
Reducing Monitoring Overhead in Virtualized Environments
Through Feature Selection

Pedro F. Popiolek1, Karina S. Machado1, Odorico M. Mendizabal1

1Centro de Ciências Computacionais (C3) – Mestrado em Engenharia de
Computação (PPGComp) – Grupo de Sistemas Digitais e Embarcados (GSDE)

Universidade Federal do Rio Grande - FURG
Caixa Postal 474 – 96.201-90 – Rio Grande – RS – Brazil

{p.f.popiolek, karina.machado, odoricomendizabal}@furg.br

Abstract. Cloud computing has emerged as a cost-effective paradigm for host-
ing and delivering services. Cloud providers adopt server consolidation strate-
gies to achieve efficient management of resources. A drawback is that appli-
cations running on the same host compete for physical resources. Such inter-
ference can affect the performance of applications. Performance monitors are
useful tools to detect or even predict performance degradation. However, the
monitoring itself can be a source of contention. In this paper, we analyze the in-
fluence of performance monitoring overhead in virtualized environments. Fur-
thermore, as a mean to reduce contention for shared resources, we propose an
approach to reduce the dimensionality of the performance feature space.

1. Introduction
Cloud computing provides ubiquitous, convenient and on-demand network access to a
shared pool of computing resources (e.g. servers, networks, storage, applications, and ser-
vices) [Mell and Grance 2011]. From the business perspective, the pay-as-you-go model
introduces flexible and cost-effective means to handle compute resource demands. From
the infrastructure perspective, virtualization plays an important role on resources man-
agement. By multiplexing a bunch of Virtual Machines (VM) on the same physical ma-
chine, cloud platforms provide efficient management of resources by reducing underuti-
lized hosts.

Typically, a physical server hosts several VMs through server consolida-
tion [Zhang et al. 2010, Shirvani and Ghojoghi 2016]. However, individual applica-
tions running on the same host compete for physical resources like cache, memory
and disk. Such cross-application interference can affect negatively the performance
of applications running in the cloud [Popiolek and Mendizabal 2012, Rameshan 2016,
McDougall and Anderson 2010, Pu et al. 2010]. A great challenge for cloud providers
is to handle VM demands without overloading host machines. Once a physical machine
runs out of its limits, graceful degradation and instability could affect the performance of
hosted VMs.

Monitoring of resources is commonly used to watch systems health and identify
contention. Hardware performance counters and operating system metrics can be used
to detect interference [Fedorova et al. 2010]. However, depending on the amount of in-
formation collected, the monitoring overhead can be an issue. Specially in virtualized
environments, where co-located applications compete for shared physical resources, the



monitoring itself can be a serious source of contention. Besides affecting system’s per-
formance, large amounts of data might limit users ability to identify performance bottle-
necks. Hence techniques is needed to improve the select of performance counters by the
users, consequently, will allow to reduce the monitoring overhead.

In this paper we propose the application of a Knowledge Discovery in Databases
(KDD). This process is applied in order to identify a representative subset of perfor-
mance counter to reduce the monitoring overhead generated to the system. According to
[Han et al. 2011], in recent years data mining has attracted attention in academy, industry
and in society as an approach to extract implicit, previously unknown, and potentially use-
ful information from the huge amounts of data. Data mining is part of the KDD process
that comprehends: data preprocessing; application of specific algorithms for extracting
patterns from data (data mining) and post processing the obtained models and pattern
evaluation [Fayyad et al. 1996, Han et al. 2011].

Thus, this paper has two main contributions. First, we analyze the monitoring
overhead in virtualized environments. We experimentally evaluate how different patterns
of applications can be affected by the monitoring overhead. Second, we propose a tech-
nique to reduce the monitoring overhead. The key idea is to identify and exclude redun-
dant performance counters. Towards this end, counters are grouped hierarchically based
on Pearson correlation coefficient. By selecting a representative counter of each group,
we can reduce the number of variables to be observed.

Our results show a performance decrease caused by monitoring. Specially for
I/O-intensive workloads, this overhead may cause a performance reduction around 30%.
According to our results, the monitoring overhead was reduced by less than one third.

The rest of the paper is organized as follow. Section 2 surveys related work. Sec-
tion 3 illustrates some causes of performance interference in virtualized environments. In
Section 4 it is presented our approach to reduce monitoring overhead. Section 5 exper-
imentally assesses the performance of the proposed approach, and Section 6 concludes
this paper.

