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Abstract. The 5G mobile network is based on a virtualized infrastructure
and offers a virtual network (VN) creation service considering many new
scenarios arising from the 5G vision. The diversity of scenarios and the
instantiation of VN on-demand induce pressure on the virtual network em-
bedding (VNE). VNE is the mapping of virtual nodes and links to real nodes
and links obeying the QoS parameters present in the VN request and avail-
able resources. Since this is an optimization and NP-Hard problem, multiple
efforts have been made to create VNE algorithms. Considering such efforts,
this work presents: (i) a fitness function regarding multiobjective optimiza-
tion; and (ii) a Parallel Differential Evolution (PDE) approach to face the
VNE. We designed the PDE due to the lack of viable parallel solutions in
the 5G scenario. We compared our approaches with different versions of
Greedy, Stress, and Genetic Algorithms, totaling ten approaches. The re-
sults demonstrate that DE and its parallel version obtained a higher number
of mapped requisitions. Also, the parallel performance decreases the execu-
tion time in certain conditions; in a favorable scenario, the parallel version
obtains up 21.04% of runtime reduction.

1. Introduction
Fifth-generation mobile network (5G) has the ambition to endure a wide range of
services and applications. 5G paves the way to vertical markets such as smart-
home, security and surveillance, transportation, industrial, retail, and healthcare.
Each tenant will define a set of demands which will imply the type of services
offered by the 5G provider. It is a fact that 5G will not design an entire architecture
to comply with all sorts of vertical markets for different applications. Instead of
this, 5G is designed to have a baseline architecture to offer high flexibility, built on
software-defined network (SDN), network function virtualisation (NFV), and Cloud
computing to allow a virtual network (VN) to each tenant as needed by the Network
Slicing as a Service (NSaaS) [5GPPP 2019].

The 5G infrastructure has the NSaaS as a critical component, a mechanism
adopted to address the diversity of requirements and specific services and appli-
cations. Network Slicing (NS) has been designed as a key enabler to allow 5G to



handle Internet of Things (IoT) and other vertical markets. The NSaaS waits for
some Virtual Network Requests (VNRs) that can arrive at any time. A VNR is
a formal document described by a network topology and quality of services (QoS)
demands. After the VNR is successfully mapped, its requirements are met, and
all necessary resources are allocated to ensure its proper functioning. An accepted
VNR becomes a virtual network that has a predefined duration. NSaaS is com-
posed of a set of chained activities to yield a VN, e.g.: (i) allocating resources; (ii)
installing new services; (iii) orchestrating network management components; (iv)
signalling network controls; and others. Among these activities, a primordial one
is the mapping of virtual networks to physical resources, mathematically known as
Virtual Network Embedding (VNE).

The mapping of virtual networks to real ones can be done by starting with
the mapping of the nodes then the links or vice versa. More elaborated algo-
rithms map nodes and links at the same time. Mathematically, this process is
called VNE, which is, essentially, an optimization problem. Considering only the
node mapping, VNE can be associated with the classic travelling salesman prob-
lem [Wu et al. 2020]. Even when node mapping from virtual to physical is given,
the problem of optimally allocating a set of virtual links to a single physical path
is reduced to an unsplittable multicommodity flow problem, which is also NP-hard
[Yu et al. 2008, Fischer et al. 2013, Vassilaras et al. 2017]. VNE is tackled with de-
terministic or heuristics ways. The goal is to map a set of a requisition taking into
account some demands, such as: (i) a certain limit of time; (ii) maximum of embed-
dings; (iii) respecting all or part of QoS parameters. It is important to remember
that NS is a service, and the slice clients (tenants) do not expect to wait a long time
to receive its slice (virtual network), which is another requirement in 5G systems.

