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Abstract. In this work, we present Transmission Control Protocol Best Path
(TCPBP), an alternative link-state routing metric aims to optimize single-path
TCP throughput on intradomain High Speed Lossy Networks. The enhanced
performance is achieved by combining delay and packet loss on a single mixed
metric as a function parameter. In contrast, this function predicts the TCP
throughput that should be maximized. As proof of concept, TCP bandwidth tests
were executed in an SDN High Speed Lossy Network Linux-emulated topol-
ogy with ten nodes, employing an intradomain link-state routing protocol (i.e.,
OSPF-like) capable of running both TCPBP and traditional metrics delay and
hop-count. Such topology was chosen because of the potential to improve its
TCP throughput with route selection, given the characteristics of the topol-
ogy itself and the TCP throughput prediction model adopted. The overall TCP
throughput performance obtained with TCPBP was greater than with different
routes founded by traditional metrics, showing the potential of our proposal.

1. Introduction
Despite the recent Google© QUIC rapid expansion (which runs on top of UDP) and the
emergence of new transport protocols such as SCTP and DCCP [Polese et al. 2019], TCP
(Transmission Control Protocol) is still the most used transport protocol on the internet
and in virtual private networks. So, its performance, especially regarding raw data transfer
capacity, i.e., throughput, is a critical subject and primary object of concern to network
engineers and researchers in the field of computer networks. When it comes to TCP
throughput performance, it can be stated as a function of round-trip delay, packet loss,
and available bandwidth (we discuss it in detail in section 3: TCP Throughput Prediction).
On the other hand, in charge of defining paths between nodes in the network, there are
routing protocols such as OSPF (intradomain routing) and BGP (interdomain routing)
[Kurose and Ross 2017], in which paths are computed based on static metrics such as
hop-count, delay and reference bandwidth (as in OSPF), or as-path length (the case of
BGP).

As a result of this rigidness, for example, Internet Service Providers (ISPs) back-
bones (that typically offer both Internet and Virtual Private Network services) often do not
provide to their customers routes that optimize TCP throughput; e.g., even if packet loss
and delay as Service Level Agreement (SLA) parameters are met, some of the routes do
not have the best possible combinations available of delay and packet loss for TCP, which
limits performance and possibly impairs backbone capacity of throughput delivery to the
applications; in fact, even sophisticated QoS routing metrics may fail to provide best paths



for TCP throughput, simply because they were not designed to do so. This effect is espe-
cially true in the case of High Speed Lossy Networks because the possible routes between
any pair of nodes in such topology may differ significantly in their combined values of
delay and packet loss.

In this work, we propose and evaluate the utilization of Transmission Control Best
Path (TCPBP), a single mixed metric that maximizes the function of delay and packet loss
that predicts the TCP throughput in intradomain High Speed Lossy Networks: the basic
intuition of such approach is to simply choose the route that is expected to provide the
highest per-flow throughput according to the TCP prediction formula.

The remainder of the paper is organized as follows. Section 2 summarizes funda-
mental concepts judged relevant to the presentation of our proposal. Section 3 describes
the TCP throughput prediction model used to derive the proposed metric (TCPBP). The
proposed metric is detailed in Section 4. The implementation details of TCPBP, per-
formance evaluation, and experiment results and analysis are presented in Section 5. In
Section 6 we present the related work. Finally, Section 7 concludes the paper.

2. Background

2.1. High Speed Lossy Networks

A High Speed Lossy Network is defined as a network topology that simultaneously ex-
hibits the features of high speed (raw capacity in bits per second) and lossy links (e.g.,
wireless links subject to propagation and media access control factors). Examples of such
are heterogeneous networks comprising 4G/LTE and transcontinental optical links that
have both lossy and high speed characteristics [Dong et al. 2019], [Su et al. 2019] (in-
terdomain scenario), and redundant wireless backbone networks in remote areas where
optical fiber coverage is not feasible [Cohen 2020] (intradomain scenario).

