
Analysis of Network Performance over Deep Reinforcement
Learning Control Loops for Industry 4.0

Guilherme T. T. Bernardo1, Gilson Miranda Jr.12, Daniel F. Macedo1

1Computer Science Department - Universidade Federal de Minas Gerais (UFMG)
Zip Code 31.270-901 – Belo Horizonte – MG – Brazil

2University of Antwerp - imec, IDLab, Faculty of Applied Engineering
Zip Code 2000 – Antwerp – Belgium

{guilhermebernardo,gilsonmiranda,damacedo}@dcc.ufmg.br

Abstract. One of the three core use cases of 5G is ultra-reliable low-latency
communications, which encompasses remote operation for Industry 4.0. It is ex-
pected that autonomous robots, driven by artificial intelligence agents running
on the cloud, will operate without human assistance. This paper investigates
how the network performance affects the behavior of AI-based remote opera-
tion control that is based on deep reinforcement learning. We investigate two
separate aspects: (i) the performance of a pre-trained model on ideal network
conditions and (ii) how the varying network conditions impact the agent perfor-
mance in the environment. The results show the influence of different network
quality conditions on agent’s performance, as well as the benefit of using agents
pre-trained on ideal conditions.

Resumo. Dentre os três principais casos de uso das redes 5G está a
comunicação ultra-confiável de baixa latência, que inclui a operação remota
para a Indústria 4.0. Nesse tipo de aplicação, robôs autônomos são capazes
de operar sem intervenção humana, guiados por sistemas de inteligência arti-
ficial executados em nuvem. Este artigo investiga dois diferentes aspectos: (i)
a performance de um modelo pré-treinado em condições de rede ideais; e (ii)
como variações de desempenho da rede influenciam o desempenho dos mode-
los no ambiente. Os resultados mostram a influência de diferentes condições de
qualidade da rede no desempenho do agente, assim como o benefı́cio de utilizar
agentes pré-treinados em condições ideais.

1. Introduction
As humans and robots work ever closer in an industrial context, automation

tools become a differential in the market by making production processes more effi-
cient [Buchner et al. 2012]. Workers and machines are also becoming more tightly inte-
grated with the Internet of Things (IoT), making the control of machines an increasingly
complex task [Huang et al. 2020]. Industry 4.0 is characterized as a movement that al-
lows factories to be intelligent enough to anticipate and identify problems and changes in
production [Faheem et al. 2018]. To keep this momentum and allow more devices to be
interconnected, the network infrastructure also evolve. Advances in information systems
allow operators in the factory to have increasingly up-to-date and interactive information



[Papcun et al. 2018]. In the context of Industry 4.0, with more devices to coordinate, op-
erators must create dynamic workflows that can be remotely managed. However, current
4th Generation (4G) mobile networks and other communication technologies cannot meet
the Industry 4.0 demands for high data rate, high reliability, high coverage, and low la-
tency [Cheng et al. 2018]. This makes it difficult to develop and maintain robust systems.

The application of intelligent control using Machine Learning (ML) meth-
ods has been investigated for many years, aiming at enabling the autonomous
control of complex systems that operate in dynamic environments [Harris 1994,
Lobbrecht and Solomatine 2002]. Currently, studies in 5G Ultra Reliable Low Latency
Communication (URLLC) are paving the way to the remote control of moving machin-
ery (e.g., robots, rovers, vessels) and lowering costs by offloading complex tasks to more
capable nodes in the cloud [Civerchia et al. 2020, Liu et al. 2017]. This type of remote
control allow the deployment of robots into hazardous environments while humans can
operate them from safe installations [Yang et al. 2008]. With the combination of ML-
based control for autonomous agents and the reliable communication provided by 5G, the
deployment of autonomous control agents that interact remotely with the controlled entity
can be envisioned in the near future.

With the current context of interconnected applications, severe limitations can
occur in an environment with hundreds of devices managed by a local control archi-
tecture, e.g., challenges related to controlling multiple devices and keeping all updated
[Nakimuli et al. 2021]. One approach to overcome this problem is to migrate the intelli-
gence to external servers outside the device in a distributed architecture. In this way, it is
possible to dedicate exclusive servers for data storage and processing without overloading
the system. The remote control architecture requires strict performance constraints on the
links between controller and actuators. System performance may be adversely affected if
the network cannot meet low latency and low packet loss ratio. Thus, the quality of the
network can affect the Artificial Intelligence (AI) decision when running remotely, e.g.,
when a packet is lost in data traffic and the agent takes an unexpected action.

