
P4-ONIDS: A P4-based NIDS optimized for constrained
programmable data planes in SDN

Kairo Tavares1, Tiago Ferreto1

1PPGCC - Graduate Program in Computer Science
PUCRS - Pontifical Catholic University of Rio Grande do Sul

kairo.tavares@acad.pucrs.br, tiago.ferreto@pucrs.br

Abstract. Network Intrusion Detection Systems (NIDS) are one of the key
defense mechanisms employed to detect and mitigate network-based threats.
Several works explored the ability to offload NIDS pre-filtering capabilities to
hardware platforms in order to reduce resource usage saturation and improve
detection accuracy. Among them, network data plane solutions in SDN aim to
leverage the hardware speed and the recent flexibility of programmable switches.
However, those solutions are designed without considering a constrained data
plane with limited table sizes and memory space, thus reducing accuracy
detection and vulnerability buffer saturation attacks. This paper proposes P4-
ONIDS, a solution that improves the parsing and compilation of NIDS rules for
the data plane alongside sketch-based solutions for suspicious flow pre-filtering
while maintaining a low usage of resources and leveraging the hardware speed
of the data plane. We evaluate the compiler and our pre-filtering data plane
capabilities in an emulated environment using Mininet with Snort NIDS. Results
have shown more than 400x reduction on generated P4 rules. Some experiments
reach an accuracy of approximately 90% with 40% of packets filtering.

Resumo. Sistemas de Detecção de Intrusão de Redes de Computadores (NIDS)
são um dos principais mecanismos de defesa empregados para detectar e
mitigar ameaças baseadas em redes de computadores. Vários trabalhos
exploraram a capacidade de descarregar recursos de pré-filtragem de NIDS
para plataformas de hardware para reduzir a saturação de usos de recursos e
melhorar a precisão da detecção. Entre eles, as soluções de plano de dados
de redes em SDN visam usufruir da velocidade do hardware e a flexibilidade
recente dos switches programáveis. No entanto, essas soluções são projetadas
sem considerar um plano de dados restrito com tamanhos de tabela e espaço
de memória limitados, reduzindo assim a detecção de precisão e ataques de
saturação do buffer de vulnerabilidade. Este artigo propõe P4-ONIDS, uma
solução que melhora a análise e compilação de regras NIDS para o plano de
dados ao lado de soluções baseadas em sketches para pré-filtragem de fluxo
suspeito, mantendo um baixo uso de recursos e aproveitando a velocidade de
hardware do plano de dados. Avaliamos o compilador e nossa capacidade de
pré-filtragem no plano de dados em um ambiente emulado usando Mininet com
Snort NIDS. Os resultados mostraram uma redução de mais de 400x nas regras
P4 geradas. Alguns experimentos alcançam uma precisão de aproximadamente
90% com 40% de filtragem de pacotes.

1. Introduction
Network Intrusion Detection Systems (NIDS) are key technologies to secure
communication infrastructures. The ability to detect malicious traffic in the network is
usually achieved using signature and anomaly-based techniques. However, as network
bandwidth increased, those systems were challenged due to their single high-throughput
choke points, leading to dropped packets when their processing limits are reached. The
resulting packet loss due to a saturated IDS/IPS provides increased potential for false
negatives [Khalil 2015]. Moreover, those detection mechanisms add significant overhead
to the network for deployments that require the traffic to be inspected inline in the
ingress or egress of the network. This issue is due to the high computational complexity
of detection techniques and the time to process packets in software. Especially in
modern high-speed networks, it poses performance challenges for practical deployments.
Therefore, to achieve the highest quality of detection, NIDS should process as much
relevant data as possible without becoming the bottleneck of a network connection.
Moreover, NIDS implementation should be flexible enough to accommodate detection
methods of ever emerging new security threats.

According to established taxonomies [Hoque et al. 2014], intrusion detection
systems can be categorized according to the type of detection method: Anomaly-based
NIDS uses behavior-based techniques by defining a model of normal network behavior
and then detecting deviations to this model. On the other hand, knowledge-based systems
use a precise definition of the attack and match incoming traffic against this definition.
The most widespread variants of knowledge-based systems are signature or rule-based.
In signature-based NIDS, a detection engine applies a rule-set to all received data. The
majority of state-of-the-art rules contain patterns that are matched against the payload
of the received packets. These patterns range from selected bytes to complex Regular
Expressions (Regex) matching individual packets and the payload in a flow of packets.
The performance of a signature-based NIDS mainly depends on the number of rules
[Erlacher and Dressler 2018]. Thus, in practical applications, the rule-set needs to be
adapted to the domain-specific use case while considering how the number of rules
impacts the risk of not detecting possible intrusions.

