component deployed in the edge tier (edge version) has two essential

functions. The first function allows discovering and getting the list of the available

datatype descriptors in the local repository. The second function allows the applications

to submit their requests to the LW-CoEdge through the edge node.

 Collaboration group encompasses two components namely P2PCollaboration and

P2PDataSharing. P2PCollaboration is the component in charge of implementing the

algorithm (Alves et al., 2019, pg. 27) to enable the collaboration between edge nodes. It

provides the P2Prov interface composed of two services. The first service is responsible

for receiving the request forwarded by the resource provisioning component and then

performs two steps: (i) finding a neighbor Edge Node with the best resources for running

the VN, and (ii) sending the request to be served by the neighbor node. The second service

is used to register new VNs to perform the data sharing by invoking the appropriate VN

through INeighbor. Moreover, the P2PCollaboration component interacts with

EdgeNodeManager through the IEdgeMgr interface to get the neighboring nodes as well

as the needed resources to instantiate and run a VN container. P2PCollaboration uses

these set of information to choose the best neighboring node to provide a VN. The

P2PDataSharing component implements the algorithm (Alves et al., 2019, pg. 29) to

execute the data sharing among VNs. This service is provided through the IShare interface

and a VN invokes it to share fresh data with its neighbors.

 Resource Management group encompasses two components namely

ResourceAllocator and ResourceProvisioner. ResourceAllocator (RA) is the component

in charge of implementing the algorithm (Alves et al., 2019, pg. 24) responsible for

providing an instance of the Virtual Node (VN) to meet each application request

submitted by the AppMgr component (both at cloud and edge). Initially, RA interacts

with the VNInstanceCache component to find a VN matching the application request

using the search method from the ISearch interface. Then, if there is an instance of the

VN, and the container has available resources, RA forwards the request to process in it.

When it is not possible to find a VN, the RA invokes the ResourceProvisioner.

 ResourceProvisioner (RP) is the component in charge of implementing the

algorithm (Alves et al., 2019, pg. 25) for the provision of a new VN instance using the

provisioning service through the IProvisioning interface. This service executes essential

functions described as follows. The VN container deployment is the first function to

execute. To fulfill deploy, RP interacts with EdgeNodeManager through the IEdgeMgr

interface to verify if the edge node has enough resources for provisioning a new VN, and

then performs the deployment. RP then registers the new VN instance in the pool using

the register method provided by the VNInstanceCache component through the

IPersistence interface. In the end, RP interacts with P2PCollaboration through the

P2Prov interface to register the new VN for collaboration (data sharing). Whenever the

RP component is unable to provision a new VN instance, it forwards the application

request to the P2PCollaboration using a service available in P2Prov. The service finds a

neighboring edge node capable of hosting this VN. Furthermore, RP interacts with

EdgeNodeManager to use the scale-up service when the edge node has enough resources

to increase the performance of a running container to meet more requests.

 Virtual Node group encompasses the three types of VN designed to handle the

application requests, namely VNSensing, VNDatahandling and VNActuation. These

three types of VNs expose two interfaces: INeighbor and IRequest. The INeighbor is used

by P2PCollaboration to register new VN instances for collaboration. The IRequest

interface is used by the ResourceAllocatior component to forward the application

request for processing. Meanwhile, the VN of the type VNSensing and VNDatahandling

interacts with the P2PDataSharing component through the IShare interface to send their

fresh data to the neighboring VNs. Moreover, they expose the IReceive interface to

receive the fresh data shared. Also, the VN operations are supported by engaging the

FIWARE GEs through NGSI interface and LW-CoEdge components. The interaction

among these components is described as follows.

 The VN type were defined keeping in mind the requirements and operating

models of most IoT applications. In this sense, we understood that the generic goals of

these applications will always be to obtain sensing data from the physical world (current

or historical), to receive notifications about events that occur in the physical world, or to

act on it. VNSensing interacts with the GEs to get recent or historical raw data from the

database maintained at the Edge tier or fresh data directly from the sensors (IoT devices).

The VN invokes the GE Orion Broker to get recent raw data or fresh data. Concerning

the historical data, it is obtained by invoking the GE STH-Comet. VNActuation interacts

with GE Device Management to send actuation commands to the physical device.

VNDatahandling interacts with LW-CoEdge DataHandling (DH) component using the

IEvents interface to provide value-added information. DH component abstracts the

complexity of the information processing executing queries through a Complex Event

Processing (CEP) engine (FIWARE GE, 2019).