The main contribution of this work concerns the evaluation of the effects of net-
work metrics on the quality of actuation of remote control loops. More specifically, we in-
vestigate how network performance impacts a control loop based on deep Reinforcement
Learning (RL). We use a robotic arm as use case, and the rewards and task completion
time from the RL agent as metrics to evaluate two different situations. First, when learn-
ing occurs over the network. Second, when the agent is pre-trained offline, then deployed
to act over a network. The offline pre-trained agent offers a baseline to analyze the effect
of the different network impairments on the learning of the agent trained directly over
the network. The agent trained offline faces a different condition when deployed in the
network, as the action taken is executed remotely under sub-optimal network conditions.
Nevertheless, the agent trained offline was still able to complete the tasks faster and with
higher rewards.

This paper is organized as follows: Section 2 details the related work. Section
3 describes the simulation infrastructure and the testing parameters, while Section 4
presents the results obtained with the agents using offline and online training. Finally,
Section 5 presents our conclusions and future work.



2. Related works

IoT technology is being extensively used in industries [Atzori et al. 2010]. In-
dustrial applications require very high transmission speeds and are extremely sensitive to
network delays. In a closed control loop, interlocking, monitoring, and supervision ap-
plications, there are tolerable delays in the range of milliseconds [Akpakwu et al. 2017,
ETSI 2020]. However, it is possible to expand the analysis of the application of IoT
to other areas besides industry. Those applications, known in 5G as URLLC, have
latency and jitter as the two main Quality of Service (QoS) metrics to be observed
[Nasrallah et al. 2018].

As delay and jitter are the most important QoS metrics for real-time ser-
vices [Kunst et al. 2019], they deserve special attention when evaluating the performance
of networked control systems. In the work by Kunst et al. [2019] , the authors maintained
jitter values between 25 ms and 47 ms, leading to the conclusion that the application
used was able to guarantee QoS considering the delay and jitter metrics. Chen et al.
[2004] proposed numerical measures which can quantitatively represent the QoS require-
ments of various applications with different service characteristics, concluding that there
cannot be critical data error and loss when controlling critical industrial processes.

In order to understand the challenges in terms of cognition complexity over mobile
networks, Luo et al. [2021] proposed an AI-powered mobile network architecture and dis-
cussed the use of AI in this architecture to make smarter decisions in different application
domains. Through a deep learning based model that integrates cognition with decision,
they could provide QoS by preventing network congestion using data from a China tele-
com operator. They showed that AI has offered tremendous opportunities for network
operators to operate over the network, with the view to better satisfy user requirements
and significantly reduce capital and operational expenditures.

Jiang et al. [2020] developed an AI-assisted framework for wireless networks,
considering multi-agents operation over a RL point of view. They cloud analyse the la-
tency optimization challenge and establish metrics (e.g, packet transmission reliability) to
test high-level autonomous driving scenarios. They demonstrated that information latency
is more critical in 5G vertical applications than in conventional URLLC.

Rodriguez et al. [2021] presented an experimental framework which consist on
the use and performance optimization of 5G-integrated autonomous mobile robots. They
used prototyping tools consisting of a network traffic sniffer, a 5G emulator, and a wireless
multi-access gateway. When they applied this framework, they focused the overall 5G
control and edge-cloud operation of the robots. They observed that the 5G operation of
the robots was superior in terms of control-loop reliability to the one of Wi-Fi 6 and the
potential of 5G for reliably operating autonomous mobile robots.

Marques et al. [2018] analysed and presented the impact of software-defined net-
works and cloud computing technologies in systems running real-time applications with
low end-to-end latency and high bandwidth requirements. Thus, to achieve URLLC in
wireless networks to support robot mobility, they proposed and implemented a splitting of
the WiFi architecture functionalities that provides multiconnectivity and redundant com-
munication by offering seamless mobility and failover resilience. They showed that the
robot does not lose communication with the cloud, and the throughput degradation is very



small if compared to the handover processes in classic Wi-Fi network. Hence, the results
show that the architecture presents a good performance in the recovery to failures, being
able of guaranteeing communication at any time.

