Machine Learning-Based Intrusion Detection System for
Automotive Ethernet: Detecting Cyber-Attacks with a
Low-Cost Platform

Pedro R. X. Carmo'-2, Paulo Freitas de Araujo-Filho' %, Divanilson R. Campelo !,
Eduardo Freitas 12, Assis T. de Oliveira Filho 2, Djamel F. H. Sadok '

!Centro de Informética — Universidade Federal de Pernambuco (UFPE)
Av. Jorn. Anibal Fernandes — s/n — Recife — PE — Brazil

2Grupo de Pesquisas em Redes e Telecomunicagdes (GPRT)
Universidade Federal de Pernambuco (UFPE)
Recife, Pernambuco, Brazil

3Ecole de Technologie Supérieure, Université du Québec,
Montreal, QC, H3C 1K3, Canada

{pedro.carmo,eduardo.freitas,assis.tiago,jamel}@gprt.ufpe.br

{pfaf,dcampelo}@cin.ufpe.br

Abstract. Automotive Ethernet is being adopted in vehicles to provide the larger
throughput that is required by autonomous vehicles. However, these vehicles
may be subject to several cyber-attacks that compromise their operation and
passengers’ safety. This work proposes an Intrusion Detection System (IDS)
that detects stream injection attacks on automotive Ethernet networks. The pro-
posed IDS is based on feature generation and the XGBoost machine learning
algorithm. Experimental results show that our proposed IDS achieves 0.9805 of
AUCROC and a detection time of 620us that allows real-time intrusion detection
while using an inexpensive hardware platform, such as a Raspberry Pi. This is
extremely important as cost is one of the automotive industry’s main concerns.

1. Introduction

Connected and Autonomous Vehicles (CAVs) are the primary trend for the future of the
automotive industry. Such vehicles offer several features that demand increased image
and sensor capabilities, such as high-resolution cameras and video-on-demand, among
others. These features demand higher bandwidth to provide safety, comfort, and infotain-
ment applications to drivers and passengers [Bello 2011].

In this context, the emergence of automotive Ethernet, especially the 100BASE-
T1 standard, as a new in-vehicle network solution opened a myriad of opportunities for
the introduction of new functionalities in cars, mainly due to Ethernet’s ability to carry
data with high bandwidth [Porter 2018].

Moreover, the compatibility of Ethernet with TCP/IP has also enabled other ap-
plications in cars, including diagnostics over IP and location-based services. The Audio
Video Bridging (AVB) set of standards, which were developed with the aim of enabling

reliable transport of Audio/Video applications over Ethernet, provide several specifica-
tions to facilitate Quality of Service (QoS) guarantees for streaming data in an Ethernet-
based in-vehicle network. Such specifications are defined in a set of standards, which
jointly allow Ethernet to support end-point synchronization, timing, bounded latency, and
bandwidth allocation, among other attributes [Matheus and Konigseder 2021].

Since CAVs can be viewed as part of the Internet of Things (IoT), they are also
vulnerable to cyberattacks that may put drivers, passengers, and pedestrians at risk [Liu
et al. 2017], [EI-Rewini et al. 2020], [Wu et al. 2020], [Koscher et al. 2010]. Intrusion
Detection Systems (IDSs) for in-vehicle networks, which are a resource used when other
countermeasures against cyber-physical attacks fail, must fulfill requirements such as real-
time execution and high precision [Wu et al. 2020]. In general, since vehicle’s electronic
control units (ECUs) have limited resources and cost is one of the major concerns of the
automotive industry, using a high-cost GPU to run IDSs in vehicles is not recommended.
So it is desirable that IDSs in cars be capable of being deployed on low-cost hardware.
However, a challenge arises in proposing an algorithm for an IDS that is complex enough
to capture the details involved in the identification of benign and malicious packets, and
at the same time is not computationally expensive to detect intrusions in real-time using
inexpensive hardware.

In this direction, algorithms that use Gradient Boosting (GB) are robust classifiers
that work well on structured data [Chen and Guestrin 2016]. In general, GB algorithms are
good choices as they are easy to implement and work well even with minimal tweaks. The
training time is fast and, unlike Deep Learning models, it is possible to obtain good per-
formance with little training time in GB algorithms. GB uses ensemble learning, which
combines classification from multiple base learners, learning complex relationships be-
tween resources. Furthermore, it is implemented using binary decision trees, which are
great for learning non-parametric and non-linear relationships between features and tar-
gets.