 Device management and communication infrastructure group provides the

components GE Device Management, GE IoT Agent, and LW-CoEdgeMgr. They are

responsible for all interaction with the physical environment. GE Device Management

(DM) (FIWARE GE, 2019) is the component in charge of mediating the interaction of

LW-CoEdge components (Virtual Nodes and LW-CoEdgeMgr) and other GEs with the

physical environment through the GE IoT Agent component. GE IoT Agent (FIWARE

GE, 2019) is the component in charge of enabling the communication between LW-

CoEdge components and physical environment, handling both standard and proprietary

protocols. LW-CoEdgeMgr component is used by the Service Provider Manager (SPM)

to manage the physical devices, interacting with the DM component through the

administration services available in NGSI interface. Thus, the SPM submits payloads of

configurations to both create the services and register the end devices. Such

configurations allow devices to establish communication for sending sensing data (or

observations) to the system or performing actuation.

 Catalog Management group encompasses only the CatalogMgr. It is used to

manage and provide a datatype descriptor from the descriptor repository through three

services interfaces: IVNCat, IRegistry, and ICatalog. ICatalog contains the service used

to provide the list (either full or by specific geolocation) of descriptors. IVNCat contains

the service to get details about the datatype. Finally, IRegistry provides the services for

registering, updating, or removing a datatype descriptor from the repository.

 In this section, we described the LW-CoEdge architecture and the relationship

between its building blocks. Furthermore, to enable the operation between LW-CoEdge

and FIWARE, it is necessary to establish the relationship between their models. The

complete description of the models and relationship is found in https://bit.ly/3855aD4.

4. Evaluation

We adopted the Goal Question Metric (GQM) methodology (Basili, 1992) for planning

our evaluation. The goals, questions, and the derived metrics used in our work are

presented in Table 1. Goal G1 is to analyze LW-CoEdge, for the purpose of evaluating

its distributed resource management with the collaboration process enabled, with respect

to the impact caused by a network with high communication latency values, from the

viewpoint of the end-user. Goal G2 is to analyze LW-CoEdge, for the purpose of

evaluating its distributed resource management algorithms, concerning the fault tolerance

in relation to the physical end devices to meet application requests. From these two goals,

we derive the relevant questions described in Table 1. Table 2 shows a set of metrics that

are collected from our CoT system. To answer the question Q1, we classified application

requests within two groups: (a) request met, and (b) request not met. Our system considers

that a request is met whenever the CoT system provides the required datatype and the

Response Time Threshold (RTTh) desired by the application is satisfied. It is worth

noting that the system delivers the results to the request even if the application RTTh is

not met.

Table 1. Questions of GQM

Question (Q) Goal (G)

Q1 Does collaboration between virtual nodes help meeting requests within the

application-defined response time threshold?

G1

Q2 Does collaboration between virtual nodes help meeting requests even if

there is an end device failure?

G2

 Table 2. Summary of the metrics used to answer the questions

Metric (M) Description Question

M1 REQ_MET Number of requests met.

Q1 M2 REQ_NOT_MET Number of requests not met.

M3 TTS Total time spent to meet a given request

M4 R_ENDDEV Requests met using data obtained from end devices

Q2 M5 R_MEM_CACHE Requests met using data from Virtual Node memory cache

M6 R_TEMP_DB Requests met using data obtained from the local database

 For the purpose of assessing if the received requests are met, we used the metrics

REQ_MET (M1) and REQ_NOT_MET (M2) that measure the effectiveness of the

resource management (RM) algorithms to meet the application requests arriving in the

system. REQ_MET computes the number of requests which were properly met, while

REQ_NOT_MET records the number of requests which the RM algorithm was unable to

meet during a monitoring period.

 Total time spent (TTS) is the sum of the time periods (a) since receiving a request

to process at the same edge node, (b) to perform the collaboration (receiving the request,

finding a neighbor node, and forwarding the request to the neighbor node) if necessary,

and (c) communication to send the request to the neighbor node. The request is adequately

met when the datatype required is provided in the system, and the value of TTS to achieve

it is less than or equal to the application response time threshold.

 To answer question Q2, we assess the number of requests met using data of each

data-source. Thus, we selected the following metrics. R_ENDDEV (M4) records the

number of requests served using sensing data read directly from the end device.

R_MEM_CACHE (M5) records the number of requests served using sensing data

obtained from the VN cache. Lastly, R_TEMP_DB (M6) records the number of requests

served using sensing data collected from the local temporary database.