Similarly, Liberato et al. [2018] proposed a networking architecture to facilitate
and enhance network programmability, which is an important enabler for 5G networks.
They argued that compared to the 4G network technology, 5G is expected to provide more
throughput even with more connected devices, whereas latency should be reduced 30-50
times, especially for URLLC clients. As results, their prototype demonstrated that residue
defined networking architecture is able to offer carrier grade protection achieving ultra-
reliable communication with sub-milliseconds for failure recovery, which is an important
use case in Industry 4.0.

The use of a remote AI system to control Automated Guided Vehicles (AGV) is
another application in which timely communication is crucial. Nakimuli et al. [2021]
performed several experiments to investigate all feasible scenarios to deploy a remote-
controlled AGV using 5G. They provided evidence of the improved performance of 5G
over 4G through in a platform which run and validate industrial use cases. Furthermore,
when compared to the 4G radio condition, the use case using 5G presented a better control
of the AGV in its trajectory, having better tolerance in terms of packet losses and delays.

Beltrão and Pires [2019] propose a case study in a coal recovery boiler of a cellu-
lose factory, in which the application of drones combined with AI and cloud computing
for visual inspection is analyzed. Hence, the drone was able to perform autonomous vi-
sual inspection in the pulp industry autonomously, delivering very high resolution images
and videos in an easy-to-interpret manner and in greater detail. They concluded that this
technology drastically reduces the exposure of workers to accident risks, makes field op-
eration faster and generate improvements in asset management processes.

In this study we investigate the effects of network performance on a URLLC appli-
cation from the point of view of the AI algorithms. Previous works attempted to provide
maximum and minimum values for network metrics that guarantee the operation of the
applications. This work, on the other hand, quantifies the amount of degradation on the
intelligent control loop for different network metrics. We quantitatively show the perfor-
mance comparison of online and offline trained agents, both from the ML point of view,
when analyzing the agent-environment loop rewards obtained, and from the end-user per-
spective of the application, when analyzing the mean time for the agent to achieve its
goal.

3. Test environment description
In this work, we developed a simulator to evaluate the effects that QoS plays in

the remote control of AI-based control-loops. The developed simulator considers both
the application side and the network side. The description of the simulator, as well as the
experimental methodology is shown below. The simulator is an open source software1.

3.1. Simulated network topology
The topology used for the simulations is composed by two Virtual Machines

(VMs), one containing the client, while the other contains the environment, connected
1https://github.com/guilhermebernardo/AI-Based-Control-Loops-Sim



by a link with impairments emulated using the Traffic Control (TC) Network Emulator
(NetEm)2 tool for Linux. The trained agent from Stable Baselines 33 is deployed at the
Controller VM, and the actions are executed at the Actuator VM running an OpenAI
Gym4 environment. The agent’s actions are transmitted through network using UDP, so
we can clearly observe the effects of the network impairments when error recovery meth-
ods from TCP are not employed. The better the network for transporting information, the
fewer errors should be observed in the agent’s performance. Figure 1 gives an overview of
the architecture. The agent decides an action and transmits to the actuator, which in turn,
execute the action in the environment and reply with the new state, the reward associated
with the action, informs whether the episode (or the task) is done or not, and transmits
further control information.

Figure 1. Simulator network architecture model

To evaluate agent performance in the first scenario, we considered a latency from
1 ms to 50 ms, since industrial control applications have delay bounds up to a millisecond
[ETSI 2020]. Kunst et al. [2019] maintained jitter values between 25 ms and 47 ms, so
we used it in the simulator a threshold value to guarantee QoS in 50 ms. In this work,
we consider a threshold rate ≤ 1% for packet loss and corruption, as Chen et al. [2004]
quantitatively represented the QoS requirements of various applications. TC-NetEm was
used to simulate delays, jitter, packet corruption, packet loss, and packet reordering.

3.2. Software components
To emulate an industrial application, we used the OpenAI Gym environments,

which is a toolkit for developing and comparing algorithms in RL. These environments
are used to evaluate the performance of trained agents with algorithms from the Stable
Baselines 3 library. This library implements a number of control problems, such as toy
problems suited for RL, games of varying levels of complexity as well as many robots
and robotic arms that simulate industrial applications [Raffin et al. 2021].

The simulated Industry 4.0 application consists on running the Acrobot-v1 envi-
ronment, a classic problem in RL. The Acrobot simulates a mechanical arm with two
segments and two joints, where the objective is to move the joints so that the lower part
of the arm reaches a certain height. In the Acrobot, an episode ends when the robotic arm
reaches the target line or when the time limit for reaching the target line is extrapolated.
This environment was chosen due to the similarity with Industry 4.0 applications, such as
the remote activation of a pick-and-place robotic arm. However, our simulator allows the
use of any environment implemented in OpenAI Gym.