Although the researchers have addressed VNE over time, new trends arise
from the various 5G scenarios, vertical market demands, and in-network applica-
tions innovations. Because of these trends’ heterogeneity, academia and industry
are embedded in proposing new VNE solutions coping with these novel aspects
and constraints. The drive to increase the number of served requests and reduce
the time of processing the mapping encourages continuous research in this area.
While deterministic solutions tend to have a shorter runtime [Cao et al. 2016], on
the other hand, heuristic-based solutions have a higher mapping success rate and
better adaptation to more complex topologies and more stringent requirements
[Fischer et al. 2013].

Regarding the aspects mentioned above, in this work, we extend our pre-
vious work [Gomes et al. 2021] in which it was the first to design and adapt the
Differential Evolution (DE) to the VNE problem. We redesigned it to seek a way
to reduce the runtime using a parallelization method, a method in which there is
a lack in the literature regarding the evolutionary approaches. Also, we enhanced
the scenario regarding a more complex infrastructure. Moreover, we magnified the
embedding complexity considering node capacity, link bandwidth, and quality of
services parameters such as delay and reliability. Further, the approach proposed in
[Gomes et al. 2021] has a small number of requisitions and does not seek to increase
the acceptance rate.



It is critical to perceive that reducing the time to perform the mapping and
increasing the number of mapped requisitions represent an increase in profit for the
provider. More elaborate algorithms allow for better resource selection to accom-
modate more virtual networks. Also, more involved algorithms are more processing
consumers; one way to reduce the execution time considering the same heuristics
is by code parallelization. Therefore, in this work, we propose a method to paral-
lelize DE to minimize the runtime. The challenge is that the differential evolution
algorithm is naturally a sequential logic.

Our previous work [Gomes et al. 2021] reveals that the DE takes longer to
run for the same number of repetitions and population size than the Genetic Algo-
rithm (GA). Hence, in this paper, we enhanced these points: (i) we seek to improve
the number of mapped requisitions; thus, we conceived a new fitness function; (ii)
we endeavor to reduce the runtime of DE by parallelization; (iii) we adopt two more
complex network topologies in the tests; (iv) we amplify the number of approaches
from one to ten, they derive from Greedy, Stress, GA, and DE approaches; (v)
the parallelization is not a silver-bullet, so we present in what conditions the paral-
lelization of DE has advantage and disadvantage; and (vi) we propose two ways of
initializing the first populations.

This work is organized as follows: Section II compares this work to related
works; the description of the mathematical problem is modeled in Section III; Sec-
tion IV presents the possible ways to parallel DE. Section V covers competitor
approaches; Section VI explains the structure of the fitness function. Section VII
performs a comparison of all the algorithms and analyzes the results; and, finally,
Section VIII concludes this work by showing some opportunities for future works.

2. Related Work
We are interested in a meta-heuristic in which divides the solution into compu-
tation units to reduce the runtime. Meta-heuristic adaptations to VNE problems
that leverage the capacity of accelerating its computation by parallelisms in 5G
NSaaS systems. [Fischer et al. 2013] made a comprehensive review surveying 125
works, and found only one work dealing with parallelization. However, that heuristic
considers parallelization of the capacity of mapping one node in two different sub-
strates, and it is not about VNE-logic parallelization. Therefore, we have submitted
on Scopus a search taking into account the title, abstract, and keywords with values
”virtual network embedding” and ”5G” in the period ranging from 2018 to 2021. As
a result, we received 43 papers related to VNE and 5G. Out of 43 articles, only 10
applied a meta-heuristic and only three used the parallelism.

One contribution of [Nguyen and Huang 2019, Nguyen et al. 2020] is a solu-
tion to VNE based on a Genetic Algorithm (GA) updated with some paralleled steps
to reduce runtime. However, its non-parallelized step consists of building a collection
of paths for each virtual link (path-pool) based on its source and destination pairs.
As [Salimifard and Bigharaz 2020] demonstrated when mapping the VNE problem
to the traveling sales, the path-pool formation is unfeasible in large networks since
the possible combinations of paths are enormous in a vast infrastructure.