In this work, an IDS based on the XGBoost machine learning classifier is proposed
to identify replay attacks in automotive Ethernet networks. This type of attack allows an
intruder to enter commands on the network. To carry out such an attack, the intruder needs
to first pre-capture packets. By repeating these packets on the network, the attacker can
confuse vehicle systems and even cause them to execute instructions based on erroneous
data. To combat this, the proposed IDS detects which packets sent to the ECUs are benign
and which are malicious.

The objective of the IDS is to learn the characteristics of Audio-Video Transport
Protocol (AVTP) traffic, which is the protocol of the AVB set of standards that describes
the transport of time-sensitive and prioritized traffic (i.e., Audio/Video data) [b6 2016],
and distinguish whether a given packet is legitimate or malicious. An attack on the trans-
mission of AVTP packets can corrupt video images being sent to the ECUs. This attack
can be critical if it hits the driver assistance systems as the vehicle can make wrong deci-
sions.

The proposed model requires real-time execution ideally in low-cost hardware,
without needing a high-performance GPU. Furthermore, a comparison between a method
known in the literature and the proposed IDS is performed. In a nutshell, the main contri-

butions of this work are:

1. The proposal of a real-time, XGBoost-based IDS to detect replay attacks on auto-
motive Ethernet networks. The IDS can be deployed on low-cost hardware such
as a Raspberry Pi while meeting Audio/Video timing requirements.

2. A comparative evaluation between the proposed IDS and a baseline CNN-based
approach for intrusion detection in automotive Ethernet networks. This compar-
ison shows that the proposed technique achieves an intrusion detection time of
620us per sample, within the threshold value for real-time AVTP replay attack
intrusion detection, which is 1000us according to [Jeong et al. 2021b]. This value
of 620us is 56x faster than the intrusion detection time of the CNN-based model,
with a loss in accuracy of just 1.72 percentage points in the test dataset.

The rest of this article is organized as follows. Section 2 presents the related
works. Section 3 introduces the proposed IDS, describing the system design and the
model training process. Section 4 shows the dataset used to create the intrusion detection
model. Section 5 explains the experiments conducted. In Section 6 the results of the
experiments are shown, in addition to an analysis of the results. Finally, Section 7 brings
some ideas, and possible future works and concludes the paper.

2. Related Works

Currently, few works tackle the problem of detecting intrusion in automotive Ether-
net networks. Most works in the literature on protecting automotive networks are fo-
cused on networks that use the Controller Area Network (CAN) protocol [Choi et al.
2018], [Markovitz and Wool 2017], [Kang and Kang 2016], [Freitas De Araujo-Filho
et al. 2021]. This is mainly due to two reasons: the lack of an automotive Ethernet dataset
and the fact that the use of Ethernet in automobiles is recent. With the increasing use of
automotive Ethernet, solutions for this protocol are emerging.

The authors of [Jeong et al. 2021b] propose an IDS based on deep learning to de-
tect replay attacks in automotive Ethernet networks. The authors claim that their work is
the first to perform intrusion detection on automotive Ethernet, and because of that, it will
be used as a baseline in this work. The proposed model is based on 2-dimensional convo-
lutional neural networks (2D-CNN) and achieves 0.99% accuracy in identifying whether
a packet arriving on the network is injected by an attacker or not. Deep Learning models
require much overhead in terms of training and deployment. Due to their complexity, in
general, high-cost and high-capacity hardware is required to perform real-time inferences
on these models, i.e, even if the model is trained in a fog/cloud environment, inferences
need to be made “inside” the vehicle, and a deep learning model, even after being trained,
takes a long time to infer results. Because of this, the inference time required to run the
model in real-time using a low-cost device makes it impractical to implement the IDS
without a high-performance GPU, since deep neural networks have a high computational
cost. For applications that need to be executed in real-time and in low-cost hardware,
as is the case of the proposed scenario of our paper, deep learning-based models may be
unfeasible.