2https://man7.org/linux/man-pages/man8/tc-netem.8.html
3https://github.com/DLR-RM/stable-baselines3
4https://gym.openai.com/



We used the Advantage Actor Critic (A2C) algorithm in the controller. A2C is
a deep RL algorithm based on value-based methods (e.g, Q-learning, Deep Q-learning)
and policy-based methods (e.g., reinforce with policy gradients) [Simonini 2018]. This
method uses two neural networks to measure how good the action taken is (value-based),
and an actor that controls how the agent behaves (policy-based).

3.3. Evaluation methodology
We defined two evaluation scenarios: one where the agent is trained under ideal

network conditions (without impairments between controller and actuator), and another,
where the agent’s training takes place over the network with diverse impairments inserted.
For the experiments with training over the network, agents are trained with the same
number of timesteps and the same environment was used to evaluate only the impact of
the network impairments on the agent’s performance.

Scenario #1: offline training. The first scenario could be used in an AI system that can
be trained offline on the cloud. Upon deployment, the actuator is installed on the IoT
device and the controller operates in the cloud. This may be the case of different Industry
4.0 applications (e.g, pick-and-place robotic arm control) where the tasks are immutable
over time.

Scenario #2: training over the network. The second scenario deals with situations re-
quiring continuous agent training in order to correctly operate under dynamic conditions.
One example is a production line for automotive tools, where the parts being built change
over time. Only a few units of each part are produced, and then the line takes up another
project.

Evaluation metrics. We used the same agents to assess how network quality affects
not only the total reward under a ML perspective, but the mean time the agent needs to
complete its task. The mean reward is the arithmetic mean of all rewards received after
each action taken by the agent during an episode. For each metric, we evaluated the
overall agents performance after 100 episodes. For each successful action by the agent,
the environment returns a -1 point reward. At the end of the episode, we obtain the full
reward for completing it. In the second scenario, we compare each metric with the mean
reward obtained with the pre-trained agent. We also calculated a 95% confidence interval
of the rewards obtained at the end of each episode.

The graphs in the next section allow us to compare the performance in time and
in the number of actions performed for each variation of each QoS metric. In addition,
we were able to compare between the metrics when analyzing the data, so that we could
infer that for the same pre-trained agent, the network impairments negatively affect its
performance.

4. Results
4.1. Agent deployed with prior offline training

Latency: The latency of a network, measured in milliseconds (ms), defines how
long a request takes to transfer from one point to another. Without making changes in the
network QoS between client and host, an average latency ≤ 1ms was observed in the first
10 requests. As expected, smaller rewards can be seen as network latency increases con-
siderably (Fig. 2). Thus, the greater the network latency, the greater the agent’s difficulty



in successfully executing the actions, which results in a longer time to achieve the goal
(Fig. 3).

0 10 20 30 40 50
latency (ms)

110

105

100

95

90

85

80

m
ea

n 
re

wa
rd

offline training

Figure 2. Mean reward by vary-
ing network latency with 500,000
timesteps

0 10 20 30 40 50
latency (ms)

1

2

3

4

5

m
ea

n 
tim

e 
(s

)

offline training

Figure 3. Mean task completion
time by varying network latency
with 500,000 timesteps

After increasing the delay above 30ms latency, the agents overall performance
gets very bad. It is noticed that the mean time in each episode grows considerably as
the network latency increases. It also can be seen that the curve drops considerably to a
reward of -100 points for Acrobot-v1 environment.

Packet loss: As the packet loss rate increases, timeouts occur in the communica-
tion between the agent and the environment. This occurs because packets that indicate the
end of an episode can be lost during traffic, causing the agent not to receive the reward for
the environment. In these cases, the robotic arm gets static. The simulator then forces the
episode to continue by retransmitting the packet, so that the environment still receives it,
even if delayed.

With this test, it was possible to verify that with 1% of packet loss, in 94% of the
episodes a timeout occurred. Thus, we can see in Figure 4 and Figure 5 the mean reward
and mean time respectively obtained by the agent as we increase the packet loss rate.