A common solution to achieve low overhead is to offload the detection capabilities
to dedicated hardware specialized functions, such as multi-core processing, GPUs, and
FPGAs. The performance gap between the execution speed of security software and
the amount of data to be processed is ever-widening. However, continuously expanding
signature databases has become a major impediment to achieving scalable hardware-
based pattern matching. Additionally, evolutionary rule databases have necessitated real-
time online updating for reconfigurable hardware implementations. In contrast, instead of
entirely focusing on pattern comparison for performance improvement, researchers have
also proposed SDN-based solutions [SDxCentral 2020] to improve performance by taking
advantage of some properties in network traffic [Nam and Kim 2018] [Xing et al. 2013].
They indicated that malicious packets make up only a small share of total traffic.
Consequently, they adopted hybrid architectures in which hardware devices handle pre-
filtering and PC-based software implements Snort for final identification. A new breed of
switches referred to as programmable suggests an evolution path to allow programmers
to define how packets are processed all the way down to the wire. The advent of
programmable hardware has also brought new programming languages to the fore, such

as P4 [Bosshart et al. 2014] and Click [Kohler et al. 2000]. Thus, the flexibility provided
by the programmable data plane switches opens the possibilities to create or improve
solutions at the data plane level.

Several works [Teofili et al. 2011, Lopez and Duarte 2015, Xing et al. 2013,
Nam and Kim 2018] have been proposed to leverage the data plane programmability to
offload NIDS capabilities. Among them, P4ID [Lewis et al. 2019] proposes a solution
composed of a NIDS rule parser and a P4-based packet processing data plane to reduce
traffic processed by a NIDS. However, these solutions present several limitations. First,
pre-filtering accuracy can be reduced when a high number of P4 rules generated by
the P4ID parser cannot be deployed in a size-constrained rules table in the data plane.
Second, the P4ID data plane is vulnerable to buffer saturation attacks due to the hash table
structures needed for tracking ongoing suspicious flows. Third, the pre-filtering traffic
reduction capability is limited to the pre-defined set of TCP/UDP well-known ports.

This paper proposes P4-ONIDS (P4 - Optimized Network Intrusion Detection
System), a P4-based pre-filtering NIDS solution optimized for constrained programmable
data planes in SDN. Our proposal reduces the number of generated P4 rules by
introducing a NIDS P4 rule compiler that applies additional aggregation steps while
leveraging port range matching capabilities. Moreover, a sketch-based solution is
used to pre-filter suspicious flows to leverage the hardware speed while maintaining a
low usage of resources in the data plane. We evaluate the P4-ONIDS compiler and
data plane implementations using public available NIDS rulesets and research network
PCAP dataset from CICS2017 [Panigrahi and Borah 2018] with malicious attacks on an
emulated environment using Mininet.

In summary, this paper presents the following contributions: (i) a NIDS rule
compiler to reduce NIDS P4 rules carnality, (ii) implementation of a sketch-based solution
for pre-filtering suspicious flows to a NIDS while enabling flow expiration with timing-
based deletion without control plane interaction, and (iii) a comprehensive evaluation of
the compilation of the P4-ONIDS rules and snort accuracy over different pre-filtering
settings against intrusion detection evaluation datasets in an emulated environment.
Moreover, the experiments have shown a significant reduction of generated P4 rules and
detection accuracy of approximately 90% while pre-filtering suspicious flows to a NIDS.

The rest of this document is organized as follows. Section 2 presents related work
relevant to our solution. The P4-ONIDS compiler and data plane solutions are presented
in Section 3. Section 4 presents experimental results. Finally, Section 5 concludes the
paper.

2. Related Work

Different solutions that offload NIDS capabilities to hardware have worked towards
interpreting NIDS rules to match the hardware capabilities for better performance.
Depending on the target platform, the compilation of rules can lead to optimization in
space, parallel processing, or better accuracy. In this section, we classify those solutions
into three groups: (i) Multi-core and GPU, (ii) NetFPGA, and (iii) SDN-based networks

2.1. Multi-core and GPU

The authors in [Wan et al. 2012], and [Chen et al. 2009] propose the compilation of rules
to a multi-core processor platform to benefit from the processing power and speed up
NIDS detection of network packets. Those works focus mainly on improving multi-
pattern matching and load balancing in parallelization for a multi-core platform. However,
they are limited to generic software-based platforms and not specialized network-based
hardware solutions.