The work in [Alkhatib et al. 2021] presents an IDS based on deep learning to
prevent attacks on the SOME/IP protocol. The authors claim that their work is a pioneer
in detecting intrusions in the Scalable service-Oriented Middle-warE over IP (SOME/IP)

protocol [AUTOSAR 2016], a type of middleware that can be used to improve intercom-
munication between multiple ECUs. However, the IDS proposed by the authors can only
be used for offline detection. The intrusion can only be identified when the session be-
tween the client and the server ends.

The authors of [Alkhatib et al. 2022] propose an anomaly detection system in
automotive Ethernet, more specifically in the AVTP protocol, based on the use of convo-
lutional autoencoder (CAE). The dataset used by them is the same dataset used in [Jeong
et al. 2021b]. The CAE algorithm used is an encoder and decoder with asymmetric
CNN structures, anomalies in the AVTP packet flow can be detected by measuring the
reconstruction error of an AVTP packet window. The authors claim to be the first to de-
tect anomalies in automotive Ethernet-based networks. Their results show an accuracy of
0.94. However, their proposed model is only used for offline detection and cannot be used
in real-time scenarios.

As aresult, there are still few works that focus on proposing cybersecurity systems
for automotive Ethernet networks. The existing works are not capable of performing
intrusion detection in real-time, and those that have this capability require the use of
high-performance GPUs, which may be costly for vehicles. To the best of the authors’
knowledge, no other solution was found in the literature that aimed at real-time intrusion
detection on automotive Ethernet networks and did not use a high-performance GPU.
This makes the model presented in this paper the first in the literature to perform real-
time intrusion detection on automotive Ethernet using low-cost hardware.

3. Proposed IDS

In this work, we propose a machine learning (ML) model based on XGBoost that de-
tects intrusions on automotive Ethernet networks. The proposed IDS receives benign data
while malicious data is purposely injected. After passing the switch, these packets are sent
to the IDS, which initially uses these packets to generate features and then feeds these fea-
tures into the machine learning model. The model aims at classifying whether the packet
arrived is malicious or benign. The goal is to deploy the IDS on low-cost hardware that
must be easily and cheaply added to a vehicle. Figure 1 illustrates our proposed system’s
architecture. The model proposed in this work can be fully reproduced by the methodol-
ogy described in this section. As said before, the data used can be found in [Jeong et al.
2021a]

System Components

Pre-captured
packet

IDS XGB-ML-MODEL

\ — X dmic
/ < b? {‘ > Feature Generator —)XGBOOSt—) yi'

=5 0,x&D
Yi =

Replay attack 1,x,2D

(D)

Figure 1. System design.

Replay Attacks Connected vehicles have a large attack surface and an adversary can
enter the in-vehicle network in many ways, such as via OBD port, Wi-Fi, Bluetooth,
mobile apps, USB ports, remote key, and others. Once inside the in-vehicle network, an
attacker can perform a replay attack, which consists of sending and injecting valid frames
into the network at the right time. Once the attacker is inside the in-vehicle network, the
ECU cannot identify whether the source sending these frames is secure [Liu et al. 2017].

The proposed IDS aims to identify possible AVTP replay attacks. Such attacks
can be dangerous as they have the ability to make ECUs make wrong decisions based
on distorted information. Replay attacks can be simulated by repeatedly sending AVTP
video frames. An example of the effects of a replay attack can be seen in Fig 2. Instead
of receiving the original image, the ECU receives a distorted image.

Figure 2. On the left is the original frame that was supposed to be received by
the ECU. On the right is the distorted image that is received when the system is
under replay attack.

It is possible to divide the construction of the proposed intrusion detection system
into the steps described below.

Data pre-processing. Initially, the processing and analysis of the data found in the
dataset are carried out. This process is essential to understand the characteristics of the
data and check if data processing is necessary before running the algorithm. Each AVTP
packet in the dataset has a size of 438 bytes. The authors in [Jeong et al. 2021b] noted
that in the first 58 bytes of packets, there are patterns that vary from packet to packet,
making it possible to identify different patterns between malicious and benign packets. In
the 59th-438th packets, no significant pattern is found in the byte shift. In this way, only
the first 58 bytes of the packets generate features to input into the model.