0.0 0.2 0.4 0.6 0.8 1.0
packet loss rate (%)

100

95

90

85

80

m
ea

n 
re

wa
rd

offline training

Figure 4. Mean reward by varying
network packet loss with 500,000
timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet loss rate (%)

1.0

1.5

2.0

2.5

3.0

m
ea

n 
tim

e 
(s

)

offline training

Figure 5. Mean task completion
time by varying network packet loss
with 500,000 timesteps

Note that the mean time increases considerably due to the number of timeouts



that occur as the network quality deteriorates. Thus, the mean reward of the episodes
tends to decrease and become more unstable, which can be noticed by larger confidence
intervals. This occurs because the network becomes unstable with a lot of packet losses,
and requests are lost. In this way, the agent’s behavior gets unstable as well, needing
more actions and taking longer to complete the objective. This shows that if some packet
containing the information that the episode has reached its end is lost, since the selection
of packets that will be lost is arbitrary with NetEm, the application becomes unfeasible
for remote control.

Packet corruption: Analogous to other QoS metrics, the worse the network qual-
ity, the more difficult it is to remotely control the robotic arm (Figure 7). When evaluating
the corruption, an 1% rate returned an average reward of -89.22 points, which is 7.35%
worse than the -82.66 points obtained with a corruption rate of 0.1%.

An interesting aspect to note concerns the similarity of the packet corruption and
packet loss metrics. Since for the purpose of developing this simulator, a corrupted packet
is discarded as well as a lost packet. However, we decided to keep the analysis for both
metrics because in a real scenario, AI-based applications can be used in networks with
considerable packet corruption rates.

We also can see that while the time to complete an episode increases as the packet
corruption rate increases as well, the reward obtained at the end of each episode decreases
(Figure 6).

0.0 0.2 0.4 0.6 0.8 1.0
packet corruption rate (%)

95.0

92.5

90.0

87.5

85.0

82.5

80.0

m
ea

n 
re

wa
rd

offline training

Figure 6. Mean reward by vary-
ing network packet corruption with
500,000 timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet corruption rate (%)

0.8

0.9

1.0

1.1

1.2

1.3

m
ea

n 
tim

e 
(s

)

offline training

Figure 7. Mean task completion
time by varying network packet cor-
ruption with 500,000 timesteps

Once the agent resumes executing its actions from the position where it stopped
before the timeout exception occurred, the number of actions does not necessarily increase
as more timeouts exceptions occur in the network. Therefore, in order to penalize the
group of episodes in which more exceptions occurred, we directly related the number of
timeouts to the final reward value. In this way, Figure 8 relates the mean reward obtained
at the end of the 100 episodes with the number of timeouts exceptions that occurred.
Thus, we can see in Figure 9 that by correlating the number of occurrences of timeouts
exceptions it is clearly possible to see how the worsening in the network quality affects
the overall performance of the agent.

Jitter: Jitter is a statistical variation of the delay in delivering data over a network.



0.0 0.2 0.4 0.6 0.8 1.0
packet loss rate (%)

8000

6000

4000

2000

0

m
ea

n 
re

wa
rd

 x
 n

um
be

r o
f t

im
eo

ut
 e

xc
ep

tio
ns

Figure 8. Relation between num-
ber of timeouts and mean reward
by varying network packet loss with
500,000 timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet corruption rate (%)

8000

6000

4000

2000

0

m
ea

n 
re

wa
rd

 x
 n

um
be

r o
f t

im
eo

ut
s e

xc
ep

tio
ns

Figure 9. Relation between num-
ber of timeouts and mean reward by
varying network packet corruption
with 500,000 timesteps

Thus, the simulator performs the delay variation between successive data packets in a
network. These small variations in latency between the delivery of separate packets can
be caused by network congestion, network collisions, or signal interference. By default,
the delay parameters are described by the average value (µ) and standard deviation (σ).
By default, NetEm uses a uniform distribution, so that the delay is within µ ± σ. For the
tests, we considered jitters of 5ms, 10ms, 15ms and 20ms. Therefore, all packets leaving
host will experience a delay, with a random variation of jitter. In Figure 10 we can see as
the network jitter is 20 ms, the mean time to complete the episode is relatively longer.

Packet reodering: Packet reordering is a well-known phenomenon that the order
of packets is inverted inside a network. Using NetEm, it was possible to vary the per-
centage of packets that suffer delay over network. In this way, we were able to simulate
sending some packets through the default average latency ≤ 1ms between the VMs and
delay sending the others by a few milliseconds. In order to evaluate the agent’s behavior
based on these statistical variations of packet delivery delay, it was possible to simulate,
for example, the immediate sending of 25% of the packets and the others were delayed
by 50 ms, which is more like real life, because causes a certain percentage of the packets
to get mis-ordered. The test case that most impacted the application’s remote control,
with the exception of the case where no packet is sent immediately, was sending the first
25% packets first and then delaying the others. Figure 11 shows that as we increase the
immediate send rate, the time it takes the agent to reach the goal reduces significantly,
because fewer packets will be delayed on the network.