[Tasoulis et al. 2004] were the first authors to publish a version of the differ-



ential evolution parallel approach. Their solution takes a population and spawns in n
sub-populations on a different processor. Each sub-population performs a complete
DE step, and there is a mechanism to select the better individual for each group.
Finally, if the stop criterion for the objective function is met, the controller process
sends a termination signal to all the sub-populations. The literature is rich in other
methods in fields distinct from VNE. Our approach is not the same as theirs. The
difference is related to granularity, i.e., our solution does not create subgroups, so
each individual is sent to a Thread or Sub-process, and the stop criterion is only
based on the meta-parameter repetition. Another difference is related to mathe-
matical operations, our DE version considers the node’s geographic position; thus,
calculations are performed based on the Cartesian plane.

To the best of our knowledge, there is no proposal for a parallel differen-
tial evolutionary approach applied to the VNE problem considering 5G scenar-
ios. Despite numerous researches in the field of VNE, there is a lack of works
dealing with parallel meta-heuristics. Another critical point concerns the lim-
itations of the network. Our work is the only one that considers three net-
work constraints in the optimization process: Bandwidth, Delay and Reliabil-
ity. The Next Generation Mobile Network Alliance (NGMN), the Third Genera-
tion Project Partnership (3GPP), and the International Telecommunication Union
(ITU) have proposed three types of slices: enhanced mobile broadband (eMBB),
ultra-reliable and low latency communications (URLLC), and massive machine
type communications (mMTC). Each slice type provides different network behavior
based on the bandwidth, delay, and reliability values specified in each slice request
[5G PPP Architecture Working Group 2016].

In our earlier work [Gomes et al. 2021] we set out some reasons for choosing
the Genetic Algorithm (GA) as a good competitor: (i) it allows searching for the
solution in a huge solution space; (ii) it does not restrict the search process to local
domains; and (iii) it is flexible enough to be adapted to different scenarios. Moreover,
the fitness function and chromosomal structure focus on adapting the heuristic GA
to solve different problems. DE can derive all these advantages from GA due to
their similarities, and this aspect led us to further adapt DE to VNE problems.

GA and DE have a similar evolution process. Due to its strengths mentioned
above, GA is widely used for VNE [Han et al. 2018, Zhou et al. 2016], and thus we
choose GA as one of the main competitors. Moreover, we can use the same fitness
function, which allows a fair comparison between them during the process.

3. Modeling and Problem Description

A comprehensive modeling is presented in [Gomes et al. 2021], which is the same
we followed in this work. A network infrastructure is represented by a non-directed
graph denoted by G = (V, E, β), in which G represents a physical network, V is a
set of vertices in which vi ∈ V and represents a real device, an edge ei ∈ E, where E
is a set of edges and it represents a real link. Each vertex and edge is characterized
by capacities βvc

i ≥ 0 and βeb
i ≥ 0. In the online operation of the network, βvres

i and
βeres

i can play the role of residual capacity, which is the remaining resource of the
vertices or edges after taking out the current utilization (Figure 1). There is only



one edge between two vertices. The region/location is represented by βvre
i , which

can define a geographic localization.
A virtual network is denoted by an undirected graph H i = (N, L, δ) with

virtual nodes ni ∈ N , and links li ∈ L. Each access node has a total of δna
i capacities,

and they can be decomposed to CPU, memory, and other device resources. Each
virtual node ni can be embedded in one physical node from a set of physical nodes
V . A virtual node is associated with a single physical node, and a virtual link is
associated with a single physical path, which is a set of physical links.