2.2. Routing Metrics Properties

To be considered feasible, i.e., to ensure that the requirements for the proper op-
eration of the routing protocol regarding shortest path computation are met, a rout-
ing metric must satisfy the conditions of loop-freeness, consistency, and optimality
[Yang and Wang 2008]. In the general case, it is proven in [Yang and Wang 2008]
that isotonicity and monotonicity are sufficient properties that ensure routing proto-
cols satisfy all three aforementioned conditions. The properties of loop-freeness, con-
sistency, optimality, isotonicity, and monotonicity as we adopted are described in
[Yang and Wang 2008].

2.3. Network Model and Concepts

(i) Topology: the network can be represented by a directed graph G(V,E), where V is
the set of nodes in the network and E is the set of links interconnecting these nodes.
For mathematical representation, we have adopted the adjacency matrix format;

(ii) Routes: given two nodes, like A and D, of a G(V,E) graph, we denote as A ⇒ D
the route from A to D (routes are indicated with the symbol ⇒). If the set of hops
of the same route is [A,B,C,D] (i.e., A to B to C..., and so go on), we denote it as
A → B → C → D (links are indicated with the symbol →).;



(iii) Delay: delay in this work may be: (a) the round-trip delay (RTT ), or: (b) the one-
way delay (d). The definition (a) is used whenever the values computed depend on
round-trip delays, like in equation (1); shortest path computation, on the other hand,
uses definition (b);

(iv) Packet loss: like delay, in this work, packet loss (p) has two definitions: (a) the round-
trip packet loss and: (b) the (one-way packet loss). The employment of (a) or (b) is
the same as in the case of delay. The usage of definitions (a) and (b) with the same
symbol (p) also should be clear from the context.

3. TCP Throughput Predicition
Predictions of steady-state TCP throughput can be achieved based on packet loss and
delay for most AIMD-based TCP implementations (such as Tahoe, Reno, New Reno
etc.), with accurate experimental results with packet loss from p ≈ 10−5 up to p ≈ 0.05
(5%) [Mathis et al. 1997] [Padhye et al. 1998]. Though the prediction model presented
in [Padhye et al. 1998] is more accurate, extending Mathis et al. work by taking into con-
sideration more factors (such as TCP timeouts mechanism), its formula is also way more
complicated. As a consequence of this (i.e., being simple), the work of Mathis et al. often
suffices and is preferred. Equation (1) states that the maximum average throughput of
steady-state TCP data transfer (BWmax) is a function of TCP Maximum Segment Size
(MSS), round-trip delay (RTT ) and packet loss (p); C is a constant that put together di-
verse attributes of a specific TCP implementation such as ACK policy and loss recovery
procedures, and k can be approximated as -0.5 [Mathis et al. 1997]:

BWmax =
MSS

RTT
Cpk (1)

Realizing that the contributions of the Network Layer are contained in RTT and p, taking
exponent k as -0.5 at Equation (1), putting aside all constant factors not related to the
network infrastructure, e.g., switches and routers, and disregarding delay and packet loss
due to the endpoints, BWmax can be stated as in (2):

BWmax ∝ 1

RTT
√
p

(2)

The proportion stated in (2) can be referred to as the inverse-square root law, and, pro-
vided the same packet loss conditions stated above (from p ≈ 10−5 up to p ≈ 0.05), is also
valid in more recent TCP implementations such as CUBIC (Linux default TCP conges-
tion control protocol) and Compound (MS Windows default; also partly AIMD-based)
[Ayar et al. 2019]. Furthermore, according to [Baccelli and McDonald 2005], inverse-
square root proportionality is also valid with non-persistent flows. Nevertheless, the
inverse-square root law for TCP throughput prediction is not universal; if packet loss
is sufficiently small, the steady-state TCP throughput prediction can be obtained with the
proportion 1/p (linear regime) instead of 1/

√
p if p is not greater than a value of pmax,

as stated in [Zaragoza 2006]. Just as an additional example, regarding any TCP loss-
based congestion control protocol, a more general formula is stated by [Xu et al. 2004]
in R(p) = 1

RTT
c
py

; R(p) is the response function representing the steady-state sending
rate of the protocol in the unit of packets per RTT , stated as a function of packet loss (p),
being c and y constants depending on the implementation. The value of d is 0.5 for AIMD-
based congestion protocols, which, in this case, is compliant with the inverse-square root



law. In contrast, for HS-TCP and STCP, the values of d are 0.82 and 1, respectively (not
compliant with the inverse-square root law).