4.1. Proof-of-Concept Implementation

To achieve the defined evaluation goals, we used a Proof-of-Concept (PoC) that

concretizes the components of our three-tier architecture. This PoC was used in our

previous work (Alves et al., 2019, pg. 34), where further detail about it can be found. In

this section, we describe the initial setting values used in this current work to start the

environment before running the experiments. Initially, we need to set the hardware and

deploy all software necessary to run our CoT system. In Table 3, we summarized the most

significant hardware and software settings.

Table 3. Summary of parameters used in LW-CoEdge

Parameter Value

Virtual Machine software VMware

Operational system in VM CentOS 7 64-bit

Edge node (EN) hardware 2.3 GB RAM, 10 GB HD space and 2 CPUs model

i7-8550U of 1.80Ghz

Local network link capacity (Edge tier) 10/100Mbps

Container-based solution Docker

Java virtual machine Java VM 64-bits version “11.0.3 2019-04-16 LTS”

End device virtualization FIWARE figway components

(https://github.com/telefonicaid/fiware-figway)

Number of Edge nodes (EN) 5

Number of End devices 4

Delay for querying local database (FIWARE) (0,972±0,019s)

Virtual Node output data size 72 Bytes

Application request size 140 Bytes (average)

Sensing data size – (SDsize) – FIWARE 122 bytes ± 0.1191 KB

Time to feed the local database 30(seconds)

Maximum freshness 5 (seconds)

Communication latency between ENs Depends on the experiment

The average power consumption of devices 20w

 Next, with the edge nodes VMware configured, the following configuration files

should be deployed: (a) NeededResources, (b) Edgenode, (c) Catalog of datatype

descriptors, and (d) LW-CoEdge components ports. Item (b) should be changed for each

edge node mainly regarding the hostname, IP, and its neighborhood. Item (c) should be

changed depending on the sensors connected on the edge node. Examples of these file

configuration are available in https://bit.ly/2LryLwV.

 To execute the system, the components that encompass the architecture should be

packaged into Docker images and deployed for every Edge node. The script files to

generate the images are available in: https://bit.ly/2rVYzdN. Regarding the third-party

components (FIWARE) used, they are available in the FIWARE Catalogue (FIWARE

GE, 2019). More detail in https://bit.ly/2DRtwSU. In this current work, we considered

the same smart city/smart building application and the same desktop computer described

in our previous work (Alves et al., 2019, pg. 36) to run the new experiments.

5. Experiments and Results

In this section, we describe the scenario of experiments, along with the analysis of the

achieved results. For our hypothetical scenario, we considered an area of 800x400 meters

representing a distribution center of a retail company at the Rio de Janeiro city where the

sensors (temperature and smoke) of the end device tier are deployed. At this location, the

company stores cartons that are highly flammable. Due to the climate conditions of the

city, the distribution center faces high temperatures, which affect the equipment used for

order processing. Thus, the company deployed an application to monitor the environment

temperature and regulate the cooling system automatically. Moreover, the system is used

to detect any signal of smoke that represents a fire situation caused either by smoking in

an unauthorized area or by overheating of an electronic device used in order processing.

Data captured from sensors are displayed on monitors scattered in the distribution center

and are accessible from mobile devices. Table 4 describes the configuration concerning

the datatypes and the neighborhood considered in the scenario. For instance, the edge

node EN0 was configured to provide the datatypes UFRJ.UbicompLab.temperature

(DT1) and UFRJ.UbicompLab.smoke (DT4) and its neighbors are the edge nodes EN1

and EN4, and so on.

Table 4. Summary of Edge Nodes, datatypes and neighborhood configuration

Edge Node Datatype Neighbor EN

EN0 DT1 DT4 EN1, EN4

EN1 DT1 DT4 EN0, EN2, EN3

EN2 DT1 DT4 EN1, EN3

EN3 DT1 DT4 EN1, EN2, EN4

EN4 DT1 DT4 EN0, EN3

 In this scenario, experiments E1 and E2 were created to evaluate the behavior of

our algorithms under more rigorous operating conditions than the experiments performed

in our previous work (Alves et al., pg. 37). These experiments help to answer the defined

GQM questions beforementioned. To do so, we modified relevant system settings in the

edge nodes concerning the datatypes, and neighborhood. Unlike the scenario evaluated in

our previous work, in this new configuration the edge nodes are homogeneous regarding

the provided datatypes, allowing more effective demonstration of the collaboration

behavior (e.g., load balancing) when edge nodes are overloaded. Moreover, each result

of the experiments was achieved after ten rounds of execution.