Other authors [Lin et al. 2012] propose a novel parallel algorithm to accelerate
the exact string matching process of Snort NIDS on GPU. This method achieved an
improvement in processing and can utilize the parallel processing capabilities of GPUs.
However, this method requires an extra copy of the packets to be sent to the GPU. Also,
it transfers the matching result back to the CPU to make an action.

2.2. NetFPGA

Hardware-based NIDS are faster than software-based but have several disadvantages
including limited flexibility and relatively high cost. NetFPGA is a low-cost open-source
hardware platform, primarily designed as a tool for teaching networking hardware and
router design. NetFPGA has been widely used in networking and security applications.
Some examples include: real-time URL extractor, hijack incoming packet’s header and re-
compute the checksum, online classifier of network traffic, providing accurate timestamp
system for network measurements, and precise traffic generator.

Motivated by the practical impossibility to pack a large amount of legacy Snort
rules over a resource-constrained hardware device, the authors in [Teofili et al. 2011]
focus on adapting and simplifying Snort rules, to support a commercial, low-end,
NetFPGA board, meanwhile providing good filtering performance. They chose about
one thousand Snort rules randomly drawn from the complete ruleset and performed
experiments applying these rules to a training dataset composed of a relatively large traffic
trace collected from a regional ISP backbone link. The goal was to determine how these
rules can be simplified meanwhile retaining a comparable detection performance to the
original, non-adapted, rules. Finally, they validated the performance of the adapted rules
against additional collected traffic traces. Their results show that about one thousand
adapted Snort rules can be supported over a low-end FPGA-based Snort pre-filter, with
93% data reduction efficiency.

2.3. SDN

As the new SDN paradigm emerged to separate the control plane from the data plane, it
opens up new research opportunities. SDN enables more flexible and predictable network
control and makes it easier to extend the network with new functionality through the
controller’s programmability.

Surica Openflow [Nam and Kim 2018] and SnortFlow [Xing et al. 2013]
proposes an elastic and distributed IDPS (Intrusion Detection and Prevention System)
for defense against DoS attacks in virtualized SDN. Those inherit the intrusion detection
capability from Snort and Bro and flexible network reconfiguration from OpenFlow.
SnortFlow has created three modules for NIDS rules: SnortFlow daemon, alert
interpreter, and rules generator. The parsed and filtered information is passed to the rules

generator that generates the rules to be injected into the OpenFlow device to reconfigure
the network.

The flexibility of IDS rules specification and the resource constraints of hardware
platforms for offloading IDS capabilities becomes a problem for high-speed networks. For
the IDS use cases, even OpenFlow in version 1.5 [Open Network Foundation. (2013)] is
limited in three aspects: action capabilities, matching capabilities, and table capacity.
First, the only action required in the specification is output, group, and drop. Therefore,
one can only drop or mirror traffic as action. Second, the matching capabilities on the
source and destination ports are limited to exact matching or masked match, thus not
suited for range port queries. The limitation on matching capabilities impacts directly the
number of rules that need to be compiled for an OpenFlow table, with a straightforward
port range definition that can lead to a high carnality number of OpenFlow rules. For
instance, a destination port defined as 1024 or higher (specified as [1024:] in Snort rules)
can lead to more than ten rules if the port mask is used correctly and without considering
the permutation required if other fields like source port also have multiple values.

Programmability in SDNs is confined to the network control plane. The
forwarding plane is still primarily dictated by fixed-function switching chips. To solve
this problem, the advent of programmable data planes allows programmers to define how
packets are processed all the way down to the wire. This is possible by a new generation
of high-performance forwarding chips. At the high-end, PISA (Protocol Independent
Switch Architecture) chips promise multi-Tb/s of packet processing. Moreover, this
novel approach has also brought new programming languages to the fore. P4
[Bosshart et al. 2014] is a declarative language for expressing how packets are processed
in the data plane using a forwarding model consisting of packet parser and MAT stages.

P4ID [Lewis et al. 2019] is a solution composed of a NIDS rule parser and a P4-
based packet processing data plane to reduce traffic processed by a NIDS. It combines
rulesets designed for traditional Intrusion Detection Systems such as Snort and applies
pre-filtering in the data plane. Therefore, this technique allows handling packets in
the network itself without the direct involvement of the NIDS. However, P4ID presents
some limitations. First, the P4ID parser final step generates P4 rules based on a ternary
match for port range, increasing the rules cardinality while limiting further optimization.
Second, the P4ID data plane stateful filtering stage is based on a 5-tuple flow identifier
and register to keep track of ongoing suspicious flows that can lead to buffer saturation
attacks. And third, the pre-filtering traffic reduction capability is limited to the pre-defined
set of TCP/UDP well-known ports.