Feature Generator. The Feature Generator process used in this work is based on the
process proposed by [Jeong et al. 2021b]. After the data processing step, the feature
generator is modeled. It will allow the machine learning model to find differences in the
payload of packets after the insertion of malicious packets, which means that if there is
a slight difference in the payload data, these packets are likely to be re-injected, and the
model should detect this and classify them as malicious. The Feature Generator output is

used as input to the machine learning model. To start the Feature Generator, a window
value is defined, where w is an integer such that w > 4. The objective is to aggregate the
traffic that arrived in windows of size w, producing a two-dimensional vector. The authors
in [Jeong et al. 2021b] noted that a window where w = 44 brings the best accuracy values
for the model to be built so this window value will be used. A packet that arrives as input
to the Feature Generator is represented by X;, where X; = (X1, Xi2, ..., X; (j—1), Xi58),
X, 1s an integer between 0 and 256 and j = 58, where j represents the j-th byte of the
array. To generate the features, it is necessary to define a A X, representing the change
of state of the i-th AVTP packet. In a benign packet these changes are smooth, while in a
malicious packet they are more abrupt due to the insertion of distorted information. AX;
is represented in Eq. 1:

AX; = (X; — X;_1) mod 28
(Xz',b Xi,2> oo Xi,(j—l)y Xi,58) mod 2°
(AXi,lu AXi,27 eoey AXi,(j—l)a Xi,58)'

(D

In Fig 3 it is possible to observe the feature generation process. At the end of this step,
a two-dimensional vector of size w x 27 is generated. In this step, the labels of each
generated feature are also created. Label O is assigned to those packets considered benign,
and label 1 to packets considered malicious. To label the packets that should be considered
malicious in the training step, we define the following: a packet is considered malicious
if at least one of its frames is injected by an attacker. These labeled data are used to train
the model, and they must be able to identify if a packet is benign or malicious according
to the payload characteristics. In this way, it is possible to train the proposed model using
the data processed in this step.

Step 1. Bundle 44 AVTP packets

x [oofeeferfanfoofoo]oo oo 44 [4a [4e]

o [oofeeferfanforJooJoo]10]4p]4[se[4e]

X3, .., 43 H H

s [o0feefer[anoafoo]oo]sorr e fer fer]

s [oo]ee [rrJaafos Joof oo J4ofer e fer fer

Step 2. Subtract byte-by-byte and split into nibbles
vz [ooolo]olofolo]oft]elofafof1jofo]o]ole]olo]op]

AX3, . 43 H H

s [oJofolo]olo]ole]o]]olo[olo]+Jafafofo]ofo]ofolo]

L

Step 3. Generate a feature

op]op[elo]opo[eft]olo]elo[*|o]e]o]olo]elo]o]

X45

op[olo[elo]ajofo]«[op

op[1] olo]ofofolofolo

Window size (w) = 44

Figure 3. Feature Generator. Adapted from [Jeong et al. 2021b].

Training a ML model. The proposed machine learning model uses as a basis the XG-
BClassifier algorithm. The model was implemented using the XGBoost library available
for python [Chen and Guestrin 2016]. The data D;,,4,.s has been used for training and
validation and the data Dy,;,in, has been used as a test set. The model to be built com-
prises an input which accepts 44 x 116-sized data. This training is performed using 5-fold
cross-validation.

There are two types of XGBoost parameters: Tree Booster parameters and Learn-
ing task parameters. Learning task parameters set and evaluate the learning process of
the booster from the given data. Tree Booster parameters control the performance of the
tree booster since the model consists of a set of decision trees. The parameters to be
defined in this process are of the Tree Booster type, which are:

* learning rate. The rate at which our model learns patterns from data. Lower
learning rate leads to slower computation.

* max_depth. Maximum tree depth for base learners.

e gamma. Minimum loss reduction is required to make a further partition on a leaf
node of the tree.

* colsample bytree. The subsample ratio of columns when constructing each tree.
Subsampling occurs once for every tree constructed.

* min_child weight. The minimum sum of instance weight (hessian) needed in
a child. If the leaf node has a minimum sum of instance weight (calculated by
second-order partial derivative) lower than min_child_weight, the tree splitting
stops. The larger min_child_weight is, the more conservative the algorithm will
be.

* reg_alpha. L1 regularization term on weights. Increasing this value will make the
model more conservative.

e reg_lambda. L2 regularization term on weights. Increasing this value will make
the model more conservative.

More details can be found in [Chen and Guestrin 2016].
Initially, using the Hyperopt library [Bergstra et al. 2015], a hyperparameter tun-
ing step was performed to find the best model. The parameters were varied according to

the values in Table 1. The parameters selected after this step were used to train the model
and can be seen in Table 2.