The embedding of H into G consists of a mapping as follows: (i) each virtual
node n ∈ N to a physical node v ∈ V ; (ii) a virtual link (ni, nj) to a loop-free phys-
ical path, connecting physical nodes vi and vj to which the virtual nodes ni and nj

have been mapped. For a slice user, a slice behaves like a physical network, and no
difference should be noticed. The VNE is a process to associate each virtual node
to a physical node and virtual links to physical links respecting that the sum of the
demanded virtual resources is less than or equal to the available physical resources.
The VNE must maintain the control of used resources. Moreover, VNE algorithms
have the goal of finding a feasible embedding respecting all QoS parameters de-
manded by a VNR. Duration d represents the time in which a slice must exist, and
this information is relevant to online operations, where each slice has lifetime.

Let σ be a mapping function, G a substrate and H a set of VNRs where H i

is a request from H. The main goal can be defined as (1), and that means we seek
to maximize the quantity of mapping (σ) in the current cycle (c).

max
H∑
i

σ(H i, G, c) | c ∈ [ci, ..., cj] (1)
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Figure 1. Embedding: virtual elements (nodes and links) associated with real ones. The mapping
should respect the virtual network demands and infrastructure resources capacities.

4. Parallel Differentiated Evolution to VNE Problems

[Gomes et al. 2021] are the first one to apply DE in VNE problems. The authors
demonstrated the capacity of its approach to select the best places in the network
to a VNR. Their solution is based on a measurement to describe the accuracy of



selection choices. The accuracy is calculated regarding the best places in the net-
work, considering the bandwidth, delay, and reliability demands contained within a
VNR. The measure function knows the better places before the execution and, for
this reason, the network used in the simulations is small, with about 20 nodes.

Figure 2 summarizes the steps of GA and DE meta-algorithms. Price and
Storn introduced DE in 1995. DE is a population-based optimization based on
evolutionary algorithms in general. The crossover, mutation, and natural selection
operators of GA are also included in DE. However, in DE the chromosomes are
treated individually and a new individual is formed from three randomly selected
chromosomes. These operations are performed using the mutation and crossover
operators. The [Gomes et al. 2021] solution uses latitude and longitude character-
istics during node operations. In this way, the geographic location is considered in
addition and subtraction operations between two nodes.

GA Meta-Algorithm
Step 1: Creating the initial population
REPEAT

Calculation of the fitness valuesStep 2:
Step 3: Natural Selection
Step 4: Crossover

UNTIL (number of iterations = Maximum
number of iterations)

DE Meta-Algorithm
Step 1: Creating the initial population
REPEAT

Mutation and regenerationStep 2:
Step 3: Crossover
Step 4: Selection

UNTIL (number of iterations = Maximum
number of iterations)

Step 5: Mutation

Figure 2. GA and DE Meta-Algorithms

Four points distinguish this work from [Gomes et al. 2021]: (i) it is not ori-
ented to increase the accuracy, but the quantify of requisitions mapped; (ii) the
evaluations use two larger datasets, for which reason we do not know a priory what
part of the network is better for each requisition; and (iii) it considers ten competitor
approaches, while [Gomes et al. 2021] only two. As explained in Section 2, there
is a gap in the literature on a parallel heuristic to tackle VNE problems. Hence,
this work details two ways to parallelize the VNE-DE approach. The main goal
of implementing the parallel solution is to try to reduce the runtime of the DE to
perform the mapping.

Algorithm 1 is a modification of the VNE-DE in [Gomes et al. 2021]. The al-
gorithm’s internal functions are presented in [Gomes et al. 2021] and for the sake of
space, we will not explain them in detail here. The algorithm has the outermost loop
and two internal loops (command for). The internal loops are the code blocks for
the mutation (lines 4-6) and the selection phase (lines 8-10). DE has the particular-
ity that each individual mutation can be carried out separately. This feature favors
the creation of parallel subprocesses. In the original code, these two blocks are se-
quential instructions. In the parallel version, the main code is kept non-parallelized,
and the internal codes are parallelized in news tasks/sub-processes. The selection
phase starts after the synchronization of ending of all threads/sub-processes created
to carry out the mutation.