3. Proposed Solution

As previously discussed, offloading NIDS pre-filtering capabilities to the network data
plane can help NIDS avoid saturation and improve accuracy due to the reduction of the
traffic needed to be inspected. Offloading NIDS rules to the data plane require two main
components: i) the parsing and compilation of NIDS rules to a target data plane system,
and ii) a data plane implementation capable of filtering suspicious traffic. However, the
target data plane is a constrained resource system. Its capability to filter suspicious traffic
is directly related to the number of NIDS rules it can host.

This paper proposes P4-ONIDS (P4 - Optimized Network Intrusion Detection
System), which improves the parsing and compilation of rules while leveraging sketch-
based solutions for pre-filtering to address those limitations identified in P4ID while
leveraging the hardware speed and maintaining a low usage of resources in the data
plane. P4-ONIDS is based on the P4 language, used in programmable data planes.
Figure 1 illustrates the two main solution components: the P4 NIDS compiler and the
P4 Switch data plane. The P4 NIDS Compiler aims to generate the best P4 Rules given a
specific compiler goal for the target data plane from the available NIDS rules and a NIDS
configuration (e.g. internal and external network subnet, rule priority, etc.). In contrast,
the P4 Switch data plane is responsible for providing switching capabilities to network
traffic, i.e., detecting, filtering, and redirecting suspicious traffic to the NIDS based on the
P4 rules generated by the compiler.

Figure 1. P4-ONIDS Architecture

The rules used in this work are based on the widely used rule syntax of open
sources NIDS, such as Snort and Suricata. The rules themselves consist of a rule
header and a rule body [El-Bakry and Mastorakis 2010]. For example, the following
rule generates an alert when any TCP request is made from the subnet 10.0.0.0/8 to the
destination in the configured home network at port 80 to 90 and 8080.

alert tcp 10.0.0.0/8 any → $HOME NET [80:90, 8080]
(msg:”Found attack”; content:”attack”; sid:1; rev:3;)

The number of rules alongside its configuration can lead to a generation of a large
number of P4 rules. Thus, it is essential to reduce the number rules by compiling them
into the smallest ruleset possible while being aware of the constraints of the target data
plane (e.g., table size, available matching capabilities, and controller channel bandwidth).

The P4 NIDS compiler is composed by several modules. First, the Rule Loader
interprets and parses the NIDS rules based on the NIDS Configuration. Next, the Rule
Filter module filter out the supported rules for the target platform as specified in the
compiler goal. The P4 NIDS Rule Parser module translates the filtered rules into P4-
based rules. Then, the Rule Dedup and Aggregation modules reduces and optimizes the

number of P4 generated rules. Finally, the Rule Prioritization module selects the subset of
rules that will be pushed to the P4 data plane based on a goal (e.g. rules with high severity
first) given the specified target constraint (e.g. maximum table size).

The generated P4 rule comprises a 6-tuple match with the following fields: the
protocol type, source/destination addresses, source/destination port ranges, and TCP flags
if available. In general, the ternary field match type is applied to those packet fields.
However, to achieve the smallest subset of generated rules, P4-ONIDS relies on the range
field match type to better model the source and destination port range. Figure 2 illustrates
a generated P4 rule:

Figure 2. Example of P4 generated rule

The match of port range type already reduces the number of generated rules
compared to the usage of ternary matching for those fields. Moreover, it allows the
compiler to aggregate rules further by merging the rules with conflicting port ranges.
Therefore, more generic generated rules that have the same effect of a more specific rule
are merged within the more generic, leading to a reduction in redundant rules beyond
simple deduplication.

Listing 1. Pseudo-code for aggregation of deduplicated rules
1 def is rule within(r1 match, r2 match):
2 if (r1 match.proto == r2 match.proto and r1 match.proto mask == r2 match.proto mask) and \
3 (r1 match.src port start >= r2 match.src port start and r1 match.src port end <= r2 match.src port end) and \
4 (r1 match.dst port start >= r2 match.dst port start and r1 match.dst port end <= r2 match.dst port end) and \
5 (r1 match.src network == r2 match.src network or r1 match.src network in r2 match.src network) and \
6 (r1 match.dst network == r2 match.dst network or r1 match.dst network in r2 match.dst network) and \
7 (r1 match.flags == r2 match.flags and r1 match.flags mask == r2 match.flags mask):
8 return True
9 return False