Table 2. tuned XGB Model

Table 1. XGB parameters and lev- Parameter Levels
els.
Parameter Levels max.depth 6

gamma 0

max_depth From 3 to 20 colsample_bytree 1

gamma From O to 9 min_child_weight 1

colsample bytree From 0.5 to 1 learning_rate 0.007

min_child_weight From O to 10 reg_alpha 4
reg_lambda 1

At the end of the training stage, the model to be used to detect malicious packets is
obtained. In summary, the proposed model works in a few steps. In the first step, the sys-

tem bundles the packets being transmitted on the network into windows of size w = 44,
selecting only the first 58 bytes of each frame - because it is in these bytes that the in-
formation allows to identify whether the packet is malicious. Then this frame is used
as input to the Feature Generator. This step is essential because the Feature Generator
allows identifying characteristics of the attacker’s frames that are different from the orig-
inal frames. Finally, the generated feature is given as input to the trained model that will
identify whether that frame is malicious or not. This process repeats while AVTP packets
are being sent over the network. Algorithm 1 shows the algorithm of our proposed IDS.

Algorithm 1 Proposed XGB-ML-Model
1. Use the pre-captured data to train the machine learning model called XGB_Model
2. while AVTP packets are received on the switch do:

3. create an array X, where X is the set of the first 58-bytes of 44 sequential AVTP
frames

4 use array X as input to Feature Generator (Equation 1) and get feature

5 Use the feature as input to XGB_Model

6. if the frame is considered malicious then

7 discard frame

8 end if

9. end while

4. Dataset Description

The dataset used in this work contains real packet data in PCAP format and was provided
by [Jeong et al. 2021a]. This dataset is made up of AVTP packets, where each packet
is labeled as “benign” (if it is an actual packet) or “malicious” (if it is an injected packet
by an attacker). These AVTP packets carry video frames, that is, each frame carries an
image in its payload. These images are captured by cameras in the vehicles and sent to the
ECUs, which can make decisions based on the data received. The authors responsible for
the dataset initially built and collected attack-free stream AVTP data units (AVTP-DUs)
packets in two scenarios: inside the lab and in a vehicle running on the road. In addition,
video frames were inserted into the dataset to simulate a replay attack.

To simulate a replay attack, the authors of the dataset [Jeong et al. 2021b] insert
a video frame containing 36 AVTP-DUs streaming packets while capturing the actual
packets. This malicious video frame is available in [Jeong et al. 2021a], together with
two datasets: the dataset built inside the lab called D;,,4..-s and the dataset built with the
vehicle in motion, called D gyjying-

5. Experiments Evaluation

The experiments were carried out on four machines. The first is provided by Google
Collaboratory Pro with GPU NVIDIA Tesla P100 and has 26GB of RAM (NVIDIA Drive
version is 460.32.03 and the CUDA version is 11.2.); the second uses a CPU Intel(R)
Core(TM) 15-8250U @ 1.60GHz and has 16GB; the third uses a virtualized CPU ARM
Neoverse-N1 with 1 Core and has 4GB of RAM; finally, the last one uses a Raspberry Pi
3 as a host with CPU ARM Cortex-AS53 and has only 1GB of RAM (see Table 3). The
data used to train the model were from the D;, 4., dataset, which has 446,372 AVTP

benign packets and 196,894 AVTP malicious packets. The Dg,ying dataset was used for
model testing, and it has 149,4257 benign packets and 376,236 malicious packets.

Table 3. Devices used in experiments.

Host Processor Available RAM
Google Collaboratory Pro (GPU) NVIDIA Tesla P100 26GB
Laptop X510URR (CPU) Intel(R) Core(TM) i5-8250U 16GB
Oracle VM (CPU) ARM Neoverse-N1 (Single Core) 4GB
Raspberry PI 3b (CPU) ARM Cortex-AS53 1GB

The fourth host in Table 3 was used to estimate the performance of the model
on low-cost hardware. This means that good performance on the Raspberry Pi 3 host
indicates that the model can be used for real-time intrusion detection on other inexpensive
devices, such as the new Raspberry Pi 4. To get an idea, the Raspberry Pi 4 has a Quad-
core Cortex-A72 (ARM v8) CPU that has higher specs than the processor used in our
tests, with the same architecture.