In general, although not universally compliant with the inverse-square root law,
most of the TCP congestion control protocols employed nowadays (such as the CUBIC
as mentioned above and Compound) are compliant if packet loss ranges from p ≈ 10−5

up to p ≈ 0.05. This occurs because, in the face of a more severe packet loss, those
implementations operate in fallback mode and behave very similarly to Reno with an
AIMD-like scheme; namely, it is valid with Reno, New Reno (both AIMD-based), CU-
BIC [Lukaseder et al. 2016], Compound [Poojary and Sharma 2016], HSTCP and STCP
[Yue et al. 2012].

4. TCPBP
Transmission Control Protocol Best Path (TCPBP) is a single mixed metric such that
the d

√
p per-route is minimized to maximize (2). Considering two nodes A and B in

an intradomain network, the minimization of RTT
√
p follows from the minimization of

d
√
p
A⇒B

and d
√
p
B⇒A

because of metric isotonicity. The key idea of this approach is
to be simple and allow the maximum per-flow TCP throughput as possible, under the
assumption that the TCP throughput prediction model is valid in the network in which it
is employed and there is enough available bandwidth to accommodate the flow during its
duration. Concerning High Speed Lossy Networks, the inverse-square root law applies,
and it is expected that the per-flow TCP throughput is much lower than the bandwidth
of the links, suggesting that the adoption of our metric may enhance or even optimize
the network per-route TCP throughput up to a certain number of TCP flows (nf ). Our
proposal is also scalable and easy to deploy: considering that it can be implemented with
a simple modification of the default Dijkstra as the shortest path algorithm, suitable to
hop-by-hop routing, and that d and p can be passively or actively measured in the network
with the aid of SNMP and ICMP, it can be employed as an extension of a link-state routing
protocol such as OSPF or IS-IS.

Ideally, the metric should also consider available bandwidth at a given time. How-
ever, one reason we did not incorporate it into the metric is that, opposed to end-to-end
delay and packet loss (parameters which we assume do not change with time, or that it
changes slowly enough such that we can get accurate and consistent measurements), and
due to traffic dynamics, it most probably changes its value faster than the convergence
time of the underlying routing protocol, possibly affecting the stability of the packet for-
warding in the network and requiring additional mechanisms to maintain stability. An-
other issue with incorporating bandwidth in a single mixed metric is that it is a concave
metric. Mixing it with additive and multiplicative metrics breaks the set of assumptions
that guarantee the metric feasibility (isotonicity, in particular). As a matter of fact, we
consider that bandwidth issues should be treated separately (e.g., through pruning, or
with traffic engineering).

4.1. Metric Feasibility
In this section, we prove that the single mixed metric we proposed is both isotonic and
monotonic, thus satisfying the properties of loop-freeness, consistency, and optimality.
Considering that the metric is particular case of a function of delay and packet loss de-
noted as f(d, p), we proceed to 4.1.1 (isotonicity) and 4.1.2 (monotonicity).



Algorithm 1: Modified edge relaxation; because the path structure of
TCPBP is not additive, since d(u) is (d1+ d2+ ...+ dn)(1− ((1− p1)(1−
p2)...(1− pn)))

1/2, d(u)+w(u, v) is (d1+d2+ ...+dn+du→v)(1− ((1−
p1)(1− p2)...(1− pn)(1− pu→v)))

1/2.
1 if d(u) + w(u, v) < d(v) then
2 d(v) = d(u) + w(u, v)
3 else
4 do not update d(v)
5 end