Algorithm 1: Parallel Differentiated Evolution Algorithm
Input : fitness, lb, ub, Np, T, F, Pc

1 P ← initPopulation(P);
2 Vi ← createDonor();
3 for t = 1 to T do

/* Mutation block */
4 for i = 1 to Np do
5 Pi ← process (Ui, i, runCrossover);
6 end
7 join (P);

/* Selection block */
8 for i = 1 to Np do
9 Pi ← process (Ui, Vi, i, lb, ub, bound, fitness,

greedSelection);
10 end
11 join (P);
12 end

Population

Mutation

Selection

Sequential Vertical

Main Block

One process N sub-processes

Figure 3. Parallelization of DE steps in subroutines.

The nature of heuris-
tic/logic will determine which
parallelization is possible. The
DE is an evolutionary approach;
therefore, each new generation
is a consequence of the previous
ones. In Algorithm 1, the first
external loop is the code related
to evolution and, because of this,
it can not parallelize the external
loop. The main advantage of creating tasks/sub-processes to execute the mutation
is that the mutation process is a sequence of calculations and searches carried out
simultaneously. It is essential to notice that DE has mutation before the crossover
and selection differently of GA approach (Figure 3). The DE mutation is more
CPU intensive than the GA approach. Therefore, DE mutation is the process that
better leverages parallelism. Thus, the VNE-DE could have its final execution
time reduced. One of the objectives of this work is to evaluate this hypothesis.
Figure 3 illustrates the conceptual differences between DE Sequential and Vertical
approaches as explained in this paragraph. Due to the particular nature of the DE
mutation process, mutations of each individual in the population can be carried out
in parallel without any competition. This work leverages this particular nature.

5. VNE Competitor Approaches

We compare our DE against GA, Stress, and Greedy virtual network embedding
approaches (VNA). There are deterministic and heuristics approaches, each with
two versions which differ in the first population formation. In the v1 version, the
node selections are totally random and we named this process as cold start. In the



v2 version, nodes are randomly selected from a pre-created group of nodes. This
pre-created group contains a set of nodes from all links that contemplate the VNR
demand, and we named this second process as hot start.

VNA Stress is presented in [Zhu and Ammar 2006], and is based on node and
links stress. Stress is a measure that signals how used a resource is. The authors in
[Zhu and Ammar 2006] have proved that it is impossible to obtain optimal nodes and
links by mapping them at the same time. Thus, its solution seeks to allocate nodes
and links equally, distributing the mapping along with the whole infrastructure. This
distribution leverages the increase of VNR acceptance, and that behavior oriented
us to select this approach as a strong competitor.

VNA-Greedy is a simple solution that groups real nodes based on their re-
sources and the ones available on the adjacent links. After the grouping, it chooses
the nodes that have more resources available to contemplate each requisition. Both
VNA-Stress and VNA-Greedy are deterministic approaches. The variation of their
results is a stochastic consequence of the random selection of nodes when they have
the same available capacity.

Works [Qin et al. 2014, Han et al. 2018, Chen et al. 2019] cite the following
GA strengths: (i) suitable for use when the solution space is vast; (ii) the search
process is not restricted to local search spaces; (iii) it is flexible enough to be adapted
to various scenarios. The evaluation function (fitness) and the chromosome structure
concentrate the most sophisticated part of adapting the GA heuristic to solve a
problem. Both the DE and the GA are evolutionary algorithms and share some
concepts, the former also shares some advantages of the latter. Furthermore, the
fitness evaluation is the same in GA and DE, but there are some differences: (i)
the sequence of creating new individuals (offspring) and mutation is inverted; (ii)
the mutation process is different; (iii) in GA, creation and mutation are totally
random processes; and (iv) creation and mutation in DE are solution-oriented by
the geographic space search.