2. Related Work
As more applications run on clouds, it is becoming more important to leverage resources
in a efficient way. While some approaches take into account application characteristics
to identify which applications should be co-located, others analyze application load at
runtime by reading data from performance monitors.

In [Jin et al. 2015] authors analyze cache access pattern in HPC applications run-
ning in clouds. They observe that applications with weak locality and large cache work-
ing sets profiles could be co-located with cache friendly applications in order to minimize
cross-application interference. Mars et al. [Mars et al. 2011] present a methodology for
prediction of performance degradation in virtualized environments. The approach is suit-
able for applications where overhead is mainly caused by contention for shared resources
in the memory subsystem. Authors investigated the performance isolation of latency-
sensitive tasks.

The aforementioned approaches rely on static approaches based on prior profiling
of applications. In more general scenarios, where a fully characterization of applications



is unfeasible, the performance interference must be detected at runtime. In this sense,
performance counters are largely used as a mean of watching systems performance.

Rameshan et al. [Rameshan et al. 2014] improve resource allocation by contin-
uously learning the favorable and unfavorable behavior of co-execution. These infor-
mations are used to predict and prevent inefficient scheduling decisions. The approach
proposed by [Zhang and Figueiredo 2006] also assists scheduling decisions based on per-
formance monitoring of application-centric VMs. Snapshots of performance are taken at
runtime and the collected data is processed in order to extract and classify relevant in-
formation about resource utilization. Their classification approach is based on featured
selection algorithms, Principal Component Analysis, and the k-Nearest Neighbor classi-
fier.

Our approach aims to reduce the monitoring overhead through featured selection.
In [Zhang and Figueiredo 2006] authors propose a similar approach, but they limit the
sample data to a small set of performance counters chosen in advance by an specialist.
Our approach does not limit the number of counters and no previous knowledge about
the set of performance counters under monitoring is required. Another feature selection
approach is presented in [Yu and Liu 2004], but authors do not account for specific con-
tention issues caused by virtualized environments. In [Shang et al. 2015], authors also
evaluate correlation among performance counters, however, they focus in regression test-
ing. In their work, they apply the same workload against different versions of an applica-
tion and detect performance changes from one version to another.

3. Performance interference

The contention for shared resources is one of the main causes of performance degrada-
tion in computer systems. In virtualized infrastructures, such as cloud computing, the
contention is even more perceptible due to the interference suffered by applications co-
located in a same physical machine [Popiolek and Mendizabal 2012, Rameshan 2016].

The performance degradation may be caused by specific application patterns.
Some applications are characterized by large cache resource consumption, which can cre-
ate serious Shared Last Level Cache (SLLC) performance bottleneck [Alam et al. 2006].
Co-scheduled applications may induce interferences with cache access, which results in
more cache misses and, as a consequence, performance degradation. VMs running in the
same physical cores are subject to performance interference due to SLLC. As investigated
in [Jin et al. 2015] cache contention breaks the inherent protection and isolation provided
by virtualization, thus directly interferes performance of independent applications running
in the same host.

Alves et al. [Alves and Drummond 2016] have demonstrated that the performance
interference can also be influenced by the similarity of application’s access burden. When
applications co-located in the same host present a high level of access burden similarity
for a given shared resource, they evenly compete for this resource which, in turn, leverages
the level of interference suffered by these applications.

Moreover, the additional software layers responsible for emulation, virtualiza-
tion of devices and the concurrency level among the guests result in performance cost
[McDougall and Anderson 2010]. The scheduling performed by the virtual machine mon-



itor is also responsible by the decrease on performance in virtualized infrastructures. Usu-
ally, the scheduling policy assigns higher priority to partitioning of processor resources
among active VMs than scheduling of I/O operations. For this reason, I/O-bound pro-
cesses have worst performance than those CPU-bound [Pu et al. 2010].

As observed, there are many potential sources of contention. The performance
damage depends on applications characteristics, scheduling and resource provisioning
policies, or peculiarities of the virtualization technology. Thus, performance monitors are
commonly used the investigate performance issues in these unpredictable scenarios. By
gathering information about resources usage at runtime, monitors become an essential
tool in data centers and cloud infrastructures. However, the collection of data performed
by monitors introduces a non-negligible overhead to the system. Large software systems
often collect thousands of performance counters during monitoring [Shang et al. 2015].
Next section presents an approach to reduce the interference caused by monitors.