4.1.1. Isotonicity

Considering [d1, d2, ..., dn] and [p1, p2, ..., pn] the set of values of delay and packet loss
per-route, respectively, and that d and p values are strictly positive, where each metric is
isotonic by itself and shortest path computation of each metric is possible by means of
an additive process, isotonicity of f(d, p) follows immediately if f(d, p) > 0 ∀ d > 0,
0 ≤ p ≤ 1, and f(dn, pn) > 0 ∀ n, which can be proved with contradiction, but it is more
simple to show that the commutative rule for sum and associative rule for multiplication
implies the isotonicity of f(d, p): in the case of f(d, p) = d×p, d = d1+d2+ ...+dn and
p = 1− ((1−p1)(1−p2)...(1−pn)), because of the commutative and associative rules of
mathematics, swapping the positions of the hops will preserve the values of d and p, thus
preserving the value of d × p; appending or prefixing with hops such that f(dn, pn) > 0
will not provoke any changes in the original path, because of the same properties. Without
loss of generality, the reasoning applies to any function of d and p, if f(dn, pn) > 0 ∀ n.

4.1.2. Monotonicity

Monotonicity of f(d, p) also follows immediately if f(dn, pn) > 0 ∀ n; this is so because
the path cost will never decrease when adding new hops (by appending or prefixing) with
positive costs.

4.2. Shortest Path Computation
While the default implementation of the Dijkstra algorithm assumes that the cost of the
path is the sum of the weights of the edges across the path, d

√
p is not additive. Therefore,

we propose a slight modification of the default algorithm suitable to the computation
of d

√
p (which we call “modified Dijkstra”). Such modification works because being

additive is not a requirement to employ Dijkstra in the broader sense; monotonicity and
isotonicity are sufficient conditions [Yang and Wang 2008]. The modification we propose
is summarized below:

(i) Create an adjacency matrix with all values of d
√
p per-hop. These values are used to

determine the first edge to be considered by a node according to the greedy approach
of the algorithm, in consonance with the triangle inequality principle that guides
Dijkstra’s execution in the edge relaxation process;

(ii) The updated value of d
√
p is stored alongside the individual values of d and p, in

order to allow the proper computation of multi-hop d
√
p.



The modification proposed basically introduces an per-iteration extra time for the com-
putation of d

√
p, following the computation of d and p, and an extra space for storing d

and p separately. Thus, the execution of the modified algorithm to a G(V,E) graph is
expected to be slightly greater (at least in theory, due to the additional operations required
to store the updated costs of the non-additive metric), but the algorithm complexity re-
garding time execution in function of V and E remains the same, since V and E values
and its respective number of operations (like edge selection and path cost update) that de-
termine the time complexity also remain. Considering that the relaxation process is part
of a single source shortest path algorithm with source S, d(u) is the cost S ⇒ u, d(v)
is the cost S ⇒ v, w(u, v) the cost u → v, du→v the one-way delay cost of u → v, and
pu→v the one-way packet loss of u → v, the modified edge relaxation process is shown in
Algorithm 1.

4.3. Expected Improvement

Considering any route A ⇒ B obtained with single metrics such as delay or hop-count,
TCPBP provides an improvement if its route provides better individual TCP throughput
performance for several flows up to nf ≥ 1. Denoting RSingleMetric as the original route,
RTCPBP as the route obtained with TCPBP, BW the average TCP throughput per-flow,
TP the expected throughput per-flow according to Eq. (1), and ABW the available band-
width in the path, throughput improvement occurs if conditions in (i) and (ii) are met;
such conditions stem mainly from the available bandwidth factor. The expected value for
nf is given in (iii).

min[TPTCPBP , ABWTCPBP ] > min[TPSingleMetric, ABWSingleMetric] (i)
RTCPBPBW > RSingleMetricBW (ii)

(ABWTCPBP )/nf > RSingleMetricBW (iii)

5. Performance Evaluation
As a proof-of-concept, we implemented SDN OSPF with TCPBP metric and default met-
rics (hop-count and delay) on a Linux OpenFlow testbed with IPv4 forwarding enabled
in the kernel, where each particular topology tested consisted on a set of L3-Routing-
Enabled Open vSwitches (OVS) interconnected with virtual ethernet pairs (veth) in the
Default Network Namespace according to its adjacency matrix representation, using ad-
ditional Network Namespaces as endpoints. Link-state parameters, i.e., delay and packet
loss are emulated with Linux traffic control (tc) module NetEm such that the scheme
resembles a High Speed Lossy Network. As a Northbound API, we used MATLAB®
R2019, and, as Southbound API, OpenFlow 1.5.1. SDN controller of choice is POX
0.2.9. The architecture of the scheme employed is shown in Fig. 1. Specs of the machine
used to run all the simulations are in Table 1.