An individual is a possible solution of mapping, and a chromosome represents
it. All individuals are created when VNA-GA is performed. A chromosome is a set
of genes, and each gene is a possible map between a virtual node and a real node.
If the problem imposes any condition, it must be implicit into the chromosome’s
representation. The fitness function calculates the chromosome’s evaluation, and the
result is used to select the most adaptable individual during the offspring process.

The evaluations were carried out using the same set of requisitions and
datasets. The requisition set is kept the same to avoid any injustice caused by
any difference in resources demand. The repetition and population size parameters
are crucial to the performance and efficiency of the evolutionary algorithm (EA).
Thus, we chose the following values of the tuples (repetition, population) for the
tests: (5,5), (50,5), (100,5), (5,50), (5,100), (10,10), (50,50) for all EA. The total of
tests for 10 repetitions, 4 VNR datasets, 7 tuples, 2 network datasets, and 6 (GA,
Stress, Greedy, DE, DE-Thread and DE-Processing) approaches, and two versions
add up to 6,720 executions. We chose the set of tuples to increase the repetition and
population gradually. Over the (100,100), there is no increment in the acceptance



rate. The tuples are meta-parameters; consequently, they are not deterministic,
particularly those of meta-heuristics.

For all evolutionary algorithms, the creation of the first population is the
same. Thus, we guarantee the same initial characteristics for all. Moreover, the
fitness function is applied to all heuristic algorithms. In this way, we were concerned
with keeping a fair contest among them. The sequence is realized by an NSaaS
provider, and it is kept for all VNE approaches. The inner functions embedded in
our NSaaS simulator are: (i) recover the set of VNRs; (ii) increase use of resources
after the mapping; (iii) release use of resources when a VNR expires; (iv) save
performance information from the mapping execution.

6. Fitness Function and its Behaviour
Our fitness function (2) is a special contribution which considers all the QoS pa-
rameters (bandwidth, delay and reliability) required in VNRs. Fitness takes the
individual’s properties as its parameter. The return values are between 0 and +∞,
where zero means that an individual does not meet all demands. If the return value
is 1, it means that an individual fully meets a VNR. Return values greater than 1
mean that an individual represents a larger set of resources than needed. The higher
the value, the more unnecessary resources are selected. Based only on the fitness,
the GA and DE can select more adapted individuals. The selection process does
not exclude the individual whose score is less than 1. In the implementation, all
individuals whose score is less than 1 are maintained in the population, and their
score is updated with a value of +∞. In this way, it is maintained in the population,
and it obtains a lower chance to be selected in the offspring process.

The score is a value that expresses how efficient an individual is, and its
equation is defined in 2. The vMax(r) denotes the maximum capacity of a specific-
resource in the whole infrastructure, R is a set of resources, such as r ∈ R. The
vGot(r) returns a value that denotes the maximum capacity of resource r that the
mapping process found during its execution. The vDesired(i, r) returns a demanded
capacity of resource r which is required by individual i. The variable r can assume
three specific-resources in this work: (i) bandwidth; (ii) (delay); and (iii) reliability.
The score is a normalized measure, thus we can carry out different resources at once.
Each QoS parameter present in the VNR has its own score. The individual’s final
score is the average of all scores plus the result of the score logarithm based on
the number of hops. The symbol ⋄ is the addition operator when the variable (r)
represents the bandwidth or reliability and it is the subtraction operator when the
variable r represents the delay parameter. Lastly, the variable i denotes the VNR’s
identifier, which is used to obtain its demands.

score(i) = vMax(r) ⋄ (vGot(i)− vDesired(i, r))
vMax(r) (2)

Equation 3 denotes the final score of an individual. The function c(r) in
(3) is the coefficient defined for each QoS parameter in a VNR, the variable P
denotes a set of parameters from each type of slice. These values result from the
provider and tenant negotiation. They are customized to meet the particularity



of each tenant demand, e.g., massive machine type communication, ultra-reliable
low latency, and enhanced mobile broadband. The coefficients range [0,1], and the
greater the number, the higher the relevance. It is possible to create countless types
of slices using these coefficients.