5.1. Model Train

The training process was done using the dataset data D, 4005 for training and validation.
The data Dgyiving Was used for the test. The model is trained using the parameters found
in the hyperparameter optimization step and can be seen in Table 2. This training process
is performed using 5-fold cross-validation.

5.2. Evaluation metrics

The evaluation metrics used are Accuracy, Precision, Recall and F1-Score. These metrics
are calculated as follows:

Accuracy = (TP +TN)/(TP+TN + FP + FN);

Precision = (T'P)/(T'P + FP);
Recall = (TP)/(TP + FN);

F1 — Score = 2 x Precision x Recall/(Precision + Recall),

where T'P is the number of True Positive classifications, T'N is True Negatives, F'P is
False Positives, and F' NV is False Negatives. F1-Score is the harmonic mean of precision
and recall. In addition, the metrics Area under the ROC curve (ROC AUC) and Average
inference time per sample are also used.

ROC AUC is a standard metric used in binary classifiers and shows changes in the
true-positive rate and false-positive rates. The inference time is a critical metric since the
IDS must be executed in real-time: if an attack occurs, it must be identified before the
packet reaches the ECU and causes errors and anomalous behavior.

6. Results and Analysis

As mentioned before, the model proposed in [Jeong et al. 2021b] is used as a baseline.
Here, this model is identified as “2D-CNN-Model”. The model proposed in this work is
identified as “XGB-ML-Model”. It is essential to highlight that in order to evaluate both
models under the same conditions and on the same hosts, the 2D-CNN-Model model was
faithfully implemented and based on the authors’ specifications in [Jeong et al. 2021b].

Tables 4 and 5 show the average results of the evaluation metrics for both models
using 5-fold cross-validation. The individual values can be found in a csv file !. Table
4 shows the results obtained for the training set. The main metric used is the Fl-score
since the data is slightly imbalanced, and the F1-score is a better metric when there are
imbalanced classes. For the baseline 2D-CNN-Model, F1-scores is 0.9927. With XGB-
ML-Model the F1-core value found is 0.9993. This means that the models can classify
almost all AVTP packets correctly.

The results for the test set Dgyiving can be seen in the Table 5. For XGB-ML-
Model, the value of F1-score is 0.9805, slightly lower than the average value found in the
2D-CNN model. Also noteworthy is the better performance in the Precision metric of the
XGB-ML model in relation to the 2D-CNN model, although it is worse when comparing
the other metrics.

Table 4. Classification results in training dataset.

Accuracy Precision Recall Fl-score AUC

2D-CNN-Model 0.9955 09913 0.9940 0.9927 0.9997
XGB-ML-Model 0.9847 0.9970 0.9823 0.9896 0.9983

Table 5. Classification results in test dataset.
Accuracy Precision Recall Fl-score AUC

2D-CNN-Model 0.9919 0.9637 0.9979 0.9804 0.9990
XGB-ML-Model 0.9747 0.9727 0.9357 0.9538 0.9805

In Table 6, the average values of inference time are obtained. The values discussed
here refer only to the average time each model takes to classify the packet on each pro-
cessor, that is, the time it takes from the moment the method is invoked until the moment
the packet is classified. It is possible to observe the difference in performance between
the models, especially if we consider the model running on a CPU. The inference time
of the 2D-CNN model on CPU 15-8250U is about 10x slower than that for XGB-ML on
the same platform, 27x slower when compared to that for XGB-ML on the CPU ARM
Neoverse N1, and 56x slower than that for XGB-ML when deployed on a Raspberry Pi
3. Unlike 2D-CNN, the XGB-ML model does not benefit from running on GPU while
maintaining excellent performance. It is important to keep in mind the threshold value for
real-time AVTP replay attacks intrusion detection, which is 1000 ;s according to [Jeong
et al. 2021b].

Thttps://raw.githubusercontent.com/prximenes/ML-based-ids-paper-results/main/5fold.csv

Table 6. Average inference time per sample.