5.1. Methodology and Parameters Evaluated

To measure TCPBP throughput performance and fairness in the face of OSPF default
metrics delay and hop-count, we have opted for a topology with ten nodes. Simulations
were executed in a symmetric topology with 10 Open vSwitches, as detailed in Fig. 2,



Table 1. Specifications of the machine used to run all simulations.

Processor Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
RAM Memory 16 GB (2x8GB DDR4 Dual-Channel 1066Mhz)
HD Samsung SSD 970 EVO Plus 250GB
Operational System Linux Mint 18.04

Figure 1. Linux OpenFlow Testbed. Host A communicates with Host B through
Open vSwitches in the default Network Namespace. Communication between
the POX controller and Open vSwitches uses OpenFlow as the standardized pro-
tocol for flow installation and maintenance; once a centralized Northbound API
(MATLAB®) after retrieving topology information from POX defines the desired
forwarding behavior of the network, proper flow instructions are installed in each
of the Open vSwitches (OVS).

and Full Duplex interconnections with a rate-limit of 1 Gbps; emulated link-state param-
eters of the topology (delay and packet loss) are in the adjacency matrices of figures 3
and 4. TCPBP running time was evaluated in symmetric topologies, with 10, 25, 50,
and 100 Open vSwitches and uniformly distributed pseudo-random numbers as link-state
parameters.

To generate all necessary topologies, we used MATLAB®. Once a topology was
created, it was exported to a text file as input into a Bash Script, which then generated
the topology with the interconnection of Open vSwitches in the default Linux Network
Namespace. POX SDN controller also runs in default Network Namespace and, to receive
link-state information from each of the switches, communicates with the Data Plane via
127.0.0.1 IPv4 loopback address. Upon receiving link-state information of the topology,
POX forwards information to MATLAB®, which then calculates the best routes according
to the correspondent metric, and instructs back POX to install the flows accordingly in
each of the switches. The tests started at t = 0s. To gather the first link-state information,
a random traffic of 50 Mbps between all adjacent pairs was generated up to t = 120s, and
data was collected in 10s intervals by means of passive measurement; then, during the



Figure 2. Graph representing the High Speed Lossy Network topology with ten
nodes used in the proof-of-concept.
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Figure 3. Delay adjacency matrix. Values in seconds. Each value was emulated
with a ±5% uncertainty to provide a rudimentary link-state variability.

rest of the tests, we employed a simple moving average (SMA) of the last 30s every 10s
(i.e., link-state values were updated every 10s, with each value represented by the mean
of the last three collected samples). Throughput, fairness, and TCPBP running time were
evaluated from t = 120s as stated below:

(i) Throughput: TCP persistent flow throughput was measured for all (n2 − n)/2 pos-
sible distinct routes in the topology with n = 10 nodes, with TCPBP, delay, and hop-
count metrics, using Host A (IPv4 192.0.2.2/30, GW 192.0.2.1) and Host B (IPv4
192.0.2.6/30, GW 192.0.2.5) as “seeds” to replicate other hosts in the 192.2.0.x/24
subnet, each of them in a different Network Namespace and different subnet, as
shown in Fig. 1, with TCP CUBIC, MSS=1460 bytes, and iPerf tool in TCP client
vs. server mode. During the tests, Host A, Host B, and 6 (six) other hosts cloned
from Hosts A and B (i.e., identical configuration, but with different /30 IPv4 address
in the 192.0.2.0/24 subnet) were randomly put into each node of the distinct pairs in
the topology, and each metric was enforced according to the client TCP source port
in the OVS flow tables. The resulting throughput for each topology is the average of
nf = 10, 25 and 50 TCP parallel flows per-route and per-metric for 60 seconds;

(ii) Fairness: to measure fairness, we resort to the Jain’s Index [Jain et al. 1984] and
present the average fairness per scenario evaluated in the throughput test, i.e., for all
metrics evaluated (TCPBP, delay, hop-count) and for nf = 10, 25 and 50;