10
11 def aggregate deduped rules(rules):
12 final rules map = generate rules map by match(rules)
13 aux rules list = generate aux list copy(rules)
14 while len(aux rules list) > 0:
15 current rule = aux rules list.pop()
16 for aux rule in aux rules list:
17 if current rule in final rules map and aux rule in final rules map:
18 if is rule within(current rule.match, aux rule.match):
19 merge specific rule into generic(specific=current rule, generic=aux rule, map=final rules map)
20 elif is rule within(aux rule.match, current rule.match):
21 merge specific rule into generic(specific=aux rule, generic=current rule, map=final rules map)
22 return final rules map.values()

Listing 1 shows the pseudo-code used for aggregating deduplicated rules.
Function aggregate deduped rules at line 11 receives a list of already deduplicated/unique
rules. It checks for all rules if either the current rule or auxiliary one is within each
other. Suppose a rule is detected as part of a more generic one. In that case, the function
will merge the more specific rule into the more generic rule by updating the generic rule
metadata and deleting the specific from the final rules map. After all rules are compared,
the final generated rules are the values that remained on the rules map. To evaluate if
a rule is within another, function is rule within at line 1 will check if the 6-tuple fields
are equal or within the values range. In this work, we limit the compiler to check for

equivalence on both proto and TCP flags. Additionally, since the aggregation process
keeps the priorities and identification of the original rules in the generic rule metadata,
the compiler can prioritize the final P4 generated rules based on specific goals for the
target constrained data plane. For instance, the N more critical aggregated rules, the rules
representing more aggregated rules, or both.

A P4 rule will help the data plane detect the suspicious traffic sent to the NIDS
for better inspection. However, the NIDS is interested in the suspicious flow and not
only on the packet that matched the table entries. Therefore, the data plane needs to keep
track of the ongoing suspicious flow during its lifetime. Moreover, there are scenarios,
like in DDoS network saturation attack, where the small subset of suspicious traffic is
responsible for the large portion of the network traffic. Those scenarios require the data
plane to have additional safeguards to avoid the saturation of the NIDS.

P4-ONIDS tackles this problem by sending the first N packets of any suspicious
flow, defined by the 5-tuple fields, to the NIDS. This threshold N can be dynamically
configured by the control plane to protect the NIDS from saturation, with the downside of
reducing the classification accuracy. Our solution makes use of a Count-Min (CM) sketch
[Cormode and Muthukrishnan 2005] to keep track of the suspicious flow packets that are
redirected to the NIDS. Similar to counting bloom filters [Song et al. 2005], a CM sketch
is a probabilistic data structure that serves as a frequency table of events in a stream of
data. It uses hash functions to map events to frequencies, but unlike a hash table, it uses
only sub-linear space at the expense of overcounting some events due to collisions. Thus,
a CM sketch may overestimate but never underestimate the true count in a point query.

The ability to delete idle flows from the data structure is vital to allow new flows
to be filtered. However, a typical Count-Min sketch does not have the functions to delete
items from an event stream. Thus, without this ability, a CM sketch can saturate and lose
to count the frequency of the items. To solve this issue, we leverage the timing-based
deletion mechanism described in [Bonomi et al. 2006] to ensure that an uncompleted
deletion eventually happens. The exact mechanism can be applied to a Count-Min sketch.
This mechanism resets the values of idle counters of the Count-Min data structure when a
phase transition occurs. In our solution, this phase transition happens when new packets
arrive in the data plane and a given time duration threshold D is exceeded. To clean
the idle flow from the data structure, a predefined set of operations corresponding to the
size of the counting bloom filter that composes the count-min sketch of depth d times
the width w, needs to be performed. Therefore, this timing-based expiring sketch solution
does not require interaction from the control plane and leverages the hardware speed while
maintaining a low usage of resources in the data plane. In summary, the proposed solution
can be described as follows:

1. A P4-ONIDS compiler that improves the reduction of P4 rules generated from a
ruleset while prioritizing the rules for a target data plane

2. Utilization of a space-efficient data structure, a count-min sketch, to track and
limit the redirect flow to the NIDS, therefore better controlling and safeguarding
usage of the NIDS.

3. Utilization of a timing-based deletion mechanism to expire idle flows from the
count-min sketch that don’t require control plane interaction.

4. Evaluation

In this section, we conduct a comprehensive set of simulation experiments and analyze
the results to evaluate the performance of the P4-ONIDS two main components: compiler
and data plane. We show that the compiler has a smaller generated P4 ruleset than the
P4ID parser and how the data plane filtering with different packet filtering limits impacts
NIDS detection.