total =
∑|P |

i c(P [i]) ∗ score(i)
|P |

+ log(hops, score(i)) (3)

Figure 4 illustrates the fitness function behavior based on equations 2 and 3.
We have 20 hypothetical scenarios numerated from 1 to 20. The scenarios [11-20]
represent situations where the solution searcher (i.e. the VNE approach) encoun-
tered resources with incrementally one unit values of bandwidth, delay and reliability
greater than the ideal. The ideal is when the algorithm find exactly what the virtual
network call for. On the other hand, the scenarios [0-9], represent situations where
the solution searcher encountered resources with incrementally one unit values less
than the ideal. That is, when the VNE approach find the resources which meet
perfectly the virtual network demands its return is 1. All approaches in this work
use the same fitness function, thus, we keep equality among the approaches.

(fitness > 1) means that selected elements
(nodes and links) have capacities more than

what was demanded.

(fitness < 1) means that selected elements
(nodes and links) have capacities less than

what was demanded.

Scenario 10 obtained exactly

the amount of resources

demanded, therefore, fitness

equal to 1 denotes this.

Figure 4. Fitness function behavior.

7. Artifacts, Scenarios and Evaluation
The sequence of tests was executed using two different datasets, which differ from
each other in the variation of topology, bandwidth, delay and reliability capacity.
There are four sets of VNRs and the number of requisitions is: (i) set 1 has 20; (ii) set
2 has 50; (iii) set 3 has 100; and (iv) set 4 has 150. Each set is kept the same for each
different mapping algorithm. Table 1 presents the main properties of Datasets 1 and
2, which have a different number of nodes and links and the latter is more complex
than the former. Our framework created these datasets with random values of
bandwidth, delay, and reliability whose process is explained in [Gomes et al. 2021].
It is important to note that the values of nodes and links used in Dataset 2 exceed
these parameters in all 78 works researched in [Fischer et al. 2013]. For example,
about 67% of the works have a number of nodes between 10 and 100, and 51% of
the datasets have a number of links between 0 and 400.



Table 1. Dataset properties used in the simulation.

Properties Dataset 1 Dataset 2
Nodes 112 2,138
Links 125 2,395
Degree 12 50

Bandwidth [103;1,640;9,881;2,807] [100;1,215;9,988;2,338]
Delay [1;121;294;103] [1;113;300;98]

Reliability [90;95.7;99;3] [90;95;99;3]

Values = [minimal; average; maximum; standard deviation];

In the first scenario, all heuristic approaches using the cold start were able
to map less than 3 VNRs. Thus, we excluded all results with the cold start in
this section. In the figures, all heuristic approaches are the second version, which
uses the hot start. Section 5 explains the cold and hot starts (bootstrap) concepts.
Fig. 5 shows the minimal, first quartile, average, third quartile and maximum
values of the executions of Greedy, Stress, DEv2t and DEv2p. Greedy was the only
one whose acceptance rate was lower than in all VNR sets. DEv2t and DEv2p use
thread and multiprocessing mechanisms, respectively. Using the small Dataset 1,
the approaches DEv2, DEv2t e DEv2p obtained similar results.

GA obtained better results in sets 20, 50, 100, and 150 with repetition and
population equal (50,50), totaling 2,500 mutation instructions. DE received better
results with the same set of VNRs with repetition and population equivalent (5,5),
(10,10), (100,5), (100,5) to sets in sets 20, 50, 100, and 150, totaling in average with
281.25 instructions. The version DE using thread and processing reached 337.5 and
937.5 instructions to obtain a better acceptance rate. Regarding the runtime and
the sets that received the better acceptance rate, the average runtime was 76.5, 1.1,
1.9, 26.4 minutes to GA, DEv2, DEv2t, and DEp2t, respectively. Considering the
small dataset, the original version of DE had the better runtime. Regarding the
parallelization and the small size of Dataset 1, the DE version using Threads and
Multiprocessing mechanisms did not reduce the runtime due to the computational
effort to create and manage tasks and processes for a small dataset; and with a
low value of repetition and population. The number of instructions denotes the
efficiency of the algorithm, the smaller the more efficient.