Model Processor Time
(us/sample)

(GPU) NVIDIA Tesla P100 83
2D-CNN-Model - -pj) Intel(R) Core(TM) i5-8250U 980

(CPU) ARM Neoverse-N1 (Single Core) 5246

(CPU) ARM Cortex-A53 35,000

(GPU) NVIDIA Tesla P100 96
XGB-ML Model p}) [nel(R) Core(TM) i5-8250U 92

(CPU) ARM Neoverse-N1 (Single Core) 193

(CPU) ARM Cortex-A53 620

Discussion. Cost, performance, and safety are concerns that need to be considered when
one develops any system for automobiles. High cost or even high weight solutions may
be unfeasible to be introduced in vehicles. Recently, there has been a discussion about
moving to increasingly vehicle-centric architectures in order to meet cost, performance,
and safety requirements [Bandur et al. 2021].

The solution used as a baseline and proposed by [Jeong et al. 2021b] achieves
high accuracy in both sets where it was tested. However, when we take into account the
average inference time, a fundamental metric to assess whether the solution is capable
of running in real-time, we can observe that the performance of the solution suffers a
considerable drop when it is executed in CPUs and even in lower performance power
GPUs (see [Jeong et al. 2021b]). The solution proposed in this work, on the other hand,
manages to maintain the high accuracy of the Deep Learning model proposed in [Jeong
et al. 2021b], showing slightly lower performance in the Recall and F1-score metrics, but
even surpassing the baseline model considering the Precision metric. Despite this, it is
essential to note that the proposed model can run in real-time on a Raspberry Pi 3, without
needing a high-performance GPU. This must be considered, as it is hardly possible to
have a high-performance GPU in a vehicle dedicated to executing an intrusion detection
algorithm. At the same time, the availability, cost, and even weight of a Raspberry Pi like
the one used to test the models in this work show that it can be used without difficulty.

The model proposed in this work is below the threshold of 1000 s on all platforms
used, especially on the Raspberry Pi 3 and ARM-based Neoverse-N1 CPU. It is also
important to point out weight and power consumption concerns. A high-performance
GPU like the one used in the experiments weighs about 1.5Kg and has a maximum power
consumption of 250W, while a Raspberry Pi 3 weighs 0.46g and consumes about 15W.
Thus, the cost-benefit of using the XGB-ML model based on decision trees proposed in
this work is evident. The IDS proposed based on XGB-ML is able to differentiate the
transmission of legitimate AVTP packets and the transmission of packets through replay
attacks. Also, it can do this in real-time, using an inexpensive device like a Raspberry Pi
3. Manufacturers can choose to reduce cost, weight, and power consumption and keep a
model running on a cheap, lightweight device, even if it means a slight loss of accuracy.
The intrusion detection system should be just one of many other security redundancies
running on the system and network, and because of that, it should not cost more or take

up more space in the project than necessary.

7. Conclusion and Future Works

In this work, a machine learning-based real-time intrusion detection system to detect
AVTP replay attacks in automotive Ethernet was proposed. The IDS can be implemented
in low-cost hardware and without the need for a high-performance GPU. In addition, the
proposed approach was compared with another known in the literature to detect intrusion
in automotive Ethernet networks and both were discussed and analyzed. The first ap-
proach, based on 2D-convolution neural networks, was proposed by [Jeong et al. 2021b]
and managed to achieve excellent results in terms of precision and accuracy. However, it
presents very high inference times when executed without using high-performance GPUs,
which can affect its ability to detect AVTP replay attacks in real-time.

The approach proposed in this paper is based on decision trees through an XG-
Boost classifier, and despite having slightly lower performance in terms of precision and
accuracy than the 2D-CNN model, it can perform inferences in real-time using an inex-
pensive Raspberry Pi, without the need for a high-performance GPU. The paper illustrates
how algorithms simpler than deep neural networks can be used as an alternative to cre-
ating simple models that run in real-time without the need for a high-performance GPU.
The challenges and limitations of each model were also discussed.

In future works, it is important to find a way to keep the classification metrics of
the model at the highest possible levels, while keeping the inference times compatible
with running the IDS in real-time. A way to achieve this goal is to train a model based on
deep learning that can perform real-time inferences even on limited or low-cost hardware.
Examples of neural networks that could be investigated are depth separable convolutions,
convolution networks that utilize pointwise group convolution and channel shuffle, and
light-weight vision transformers. These networks were proposed to be “Mobile-Friendly”
and can be adapted to solve the problem seen in this work in real-time on devices with
low-cost hardware. In addition to these networks, 1D-Conv networks have recently been
used and achieved state-of-the-art performance levels in various applications and can be
investigated.