4. An approach for reduction of monitoring overhead

Monitoring tools and application profilers use performance counters to collect data about
resources usage. Performance counters track the usage of components such as processors,
memory, or I/O devices. Then, by reading information from specific counters, one can
detect bottlenecks and fine-tune system performance at run-time. Although it seems to be
the normal activity of some counters are untouched by certain applications, understanding
the impact caused by applications to a large set of counters would require the knowledge
of a specialist. In addition, identifying the set of irrelevant counters manually would be
time consuming and error-prone.

Thus, we propose a methodology to reduce monitoring overhead by applying the
whole KDD process in order to select only the most relevant performance counters. The
first step consists in collecting performance data. Then, we preprocess the obtained data
by removing the counters with low variance measures. Next, we transform the attributes
in a dissimilarity matrix. Finally, we apply a hierarchical clustering algorithm to identify
which counters are similar, and reduce the set of counters by removing the redundant
ones.

4.1. Step 1: collecting performance data

As a first step, it is necessary to select a set of counters among those available for mon-
itoring. Usually operating systems and monitoring tools provide an API (Application
Programming Interface) for users to register the performance counters of interest. The
data acquired by these counters is normally stored in a log file. In our approach, the set
of performance counters under monitoring is configured in advance. Unnecessary events,
such as automatic updates and other scheduled system tasks, are disable in the system to
not influence in the results.

Performance data is collected during an experiment execution, i.e., the system is
stimulated by an application or benchmark in order to exercise systems resources while
system usage data is measured through performance counters. To discard transient effects
from warming-up time, a number of samples at the begin and end of the collected data is
discarded.



Table 1 illustrates how the collected data is organized in the log file. The first
column stores a timestamp indicating the time when data was collected and the successive
columns shows the measured data for performance counters from 1 to n. Resource usage
measured by each counter can be observed by lines 1 to m. Each sample (i.j) is recorded
in a specified time (i) and belongs a specified counter (j) following the distribution as
Table 1 shows. To observe variations on a counter samples is necessary a workload that:
stimulate this specific counter; and that changes its own behaviour.

Table 1. Disposition of collected performance data.
Timestamp Counter 1 Counter 2 ... Counter n
time 1 sample 1.1 sample 1.2 ... sample 1.n
time 2 sample 2.1 sample 2.2 ... sample 2.n
... ... ... ... ...
time m sample m.1 sample m.2 ... sample m.n

4.2. Step 2: preprocessing

The preprocessing phase aims to reduce the number of counters to be evaluated by our
approach. After collecting performance counters data, we remove counters that are blank
(corresponding to missing values) or that present zero variance. This step reduces the
number of performance counters by removing those that were not influenced by the appli-
cation behaviour. For example, supposing the performance counter Current connections,
which measures the number of client connections established, is being monitored. Appli-
cation workloads with no access to databases will not affect this counter, then it will be
unmodified throughout the whole execution.

4.3. Step 3: dissimilarity matrix based on correlation

The reduced set of performance counters obtained in step 2 is used to create a dissimilarity
matrix. A dissimilarity matrix stores a collection of proximities that are available for
all pairs of n objects [Han et al. 2011]. In our approach, performance counters are the
objects. Thus, each intersect of a row with a column has a value of dissimilarity based
on Pearson correlation coefficient between the counter represented by the row and the
counter represented by the column. Equation 1 shows the example of a dissimilarity
matrix where d(jl, jc) is the measured dissimilarity between the counter jl and jc.

0
d(2, 1) 0
d(3, 1) d(3, 2) 0
... ... ...

d(n, 1) d(n, 2) ... 0

 (1)

The Pearson correlation coefficient is a measure of the linear correlation between
two objects. This coefficient ranges from -1 to 1. The extreme values indicate a per-
fect correlation: -1 for negative correlation; and 1 for positive correlation. The value 0
indicates no correlation. The farther from zero is the coefficient value, the higher the
correlation: negative correlation when closer to -1; or positive, when closer to 1.