These results shows that the network conditions demand more training of the sys-
tems and some QoS metrics affects more the agent behavior than other, like the mean
time curve that increases at a relatively greater rate with increasing packet loss than with
packet corruption, as the number of actions taken by the agent tends to be similar. When
comparing jitter and latency, we can see that the immediate sending rate dictates the
curves behavior. As we increased the rate, we could see that the agent’s behavior tends to
stabilize.

The overall conclusion of this scenario is that some QoS metrics interfere more in
the remote control of an application than others. For example, the packet loss rate caused



0 10 20 30 40 50
latency (ms)

1

2

3

4

5

6

m
ea

n 
tim

e 
(s

)

5 ms
10 ms
15 ms
20 ms

Figure 10. Mean task completion
time by varying jitter with 500,000
timesteps

10 20 30 40 50
latency (ms)

2

3

4

5

6

m
ea

n 
tim

e 
(s

)

0%
25%
50%
75%

Figure 11. Mean task completion
time by varying packet reordering
with 500,000 timesteps

the agent’s behavior to become inconsistent by taking longer to complete the episode
faster than modifying packet corruption rate.

4.2. Agent trained over the network

After analyzing the application-based results when using a pre-trained agent with
500,000 timesteps, the test scenario can be extended. It was possible to observe the agent’s
behavior taking into account the training process. For this, we use an online trained agent
under the network parameters modifications. The aim is to see how the agent behaves
when its training is susceptible to network quality, such as delays and packet losses. We
could see that network conditions demand more training from agents, since more robust
training is needed in a network with poorer quality. Thus, the offline trained agent’s per-
formance in the same OpenAI Gym’s environment with 20,000 timesteps was compared
with an online trained agent’s performance.

Latency: Figure 13 displays the comparison between the pre-trained agent (of-
fline) and the agent trained over network conditions (online) when varying latency under
required metrics to a power grid system in industry [Nasrallah et al. 2018]. It can be seen
that the first agent performed relatively better than the second, since the quality of the
network did not influenced its training. Even though both have been trained on the same
algorithm and with the same number of training timesteps, the agent with offline training
has a less disparate time curve, while the online trained agent was susceptible to perfor-
mance deterioration. Figure 12 shows the increase in the number of actions performed
within an episode and the decrease in its mean reward.

Packet loss: When considering the packet loss rate of a real network, it was pos-
sible to evaluate the behavior of the online trained agent. In order to compare the online
trained agent with the pre-trained agent, Figure 15 exposes how the mean time for the
robotic arm to reach the target increases considerably as the network quality deteriorates
at higher rates for the agent with online training. The mean reward obtained by the agent
deployed with zero training drops as the packet loss rate exceeds 0.5%, and the rewards
obtained are always worse than the mean reward obtained by the agent with previous
training (Fig. 14).

It can be seen that the network latency for the agent deployed with zero training



0 10 20 30 40 50
latency (ms)

275

250

225

200

175

150

125

100

75

m
ea

n 
re

wa
rd

offline training
online training

Figure 12. Mean reward by vary-
ing network latency with 20,000
timesteps

0 10 20 30 40 50
latency (ms)

2

4

6

8

10

12

m
ea

n 
tim

e 
(s

)

offline training
online training

Figure 13. Mean task completion
time by varying network latency
with 20,000 timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet loss rate (%)

160

150

140

130

120

110

100

90

80

m
ea

n 
re

wa
rd

offline training
online training

Figure 14. Mean reward by vary-
ing network packet loss with 20,000
timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet loss rate (%)

1

2

3

4

5

6
m

ea
n 

tim
e 

(s
)

offline training
online training

Figure 15. Mean task completion
time for varying packet loss on the
network with 20,000 timesteps

causes the reward to drop to considerably lower levels in the first latency variations than
with the first increases in the packet loss rate. When comparing the two metrics side by
side, it is noticeable that the time to complete an episode is longer as the latency increases.
Above all, the mean reward obtained at the end of the episode when the rate approaches
1% of packet loss drops substantially.