Acknowledgement

This work was supported by Fundacdo de Amparo a Ciéncia e Tecnologia de Pernambuco
(FACEPE), Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES),
Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq), and Fonds de
recherche du Québec B2X Scholarship. We also thank the authors of [Jeong et al. 2021b]
for their support in reproducing their work.

References

(2016). IEEE Standard for a Transport Protocol for Time-Sensitive Applications in
Bridged Local Area Networks. [EEE Std 1722-2016 (Revision of IEEE Std 1722-
2011), pages 1-233.

Alkhatib, N., Ghauch, H., and Danger, J.-L. (2021). SOME/IP Intrusion Detection using
Deep Learning-based Sequential Models in Automotive Ethernet Networks. In 2021

IEEE 12th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), pages 0954—0962.

Alkhatib, N., Mushtaq, M., Ghauch, H., and Danger, J.-L. (2022). AVTPnet: Convolu-
tional Autoencoder for AVTP anomaly detection in Automotive Ethernet Networks.
arXiv preprint arXiv:2202.00045.

AUTOSAR (2016). SOME/IP protocol specification. [online] Available:
https://www.autosar.org/fileadmin/user_upload/standards/
foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf.

Bandur, V., Selim, G., Pantelic, V., and Lawford, M. (2021). Making the Case for Cen-
tralized Automotive E/E Architectures. IEEE Transactions on Vehicular Technology,
70(2):1230-1245.

Bello, L. L. (2011). The Case for Ethernet in Automotive Communications. SIGBED
Rev., 8(4):7-15.

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D. (2015). Hyperopt: a
python library for model selection and hyperparameter optimization. Computational
Science & Discovery, 8(1):014008.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, pages 785-794, New York, NY, USA. ACM.

Choi, W., Joo, K., Jo, H. J., Park, M. C., and Lee, D. H. (2018). Voltageids: Low-
level communication characteristics for automotive intrusion detection system. /EEE
Transactions on Information Forensics and Security, 13(8):2114-2129.

El-Rewini, Z., Sadatsharan, K., Selvaraj, D. F., Plathottam, S. J., and Ranganathan, P.
(2020). Cybersecurity challenges in vehicular communications. Vehicular Communi-
cations, 23:100214.

Freitas De Araujo-Filho, P., Pinheiro, A. J., Kaddoum, G., Campelo, D. R., and Soares,
F. L. (2021). An Efficient Intrusion Prevention System for CAN: Hindering Cyber-
Attacks With a Low-Cost Platform. IEEE Access, 9:166855-166869.

Jeong, S., Jeon, B., Chung, B., and Kim, H. K. (2021a). Automotive Ethernet intrusion
dataset. Available at https://dx.doi.org/10.21227/1yr3—-g0009.

Jeong, S., Jeon, B., Chung, B., and Kim, H. K. (2021b). Convolutional neural network-
based intrusion detection system for AVTP streams in automotive Ethernet-based net-
works. Vehicular Communications, 29:100338.

Kang, M.-J. and Kang, J.-W. (2016). A novel intrusion detection method using deep neu-
ral network for in-vehicle network security. In 2016 IEEE 83rd Vehicular Technology
Conference (VTC Spring), pages 1-5. IEEE.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D.,
Kantor, B., Anderson, D., Shacham, H., and Savage, S. (2010). Experimental Security
Analysis of a Modern Automobile. In 2010 IEEE Symposium on Security and Privacy,
pages 447-462.

Liu, J., Zhang, S., Sun, W., and Shi, Y. (2017). In-Vehicle Network Attacks and Counter-
measures: Challenges and Future Directions. IEEE Network, 31(5):50-58.

Markovitz, M. and Wool, A. (2017). Field classification, modeling and anomaly detection
in unknown CAN bus networks. Vehicular Communications, 9:43-52.

Matheus, K. and Konigseder, T. (2021). Automotive Ethernet. Cambridge University
Press, 3 edition.

Porter, D. (2018). 100BASE-T1 Ethernet: the evolution of automotive networking. Texas
Instruments, Techn. Ber.

Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., and Li, K. (2020). A Survey of Intrusion
Detection for In-Vehicle Networks. IEEE Transactions on Intelligent Transportation
Systems, 21(3):919-933.