5.1. Experiment E1

We designed this experiment to assess the impact that a network with high

communication latency causes in our distributed resource management.

 Table 5 presents the measured real latency of the network obtained by executing

the ping command between two edge nodes. Therefore, the experiment was run for each

configured value of latency, in order to measure the response time spent to meet the

application requests and to analyze how the latency affects the computation time of our

collaboration process. Moreover, in each execution of the experiment, a total of 30000

application requests were produced and these requests were distributed among the edge

nodes randomly. To trigger the collaboration quickly, we will simulate the resource

exhaustion of the VN using the parameter of memory available (heap memory) for

processing. For this, this parameter was set to 12% for the edge nodes EN1 and EN3. We

chose such edge nodes because of their neighborhood, thereby allowing a higher number

of requests to be forwarded for collaboration. Therefore, whenever the available memory

is less than or equal to 12% the collaboration is executed.

 In Figure 2, each label of the X-axis represents a communication latency

configured in the network when the experiment was run. For instance, the number 20

denotes a latency value of about 20ms; the number 30 represents a latency of around

30ms, and so on. Figure 2(a) illustrates the average total time spent (TTS) to meet all the

requests submitted by the applications. As we can see in the figure, as the latency of the

network increases, the time to fulfill a request also increases, as expected. This behavior

is due to the time spent by the collaboration process to find a neighbor node to forward a

request (Figure 2(b)). Moreover, we also can observe in Figure 2(a) that times oscillate

either up or down due to the number of requests handled by collaboration in each

execution, as we can see in Figure 2(c).

Table 5. Measured latency of the network

Point of the figure

(X-axis)

Real measured

latency (ms)

Point of the figure

(X-axis)

Real measured

latency (ms)

20 23.46 80 83.80

30 32.96 90 93.81

40 43.84 100 105.28

50 54.65 110 111.79

60 63.50 120 123.40

70 73.50 130 133.76

 Let's observe Figure 2(b) that shows only the requests that were handled by the

collaboration process. For a latency of around 20ms, the measured TTS to meet the

application requests is 165ms, for a latency of around 30ms the TTS is 216ms, and so on.

This value increases for each execution of the experiment. For instance, when the request

is received by EN1 and it has not enough resources to meet it, the collaboration is invoked,

then, it seeks the best edge node within the neighborhood of EN1 to forward the request

to (in this experiment, three neighbor nodes). In this process of finding the best neighbor

node, the collaboration spent an average time of 70.38ms for a real latency of 23.46ms

(Table 5). Besides, this time is increased with the computational time that the VN uses to

process the request (valid for all values in the figure). Therefore, we can infer that two

factors, when combined, can affect the total computing times to meet a request. The first

is network latency. The second is the number of nodes to be queried within a

neighborhood. Therefore, the greater the neighborhood of the edge node, the latency value

of the communication network between the edge nodes should be as small as possible.

 Furthermore, the negative effect of the high latency on the collaboration can be

visualized when we compare the values measured of TTS of Figure 2(b) for each latency

configured. For instance, for the latency of around 20ms, the TTS measured is 165ms,

whereas for the latency of around 40ms the TTS is 226ms. By observing the Figure 2(c),

for these latency values the number of requests met is 6157 and 6053 respectively.

Therefore, the experiment performed with 40ms latency showed an average increase of

37% in the TTS value to meet fewer requests.

Figure 2. (a) Average total time spent (TTS) for all the requests met. (b) A view of the
average TTS only of the requests met by the collaboration process. (c) Number of

requests met using only by the collaboration

 Concerning the GQM defined to assess our work, the results of the experiment E1

showed that the goal G1, in relation to the collaboration and network latency values, was

properly achieved, even in adverse conditions of the computational infrastructure with

edge nodes overloaded and network with high values of latency.

5.2. Experiment E2

A fault-tolerant system continues to operate correctly despite the failure of some of its

components. We designed this experiment to assess the ability of our collaborative

approach to meet application requests, even in the presence of connectivity failures

between edge nodes and end devices.The operation of the experiment E2 is similar to the

E1 with modifications regarding some parameters used to run it. First, the latency between

ENs was set to 20ms. Second, a total of 15070 requests to the datatype of Temperature

were generated and submitted to the edge nodes randomly. In Figure 3, each label of the

X-axis represents an edge node configured to meet application requests. For each edge

node, we show three-bar values representing the source of the sensing data used to serve

the application. The first bar is the value obtained directly from the end device, the second

bar is the value obtained from the VN cache, and the last one is the value obtained from

the temporary local database.