Packet corruption: Finally, when taking into account the packet corruption rate,
it is possible to analyze a notorious lack of control in the behavior of the robotic arm in
the episodes in which the corruption rate approached 1%. In these situations, the fact
that the online trained agent learns to perform his actions under a network in which the
packets related to his training were corrupted, made him take longer to reach his objective.
Figure 17 presents the mean time to complete the episode, which approaches 3 seconds.
Thereby, we can see how an online trained agent’s rewards is always lower than the mean
reward obtained with the offline trained agent. Also note that the rewards obtained from
the pre-trained agent remains even with changes in network quality. As we use a pre-
trained agent under ideal network conditions, it is natural that your training will maintain
the same agent’s performance, as we can see in Figure 16.

The results above indicate that is better to use a pre-trained agent that has been



0.0 0.2 0.4 0.6 0.8 1.0
packet corruption rate (%)

240

220

200

180

160

140

120

100

80

m
ea

n 
re

wa
rd

offline training
online training

Figure 16. Mean reward by vary-
ing network packet corruption with
20,000 timesteps

0.0 0.2 0.4 0.6 0.8 1.0
packet corruption rate (%)

1.0

1.5

2.0

2.5

3.0

m
ea

n 
tim

e 
(s

)

offline training
online training

Figure 17. Mean task completion
time for varying network packet
corruption with 20,000 timesteps

trained under ideal network conditions than deploying an agent without any training in
an unstable network. This paper evaluates static network conditions, since it is a first
step towards more complex scenarios. Future work will consider dynamic networks with
time-varying conditions.

5. Conclusions and future work
The present work allowed us to evaluate the results of the effects of QoS network

characteristics on the performance of simulated remotely controlled applications in In-
dustry 4.0. By remotely controlling an industrial device, the operator is able to maintain a
real-time bidirectional interaction. Focusing on the interaction with industrial processes,
some examples were presented to show the existing resources that are already applied
in the industry. With the integration of simulation tools for networks and physical pro-
cesses, a simulator was developed that can measure the impact of variations in the QoS
in a network on the performance of the actions by an agent in a simulated environment.
Furthermore, it was possible to evaluate the results not only by taking into account the
application, but also the agent’s own online training.

For future work, we will take into account the use of the simulator to detect when
a network experiences losses and delays and dynamically train the agent to increase the
reward obtained. The RL concept can be extended by using different QoS metrics together
and testing more scenarios. The biggest motivation for this study is that AI is becoming
the future of everything we know as technology today. It is extremely necessary that
we understand the impact of new networks and URLLC applications as well as observe
which QoS metrics have the greatest effect on the control of these applications. AI needs
to dynamically adapt to the environment, with agents that create alternatives to circumvent
these instabilities in a real network, such as losses and delays.

Acknowledgment
This work was financed in part by the Coordenação de Aperfeiçoamento de Pes-

soal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, CNPq (funding agency from
the Brazilian federal government), FAPEMIG (Minas Gerais State Funding Agency), and
São Paulo Research Foundation (FAPESP) with Brazilian Internet Steering Committee
(CGI.br), grants 2018/23097-3 and 2020/05182-3.



References
Akpakwu, G. A., Silva, B. J., Hancke, G. P., and Abu-Mahfouz, A. M. (2017). A survey

on 5g networks for the internet of things: Communication technologies and challenges.
IEEE access, 6:3619–3647.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
Networks, 54(15):2787–2805.

Beltrão, S. R. B. B. and de Oliveira Pires, A. A. (2019). Generation of corporate intel-
ligence in industry 4.0, through the combination of professional drones and artificial
intelligence. case study applied to a coal recovery boiler. Brazilian Journal of Tech-
nology, 2(4):946–966.

Buchner, R., Wurhofer, D., Weiss, A., and Tscheligi, M. (2012). User experience of in-
dustrial robots over time. In 2012 7th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 115–116.

Chen, Y., Farley, T., and Ye, N. (2004). Qos requirements of network applications on the
internet. Information Knowledge Systems Management, 4(1):55–76.

Cheng, J., Chen, W., Tao, F., and Lin, C.-L. (2018). Industrial iot in 5g environment
towards smart manufacturing. Journal of Industrial Information Integration, 10:10–
19.

Civerchia, F., Giannone, F., Kondepu, K., Castoldi, P., Valcarenghi, L., Bragagnini, A.,
Gatti, F., Napolitano, A., and Borromeo, J. C. (2020). Remote control of a robot rover
combining 5g, ai, and gpu image processing at the edge. In Optical Fiber Communi-
cation Conference, pages M3Z–10. Optical Society of America.