(iii) Running time: TCPBP with modified Dijkstra and standard Dijkstra running times
at application layer (i.e., Control Plane) were measured 100 times per topology, for
random topologies with n = 10, 25, 50 and 100 nodes, with MATLAB tic and toc
functions; Dijkstra implementation is “naive”, with vertex set stored in an array and
edges in an adjacency matrix, O(V 2) complexity. We did so not to achieve the best
running time as possible or measure running times with deep precision, but to present
a value of reference that demonstrates TCPBP shortest path computation with modi-
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Figure 4. Packet loss adjacency matrix. Absolute values in the interval [0,1]. Each
value was emulated with a ±5% uncertainty to provide a rudimentary link-state
variability.

fied edge relaxation is not significantly slower than standard Dijkstra, being capable
of running in common off-the-shelf hardware such as laptops.

5.2. Results and Discussion

Table 2 shows a route summary per topology tested. As expected, some of the routes
provided are the same in TCPBP, delay, and hop-count metrics; in fact, in our case, the
majority of the routes are the same (57.8% for TCPBP and hop-count, and 86.7% for
TCPBP and delay). Globally, i.e., considering all routes, the TCP throughput improve-
ment ratio (table 3) exhibits a slight improvement (less than 1%) with TCPBP in respect
to hop-count and delay, for nf = 10, nf = 25, and nf = 50. However, when TCPBP
provides different routes, the average TCP throughput ratio shows much greater perfor-
mance (greater than 65% in comparison to hop-count and 40% in comparison to delay),
even though it diminishes considerably from nf = 25 to nf = 50, mostly due to the fact
that, for nf = 50, in average, the available bandwidth divided by the number of flows (nf )
is smaller than the predicted by the inverse-square root law, implying additional packet
loss and delay due to congestion itself that may reduce the expected throughput per-flow.
Also, since the topology tested is symmetric, we believe that with asymmetric routing, a
common feature of IP networks, there would be a greater number of different round-trip
paths produced with TCPBP, thus presenting a greater throughput ratio in favor of our
approach.

Though we have opted for presenting ratios instead of absolute values for through-
put, for our analysis focus is the global improvement and not the measurement of specific
TCP flows, we consider it worth presenting the specific results obtained in the route from
node 1 to node 10, for didactic reasons. A summary of the results obtained in the 1 ⇒ 10
route is presented in table 4, in which we can note that the per-flow throughput to 1

RTT
√
p

ratios are quite close, showcasing the adequacy of the inverse-square root law in predict-
ing at least the TCP throughput proportion between available routes: with respect to route
selection with a metric, it is the fundamental concern. Though our simulated environment
is obviously simple in comparison to real networks, it is interesting to note that we were
able to determine (perhaps due to the Central Limit Theorem applied to the statistical dis-
tributions of d and p) that TCPBP is better than delay even though their values of 1

RTT
√
p

are very close (324.09 versus 321.99); in real networks, or with short-spanned flows, such
difference may not exist.

With respect to fairness, results are presented in Table 5; for the values do not dif-
fer significantly across the metrics, we have not observed any negative effects on fairness



that stem from the adoption of TCPBP. Finally, TCPBP shortest path calculation running
time with the modified edge relaxation showed good performance, consonant with the
expected increment to the default Dijkstra implementation; i.e., it is slower than default
Dijkstra, but the difference is not something to raise concern. The results of shortest path
computation times are summarized in Table 6.

Table 2. Route summary of the topology tested (10 Open vSwitches, 21 links);
TCPBP versus Hop-Count and Delay.

Route summary: TCPBP vs. Hop-Count and Delay
Total distinct routes: 45 TCPBP = Hop-Count: 26 TCPBP ̸= Hop-Count: 19

TCPBP = Delay: 39 TCPBP ̸= Delay: 6

Table 3. Throughput performance comparison in the tested: TCPBP versus Hop-
Count and Delay (10 Open vSwitches, 21 links); nf = 10, 25 and 50 parallel TCP
Flows. AR = all routes; DR = when TCPBP provide different routes.