4.1. Experimental Setup

We implemented the P4-ONIDS compiler in Python and the data plane using the P4
programming language targeting the second version of the P4 software switch, also known
as behavioral model or BMV2. P4App [P4App 2020] provides a framework that allows
developers to build, run, test, and debug P4 BMV2 switch implementations on Mininet
[De Oliveira et al. 2014] testbeds. We ran our experiments on a Virtual Machine running
Ubuntu Server 18.04.3 with the following configuration: 16 Cores, 32GB of RAM, and
250 GB of disk space.

4.1.1. Compiler Experiments

As mentioned in Section 2, P4ID provides a parser and data plane to offload NIDS
rules. We compare our compiler solution with the P4ID parser approach, where the rule
reduction strategy is deduplication and uses ternary matches. Two public available NIDS
rulesets are used: the Snort Community 1 and Emerging Threats 2. The rulesets are loaded
with the same configuration used in the data plane experiments and filtered with the same
criteria. The current implementation only supports rules that are IPv4, unidirectional, and
don’t have negation statements. Additionally, rules with a port range greater than 512 are
filtered out to avoid too permissive rules, the same as in P4ID experiments. Finally, we
compare the output of those rulesets to validate the reduction of generated P4 rules.

4.1.2. Data Plane Experiments

Based on the data plane experiments setup from P4ID, we reproduce the same
environment and test methodology to have more consistent results. As illustrated in Figure
3, the Mininet setup automated by P4App, consists of one P4 BMV2 Switch connected
to three hosts: PCAP Sender, NIDS, and Normal Forwarding. The sender uses tcpreplay
to send the five PCAPs from the CICIDS2017 dataset [Panigrahi and Borah 2018] that
contains benign and the most up-to-date common attacks at a rate of 2000 pps (packets
per second), which resembles the actual real-world data (PCAPs). The NIDS is a host
that runs a Snort 2.9 process to analyze the filtered data sent by the data plane. Finally,
the Normal Forward host only records the data that was not sent filtered.

The Count-Min sketch filter was set to a depth d of 4 hash functions with the width
w of 256 positions where each position corresponds to a register of 16 bits. The 4 different
hash functions chosen between the supported in the P4 16 data plane are: crc16, csum16,

1https://www.snort.org/downloads
2https://rules.emergingthreats.net/open/snort-2.9.0/

Figure 3. Data Plane Experiment Topology

crc32, and csum32. The timing-based deletion mechanism was composed with the same
depth and width, but with only a 1-bit register. The time duration D of expiration was
set to 10 seconds during all experiments. The size of the timing-based sketch solution is
approximately 3 KB.

The same Snort community ruleset and the NIDS configuration used in the
compiler experiments have been used to generate P4 rules and for the Snort NIDS. For
results fidelity, this ruleset was filtered based on the final rules generated by the P4-ONIDS
compiler. Table 1 describes the PCAPS dataset used in the experiments alongside the
expected number of snort alerts when only the PCAP is analyzed without any simulation.
Notice that Monday PCAP is labeled as been composed only of benign traffic. However,
it is still expected some alerts to be generated depending on the ruleset used. In this
experiment, Monday PCAP has a low number of alerts in comparison to the others
PCAPs. To better understand the impacts of the filtered traffic on the Snort alerts, we
run the experiments with two scenarios: (Scenario 1) unrestricted NIDS link bandwidth,
and (Scenario 2) NIDS link bandwidth restricted to 25% percent (5 Mbps) of the expected
peak bandwidth (20 Mbps). Finally, we evaluate the percentage of traffic redirected to the
NIDS and the percentage of alerts generated during the experiments.

Table 1. Data Plane PCAP Summary

PCAP Attack Description # of Packets Expected # of Snort alerts
Monday Benign (Normal Human Activity) 11709971 24
Tuesday SSH and FTP Brute Force 11551954 11923

Wednesday DoS, DDoS, and Heartbleed 13788878 175378
Thursday Web Attacks and Infiltration 9322025 589

Friday Botnet, Port Scan, and DDoS 9997874 329

4.2. Experiments Results
In this section, we discuss and analyze the results for the compiler and the data plane
experiments. Figure 4 illustrates the results for the compiler experiments. In 4. We
can see the performance of the P4-ONIDS compiler for two different rulesets alongside
all different compilation stages in terms of the resulting rule counting. First, given the
current syntax limitation as previously discussed, results show that the compiler can

process between 83% to 89% of both rulesets as valid rules. Second, the generated P4
Rules from the valid NIDS rules show an increase of more than 400x in rules count, thus
requiring additional steps to reduce it further. Third, the deduplication shows the real
number of different rules generated are from 1.5x to 7.4x greater than the valid NIDS
ruleset. It also illustrates that many valid rules alongside different NIDS configurations
can increase P4 generated rules. Finally, after applying the aggregation step where rules
are combined when they are contained on others, it shows a reduction from 3.4x to 21.5x
compared to the valid ruleset.