ETSI (2020). Service requirements for cyber-physical control applications in vertical
domains. Acessed in 01.10.2022.

Faheem, M., Shah, S., Butt, R., Raza, B., Anwar, M., Ashraf, M., Ngadi, M., and Gungor,
V. (2018). Smart grid communication and information technologies in the perspective
of industry 4.0: Opportunities and challenges. Computer Science Review, 30:1–30.

Harris, C. J. (1994). Advances in intelligent control. CRC Press.

Huang, G., Rao, P. S., Wu, M.-H., Qian, X., Nof, S. Y., Ramani, K., and Quinn, A. J.
(2020). Vipo: Spatial-visual programming with functions for robot-iot workflows. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pages 1–13.

Jiang, Z., Fu, S., Zhou, S., Niu, Z., Zhang, S., and Xu, S. (2020). Ai-assisted low infor-
mation latency wireless networking. IEEE Wireless Communications, 27(1):108–115.

Kunst, R., Avila, L., Binotto, A., Pignaton, E., Bampi, S., and Rochol, J. (2019). Improv-
ing devices communication in industry 4.0 wireless networks. Engineering Applica-
tions of Artificial Intelligence, 83:1–12.

Liberato, A., Martinello, M., Gomes, R. L., Beldachi, A. F., Salas, E., Villaca, R., Ribeiro,
M. R., Kondepu, K., Kanellos, G., Nejabati, R., et al. (2018). Rdna: Residue-defined
networking architecture enabling ultra-reliable low-latency datacenters. IEEE Trans-
actions on Network and Service Management, 15(4):1473–1487.



Liu, Q., Zoppi, S., Tan, G., Kellerer, W., and Steinbach, E. (2017). Quality-of-control-
driven uplink scheduling for networked control systems running over 5g communica-
tion networks. In 2017 IEEE International Symposium on Haptic, Audio and Visual
Environments and Games (HAVE), pages 1–6.

Lobbrecht, A. H. and Solomatine, D. P. (2002). Machine learning in real-time control of
water systems. Urban Water, 4(3):283–289.

Luo, G., Yuan, Q., Li, J., Wang, S., and Yang, F. (2021). Artificial intelligence powered
mobile networks: From cognition to decision. arXiv preprint arXiv:2112.04263.

Marques, P., do Carmo, A. P., Frascolla, V., Silva, C., Sena, E. D., Braga, R., Pinheiro,
J., Astudillo, C. A., de Andrade, T. P., Gama, E. S., et al. (2018). Optical and wireless
network convergence in 5g systems–an experimental approach. In 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pages 1–5. IEEE.

Nakimuli, W., Garcia-Reinoso, J., Sierra-Garcia, J. E., Serrano, P., and Fernández, I. Q.
(2021). Deployment and evaluation of an industry 4.0 use case over 5g. IEEE Com-
munications Magazine, 59(7):14–20.

Nasrallah, A., Thyagaturu, A. S., Alharbi, Z., Wang, C., Shao, X., Reisslein, M., and
ElBakoury, H. (2018). Ultra-low latency (ull) networks: The ieee tsn and ietf detnet
standards and related 5g ull research. IEEE Communications Surveys & Tutorials,
21(1):88–145.

Papcun, P., Kajáti, E., and Koziorek, J. (2018). Human machine interface in concept
of industry 4.0. In 2018 World Symposium on Digital Intelligence for Systems and
Machines (DISA), pages 289–296.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Ma-
chine Learning Research, 22(268):1–8.

Rodriguez, I., Mogensen, R. S., Fink, A., Raunholt, T., Markussen, S., Christensen, P. H.,
Berardinelli, G., Mogensen, P., Schou, C., and Madsen, O. (2021). An experimental
framework for 5g wireless system integration into industry 4.0 applications. Energies,
14(15):4444.

Simonini, T. (2018). An intro to advantage actor critic methods: let’s play sonic the
hedgehog! https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-
methods-lets-play-sonic-the-hedgehog-86d6240171d/. Acessed in 06.02.2022.

Yang, S.-Y., Jin, S.-M., and Kwon, S.-K. (2008). Remote control system of industrial
field robot. In 2008 6th IEEE International Conference on Industrial Informatics,
pages 442–447. IEEE.