Fig. 6 is related to the second scenario. In this scenarios, the quantity of
nodes was increased from 112 to 2,138 nodes, turning the solution search harder. Fig.
6 shows the min, first quartile, average, third quartile and max values of executions
of Greedy, Stress, DEv2 and GAv2. The parallel versions were excluded in Fig. 6,
due to their acceptance rate were similar to DE.

When the network infrastructure becomes more complex, the search for the
solution becomes more challenging and the similarity of results achieved in the first
scenario disappears in the second scenario. Fig. 6 shows the DEv2 obtained better
results in average. Using the Dataset 2, the average of VNRs mapped for Greedy,
Stress, DEv2 and GAv2 in the set with 20 VNRs are 6.0, 11.5, 17.0, and 15.3; in
the set with 50 VNRs are 11.0, 38.5, 47.0, and 39.4; in the set with 100 VNRs
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Figure 5. Distribution of VNRs Mapped using Dataset 1.

are 18.5, 78.5, 97.0 and 82.5; and in the set with 150 VNRs are 35.5, 118.5, 147.0,
and 128.6. On average the DE approach obtained a acceptance rate better than
Greedy, Stress and GA, with an improvement of 76.95%, 19.81%, and 13.70%, re-
spectively. In the second scenario, the runtime of Stress, DEv2, and GAv2 in the
sets 20, 50, 100 and 150 were: [115, 16, 57]; [302, 13, 128]; [657, 7, 250]; [1123, 8,
387] minutes, respectively. The approach DE was 618.75%, 2,645.45%, 9,285.71%
and 1,3937.50% better than Stress in sets 20, 50, 100 and 150, respectively. And
DE was 256.25%, 1,063.64%, 3,471.43%, 4,737.50% better than GA in sets 20, 50,
100 and 150, respectively.
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Figure 6. Distribution of VNRs Mapped using Dataset2.

Figure 7 reveals a particular behavior of parallel DE versions. There is a
relation of performance with the repetition and population values (R, P ). Ideally,



parallelized versions have advantages with the increment of P , keeping the same
number of sub-processes equals the number of CPUs. The no-parallel DE version
has an advantage in performance when R and P are low. Regarding the set of 20
VNRs, Dataset 2, and the same population, the DEv2t improved 9.52% from (5,5)
to (50,5) and and 9.97% from (50,5) to (100,5). DEv2t improved 21.04% from (50,5)
to (100,5).
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Figure 7. Elapsed time to map using the DE, Thread and Multiprocessing approaches using Dataset
2 and Set with 20 VNRs.

8. Final considerations and Future Work
We formulated a new fitness function to increase the number of requests taking
into account several QoS parameters. Parallelism is only better when the number
of subprocesses is equal to the number of CPU and when the value of the popula-
tion increase. In tests, the unparalleled versions won only when the repetition and
population have low values; as the population value increases, the parallel perfor-
mance decreases the execution time (the smaller, the better). Also, we showed the
conditions under which the parallelized versions obtain better results. A heuristic
does not know the ideal repetition and population size in a given scenario; however,
the provider can choose the best for these values based on a history of executions.
Taking the results of mapping histories is attractive to be used in machine learning
techniques, and we will consider this possibility for our future work. Finally, the GA
approach only managed a competitive number of mappings with a high value of the
population’s size. Consequently, its execution time was longer than all the tested
approaches. The results show that the randomness of the initial population is what
more influences AG. At the same time, repetition favors the DE, which means that
DE is more intelligent in searching for the ideal solution.
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