In Figure 4.B, we compare the number of P4 rules generated with P4ID and
P4-ONIDS against the two rulesets. Because the usage of port range matches with
the additional aggregation step, P4-ONIDS causes a significant reduction of generated
P4 rules, between 5x to 188x, if compared to P4ID. One of the main reasons for the
high number of rules generated by P4ID parser is the usage of the ternary type for port
range. For example, a rule with port range defined as [1024:65535] generates six different
ternary matches 0X400/0XFC00, 0X800/0XF800, 0X1000/0XF000, 0X2000/0XE000,
0X4000/0XC000, and 0X8000/0X8000. In contrast, P4-ONIDS uses only one match
1024→ 65535 to represent this range. Additionally, if ternary is used for both source
and destination range ports, the final number of generated rules will be the combination
of all variations.

Figure 4. Compiler results

In the first scenario of the data plane experiments, we analyze the impact of
different numbers N of packets that are sent to the NIDS upon match using the P4-ONIDS
sketch-based implementation. The average loss of packets during all experiments was
0,35%, thus not impacting the overall results. Figure 5.A shows the percentage of filtered
packets while Figure 5.B shows the percentage of generated alerts in comparison to the
expected number of packets and alerts described in Table 1. Scenario 1 results show
a tendency of a logarithm curve when the number of packets N increase, meaning that
as N increases, it becomes less relevant on the overall number of filtered packets and
can eventually saturate, in this case, close to 55%. Figure 5.A also shows that for all
PCAP datasets, this filtering strategy has a consistent impact on the volume of packets
filtered. Additionally, Figure 5.B show that as we increase the number N, the accuracy
also increases for most of the PCAP datasets. It can be observed that when the traffic

filtering with N=100 is on average approximately 40%, the accuracy of the alerts for
Tuesday and Friday datasets goes near 90%.

The Wednesday PCAP dataset accuracy remains low even with the increase of
N and the number of filtered packets. The reason is that this dataset is predominantly
composed of DoS and DDoS attacks. The majority of Wednesday reference alerts are
from a rule of SID 40063 that is only triggered upon a threshold rate of 200 packets per
second is exceeded. Since our current strategy relies on sending the first N packets of
a flow upon match and flows are inactivated after a time duration D, this strategy is not
adequate for these types of rules that depend on a specific traffic rate to be triggered. To
overcome this limitation, we plan to evolve the P4-OINDS compiler and data plane to
have a similar filtering mechanism, but with the difference of having the ability to specify
the number of packets N and a forced timing deletion at the rate defined per rule.

Figure 5. Scenario 1: Filtered Traffic vs NIDS Accuracy all PCAPs

Figure 6. Scenario 2: Filtered Traffic vs NIDS Accuracy for Tuesday PCAP

Finally, in scenario 2, we restrict the Snort NIDS host bandwidth and compare the
results with the same Tuesday PCAP dataset experiment with unrestricted bandwidth. The
goal is to understand the impact on accuracy when restricting the traffic sent to the NIDS.
Figure 6 shows that the restricted testbed starts saturating when N is equal to 100 packets
and reaches 30% of packets filtered. The accuracy of generated alerts also starts dropping
as more packets are dropped with the increase of saturation. In contrast, the unrestricted
testbed continues to improve accuracy while packets filtered increase by 15%. It shows
that network filtering is important for accuracy on bandwidth saturation scenarios.

5. Conclusion

Several works explored the ability to offload NIDS pre-filtering capabilities to hardware
platforms to reduce resource usage saturation and improve detection accuracy. Among
them, network data plane solutions in SDN aim to leverage the hardware speed and
the recent flexibility of programmable switches. Due to the limited resources on the
data plane, those solutions can be vulnerable to buffer saturation attacks when tracking
suspicious flows and susceptible to reducing NIDS accuracy because the number of rules
to be offloaded is greater than the resources available in the data plane.