Figure 3. (a) Requests served using all temperature sensors turned on. (b) Requests
served with the temperature sensors turned off for edge devices EN1 and EN2.

 The execution of the experiment E2 was divided into two parts. Figure 3(a), shows

the requests met during the first execution with all end devices enabled. We can see in

the first point of the figure (representing the EN0) that our system can serve 136 requests

using data obtained directly from end devices, a total of 2963 requests using data from

the VN cache, and only 5 requests using data obtained from the temporary local database.

This behavior is observed up to the last point in the figure. In turn, Figure 3(b) shows the

second execution, in which we disconnected the end device that provides the datatype of

temperature to the edge device EN1 and EN3.

 Let’s observe the point 2 (EN1) and point 4 (EN3) in both figures. In Figure 3(a),

the application requests are met using all available data sources. Figure 3(b) also shows

that all the application requests submitted are successfully served. However, edge nodes

EN1 and EN3 met requests using only the updated sensing data of temperature from the

cache once the end device was disconnected. This operation was possible thanks to the

collaboration algorithm implementing the data sharing between the edge nodes. Finally,

concerning the collaboration and fault-tolerance, the results of the experiment E2 showed

that the goal G2 was achieved.

6. Conclusion

In this paper, we introduce the implementation of a novel architecture that takes

advantage of the collaboration features of edge nodes to provide high quality services for

running IoT applications. Our architecture is based on a lightweight device virtualization

model and a flat collaboration model between edge nodes. In addition to describing the

concrete components of the proposed architecture, we present the results of an

experimental evaluation with a well-defined focus: we aimed to prove that the system

operates well even under fault conditions and high latency networks. The results of the

performed experiments showed that our system can meet the requests in adverse

conditions of the network infrastructure (high latency). Moreover, even in the presence

of disconnections between edge nodes and end devices, either permanently or

temporarily, the edge node is able to provide updated sensing data from the internal cache

thanks to our data sharing mechanism implemented. Thus, our novel architectural model

can handle time critical applications and is fault tolerant. Therefore, the results of the

performed experiments were promising and validate the feasibility of our proposal.

Acknowledgements

This work was partially funded by FAPESP (grant number 2015 / 24144-7).

Flavia C. Delicato and Paulo F. Pires are CNPq fellows.

References

Alves, M. P. et al. (2019) “LW-CoEdge: a lightweight virtualization model and

collaboration process for edge computing”. In: World Wide Web, 1-49.

Armbrust, M. et al. (2010) “A view of cloud computing”. In: Communications of the

ACM, 53(4), 50-58.

Basili, V. R. (1992) “Software modeling and measurement: the Goal/Question/Metric

paradigm”.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014) “Fog computing: A platform for

internet of things and analytics”. In: Big Data and Internet of Things: A Roadmap for

Smart Environments (pp. 169-186). Springer International Publishing.

Cavalcante, E. et al. (2016) “On the interplay of Internet of Things and Cloud Computing:

A systematic mapping study”. In: Computer Communications,89, 17-33.

FIWARE GE (2019) “Generic Enablers”. Available in: https://catalogue-

server.fiware.org/. Last accessed: 07/07/2019.

Madria, S., Kumar, V., and Dalvi, R. (2014) “Sensor cloud: A cloud of virtual sensors”.

In: IEEE software, 31(2), 70-77, 2014.

Morabito, R. et al. (2018) “Consolidate IoT Edge Computing with Lightweight

Virtualization”. In: IEEE Network, 32(1), 102-111.

Sahni, Y. et al. (2017) “Edge Mesh: A New Paradigm to Enable Distributed Intelligence

in Internet of Things”. In: IEEE Access, 5, 16441-16458.

Santos, I. L., Pirmez, L., Delicato, F. C., Khan, S. U. and Zomaya, A. Y. (2015)

“Olympus: The cloud of sensors”. In: IEEE Cloud Computing, 2(2), 48-56, 2015.

Santos, I. L. et al. (2019) “Zeus: A resource allocation algorithm for the cloud of sensors”.

In: Future Generation Computer Systems, 92, 564-581.

Shen, Z. et al. (2019) “ICCF: An Information-Centric Collaborative Fog Platform for

Building Energy Management Systems”. In: IEEE Access.

Thönes, J. (2015) “Microservices”. In: IEEE Software 32.1: 116-116.

Wang, N. et al. (2017) “ENORM: A framework for edge node resource management”.

In: IEEE Transactions on Services Computing.