Average Throughput
TCPBP/Hop-Count

ratio (AR)
TCPBP/Hop-Count

ratio (DR)
TCPBP/Delay

ratio (AR)
TCPBP/Delay

ratio (DR)
nf = 10 1.0095 1.8222 1.0025 1.5523
nf = 25 1.0093 1.8362 1.0027 1.5321
nf = 50 1.0092 1.650 1.0022 1.412

Table 4. Values of Eq. 2 and its respective TCP throughput per-flow per-metric
obtained in the 1 ⇒ 10 route. Both RTT and p refers to round-trip values, and
symmetry implies 1 ⇒ 10 = 10 ⇒ 1.

TCPBP Hop-Count Delay
1 → 3 → 4 → 10 1 → 5 → 10 1 → 5 → 4 → 10

1
RTT

√
p

324.09 265.18 321.99
Throughput (Mbps) 17.1 13.3 16.8

Table 5. Jain’s index (J) per scenario evaluated in the throughput test. Each value
presented is an average.

Jain’s index (J)
TCPBP Delay Hop-Count

nf = 10 0.88 0.91 0.90
nf = 25 0.89 0.93 0.92
nf = 50 0.95 0.94 0.94

Table 6. Time execution (te) of shortest path computation with Standard Dijkstra
and Modified Dijkstra. Each value is the result of 100 experiments that represent
the average time for calculating all routes in a central hardware, with n parallel
instances running each turn.

te(s) n = 10 n = 25 n = 50 n = 100
Standard Dijkstra 0.0022 0.0304 0.1716 2.18564
Modified Dijkstra 0.00260 0.0362 0.1906 2.2241

6. Related Work
To the best of our knowledge, our approach is the only work that tackles the problem of
throughput delivered by the Transport Layer by means of route selection (e.g., routing



metric); i.e., there is not any related work with this regard. Therefore, due to its relative
proximity to our proposal, we classify related work in the following categories: TCP-
Based Solutions (i.e., implementations on Transport Layer), Single Mixed Metrics, and
TCP Throughput Prediction: Practical Uses.

6.1. TCP-Based Solutions

Besides the proposal of schedulers for Multipath TCP (MPTCP) in highly lossy networks
(like LAMPS [Dong et al. 2019]) and the development of a couple of multipurpose TCP
variants with the goal of addressing longstanding issues of TCP in specific scenarios (no-
tably, the case of wireless networks), which we consider as a related subject, literature is
scarce regarding the problem of TCP performance specifically in High Speed Lossy Net-
works (i.e., both high speed and lossy). Of the few work found in the literature that ad-
dresses the aforementioned problem, there are mechanisms such as DVPTCP (Dynamic
Virtual Parallel TCP) [Su et al. 2019], a delay-based TCP congestion control algorithm
that adjusts the number of virtual parallel streams dynamically; this, to some extent,
is analogous to the employment of multiple standard TCP streams to increase through-
put, but taking multiple round-trip times (RTT ) of multiple routes into consideration. In
[Shi et al. 2009], to tackle the same problem, it is presented RACC (Receiver Assistant
Congestion Control mechanism), a TCP congestion control mechanism that combines
loss-based and delay-based features. [Li et al. 2021] proposes Sphinx, a novel transport
protocol alternative to TCP that addresses the problem of throughput performance in mo-
bile High Speed Lossy Networks, i.e., mobility is also taken into consideration. In a sense,
we consider that our work is complementary to such efforts because regardless of the
scheme employed in the Transport Layer, the chosen routes will allow higher throughput
to the individual TCP sub-flows (e.g., for DVPTCP, with TCPBP, a lower number of sub-
flows may be sufficient to obtain the same throughput of DVPTCP with routes computed
with traditional metrics).