To solve this problem, we present P4-ONIDS. It relies on an optimized NIDS to
P4 rules compiler to reduce the number of P4 rules installed on the data plane, and a
data plane implementation based on probabilistic data structures (sketches) to track and
filter the number of packets redirected of suspicious flows. Results have shown a 4x to
188x reduction of generated rules in comparison with another work generation strategy.
In our experiments with the data plane under different configurations, P4-ONIDS filtering
strategy presents an accuracy level of approximately 90% with 40% of packets filtering.
Future work includes improving the compiler capabilities to include more types of rules
and modifying the sketch-based filtering solution to enhance accuracy for rules triggered
by rate thresholds like commonly used in DDoS scenarios. Additionally, we intend to
evaluate P4-ONIDS on a real testbed using P4 switch hardware.

References

Bonomi, F., Mitzenmacher, M., Panigrah, R., Singh, S., and Varghese, G. (2006). Beyond
bloom filters: From approximate membership checks to approximate state machines.
ACM SIGCOMM Computer Communication Review, 36(4):315–326.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al. (2014). P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Review,
44(3):87–95.

Chen, X., Wu, Y., Xu, L., Xue, Y., and Li, J. (2009). Para-snort: A multi-thread snort
on multi-core ia platform. Proceedings of Parallel and Distributed Computing and
Systems (PDCS).

Cormode, G. and Muthukrishnan, S. (2005). An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75.

De Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A., and Prete, L. R. (2014). Using
mininet for emulation and prototyping software-defined networks. In 2014 IEEE
Colombian Conference on Communications and Computing (COLCOM), pages 1–6.

El-Bakry, H. M. and Mastorakis, N. (2010). Fast packet detection by using high speed
time delay neural networks. In Proc. 10th WSEAS Int. Conf. Multimedia Systems and
Signal Processing, pages 222–227.

Erlacher, F. and Dressler, F. (2018). Fixids: A high-speed signature-based flow
intrusion detection system. In NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, pages 1–8. IEEE.

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D. K., and Kalita, J. K. (2014).
Network attacks: Taxonomy, tools and systems. Journal of Network and Computer
Applications, 40:307–324.

Khalil, G. (2015). Open source ids high performance shootout.
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-
performance-shootout-35772.

Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. (2000). The click
modular router. ACM Transactions on Computer Systems (TOCS), 18(3):263–297.

Lewis, B., Broadbent, M., and Race, N. (2019). P4id: P4 enhanced intrusion detection.
In 2019 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 1–4.

Lin, C.-H., Liu, C.-H., Chien, L.-S., and Chang, S.-C. (2012). Accelerating pattern
matching using a novel parallel algorithm on gpus. IEEE Transactions on Computers,
62(10):1906–1916.

Lopez, M. A. and Duarte, O. C. M. (2015). Providing elasticity to intrusion detection
systems in virtualized software defined networks. In 2015 IEEE International
Conference on Communications (ICC), pages 7120–7125. IEEE.

Nam, K. and Kim, K. (2018). A study on sdn security enhancement using open source
ids/ips suricata. In 2018 International Conference on Information and Communication
Technology Convergence (ICTC), pages 1124–1126. IEEE.

P4App (2020). https://github.com/p4lang/p4app. (visited on Mar. 14, 2021).

Panigrahi, R. and Borah, S. (2018). A detailed analysis of cicids2017 dataset for designing
intrusion detection systems. International Journal of Engineering & Technology,
7(3.24):479–482.

SDxCentral (2020). Software-Defined Networking (SDN) Definition.
https://www.sdxcentral.com/networking/sdn/definitions. (visited on Feb, 2020).

Song, H., Dharmapurikar, S., Turner, J., and Lockwood, J. (2005). Fast hash table lookup
using extended bloom filter: an aid to network processing. ACM SIGCOMM Computer
Communication Review, 35(4):181–192.

Teofili, S., Nobile, E., Pontarelli, S., and Bianchi, G. (2011). Ids rules adaptation
for packets pre-filtering in gbps line rates. In Trustworthy Internet, pages 303–316.
Springer.

Open Network Foundation. (2013). Openflow switch specification v1.5.
https://opennetworking.org/software-defined-standards/specifications/.

Wan, Z., Liang, G., and Li, T. (2012). Multi-core processors based network intrusion
detection method. Journal of Networks, 7(9):1327.

Xing, T., Huang, D., Xu, L., Chung, C.-J., and Khatkar, P. (2013). Snortflow: A openflow-
based intrusion prevention system in cloud environment. In Research and Educational
Experiment Workshop (GREE), 2013 Second GENI, pages 89–92. IEEE.