6.2. Single Mixed Metrics

A single mixed metric is based on a function of multiple metrics, i.e., a metric that
mixes different parameters into a single measure and employs it in routing decisions
[Wang and Crowcroft 1996]. Despite being deemed as an approach that can, at best, serve
as an indicator in path selection [Wang and Crowcroft 1996], we argue that this is valid
in the context of Multi-Constrained Routing, but not in the general case: as shown in
Section 5, a single mixed metric may be feasible even if it is the only criteria for path se-
lection. Furthermore, subsequent work like [Costa et al. 2000], back in the early 2000’s,
already demonstrated the feasibility of the single mixed metric in terms of processing
requirements, which is a relevant concern. Other work in the field includes mostly so-
lutions to the Multi-Constrained Routing problem based on single mixed metrics (e.g.,
[Tantisarkhornkhet and Werapun 2016], [Badis and Agha 2003]).

6.3. TCP Throughput Prediction: Practical Uses

[Basso et al. 2012] presents an application-level approach for the measurement of packet
loss rate in a TCP data transfer that is based on the inverse-square root law, with the
results reported deemed as accurate. Regarding this work, it is particularly interesting to
note that it needs a more accurate TCP throughput prediction model than ours; this is so



because we do not need to present specific and accurate values for d and p, only provide
the route that achieves the best TCP performance.

7. Conclusion
In this work, we have presented TCPBP, a link-state routing metric aiming to optimize
single-path TCP throughput in the very particular case of High Speed Lossy Networks.
From 5.2, it seems to be a promising approach, as the proof-of-concept results show con-
siderable throughput improvement in steady-state flows consonant with the TCP through-
put prediction model itself, suggesting that TCPBP use should be considered whenever it
is possible (e.g., as a practical scenario, in private Wide Area Networks based on wireless
backbones with one of the nodes connected to an Internet Exchange Point – IX).

TCPBP proved feasible in the sense of providing viable routes if link-state infor-
mation can be adequately measured and reliably, fast enough retrieved by the Control
Plane, to ensure good convergence behavior, regardless of the network topology; how-
ever, in some networks (e.g., lossy, but without the high speed feature; or high speed, but
not lossy), TCPBP may not present relevant benefits in the face of the increased complex-
ity of the protocol (e.g., because routes found with classic protocols already satisfy QoS
criteria or because TCP throughput performance is not critical). Furthermore, depending
on violations of the assumptions in which the inverse-square root law is based, as may be
the case of arbitrarily short non-persistent TCP flows, and high packet loss (p ≫ 5%), the
TCPBP metric may not produce the best paths for TCP performance.

To present a more detailed account on the TCPBP usage, further investigation
and future works regarding specific cases are needed, like throughput and convergence
performance evaluation with a greater number of forwarding devices and links, in more
sophisticated simulated environments or real networks, and asymmetric routing. Given a
flexible SDN environment, for example, TCPBP on top of the default OSPF metric can
be used to evaluate TCPBP with minimal intrusion on network traffic, which is possible,
for example, with flow discrimination in the flow table rules (e.g., installing TCPBP to
provide route metric to specific flows). Other opportunities for research in future works
are stated below:

(i) Route selection: further research on route selection, stability and hysteresis is needed
to avoid possible undesired re-convergences resulting from the adoption of TCPBP.
E.g., TCPBP may produce one or more routes with an arbitrarily close value of d

√
p

relative to the best route. In contrast, this difference may not be statistically signif-
icant (i.e., there are two or more best routes); this may trigger re-convergence not
because of changes in the network dynamics but by measurements that may differ
from time to time. In this case, both routes with a close value of d

√
p could be used

to balance traffic in the network, or a threshold value to classify the routes may be
desirable;

(ii) Interdomain routing: TCPBP is a routing metric, not a traffic engineering solution.
Since a lot (if not most) TCP flows on the internet occur between different network
administrative domains (e.g., interdomain routing between different autonomous sys-
tems) with routes defined not only by intradomain protocols, but also by BGP, where
most networks are not lossy, it is possible to evaluate the usage of BGP extensions
similar to BGP-LS [Ginsberg et al. 2019] to propagate key values of d

√
p;



(iii) Link estimation: although in this work we have used passive measurement and sim-
ple moving averages to perform link estimation of the emulated parameters, active
measurement alongside other more sophisticated link estimation techniques can be
considered to account for link quality variability over time. Since the appropriate
link-state measurement is critical to ensure the proper calculation of d

√
p, thus criti-

cal to the TCPBP metric operation, we consider it crucial.
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