After calculating Pearson correlation coefficients r for the performance counters,
the coefficients are transformed into a distance coefficients (d) to set the dissimilarity ma-
trix. We apply this transformation using Equation 2. With this transformation the highest
correlations, positive or negative, will get 0 as dissimilarity coefficient, and no correla-
tions will get 1. The transformation is made in this manner because we are interested in
evaluate correlations in the next step without worrying about the type of linear correlation.

d =

{
1− r for r > 0
r + 1 for r < 0

(2)

The Pearson correlation is a well known and widely used coefficient in scientific
research to identify linear correlations [Taylor 1990]. Also, it is used to perform perfor-
mance analysis in previous work [Shang et al. 2015].

4.4. Step 4: clustering similar counters
According to Han et al. [Han et al. 2011] clustering consists in the process of grouping
the data into clusters where the objects within a cluster have high similarity to one another
but are very dissimilar to objects in other clusters. The majority memory-base clustering
algorithms consider as input data a specific data matrix. In this paper we are considering
as input the dissimilarity matrix generated in Step 3.

We use a hierarchical clustering algorithm. This kind of cluster method creates
a hierarchical decomposition of the given set of data objects that can be classified as
agglomerative or divisive [Han et al. 2011]. We are using the hierarchical agglomerative
algorithm called complete linkage.

In this algorithm each object of the dissimilarity matrix composes a group. The
dissimilarity matrix is used to find the shortest distance between two groups. The distance
between two groups is given by the distance of the most distant objects. The two groups
found are grouped. The process is repeated iteratively analyzing the next shortest distance
until form only one group. The process results a dendrogram illustrated by Figure 1. In
our approach the objects in analysis are the performance counters.

counter1 counter2 counter3 counter4

d
i
s
t
a
n
c
e

Figure 1. Dendrogram generated by a hierarchical clustering.

To define the number of groups desired is possible to specify a distance that the
clustering process have to be cut, as shown in Figure 2. Counters connected by the
branches below the defined cutoff compose a group. For instance, counter2 and counter3
compose the same group and counters counter1 and counter4 form separately other two
different groups.



counter1 counter2 counter3 counter4

d
i
s
t
a
n
c
e

cutoff

groups

Figure 2. Cutting applied to a dendrogram.

Since the values on the matrix closer to 0 correspond to high correlation between
the counters, and values closer to 1 indicate that a pair of counters have low similarity,
the cutting applied to a dendrogram should be closer to 0 to form groups of counters with
high correlation between them.

The cutting can be performed by many tree cut methods. Calinski-harabasz is a
example of method successfully used by Shang et. al. [Shang et al. 2015] to perform
hierarchical clustering of performance counters. But using this automatic method and
other [Charrad et al. 2015], like Silhouette, there is no guarantee that the cutting will be
made next to 0. Thus we decided to perform a static tree cut. In this work we apply the
cutting at distance = 0.1 (i.e., r = ±0.9). According to [Taylor 1990], r coefficient
describes a very high correlation when r ≥ 0.9 or r ≤ −0.9.

5. Evaluation
In this section, we explain our assessment goals and methodology, describe the workload
and experiment environment, and present the results of our performance study.

5.1. Goals and methodology

Performance monitors are important tools to support decisions concerning resource provi-
sioning on cloud computing. However, large amount of collected samples can affect per-
formance of guest machines throughout their execution. Therefore, we wish to quantify
the overhead caused by performance monitoring of application-centric VMs and evaluate
the benefits of our approach. Our specific goals are described as follow:

• Monitoring overhead: The frequency and amount of data collected by perfor-
mance monitors may influence systems performance. Higher frequency and large
amount of data increase contention, which hurts performance. In virtualized envi-
ronments, the contention effect becomes even more visible. We analyze the impact
in application performance caused by monitoring overhead. We vary the number
of virtual machines running in a physical host.
• Workload impact: The application behavior can exercise different computing

resources, i.e., operating system or hardware components. We investigate how
different patterns of applications are affected by the monitoring overhead. In par-
ticular, we evaluated CPU-intensive, memory-intensive, and I/O-intensive work-
loads.
• Redundant counters suppression: Information acquired by performance coun-

ters may present a strong correlation. Even with a suppression of some counters,



others can still capture the relevant information about resources usage. In our ex-
periments we reduce the number of performance counters under monitoring by
adopting our approach and evaluate the impact in the monitoring overhead.
• Overhead reduction: As a consequence of reduction on the number of perfor-

mance counters under monitoring, it is expected a reduction on contention and
competition for resources. We analyze the overhead decrease while monitoring
the reduced set of counters selected by our approach.

5.2. Workload characterization

Applications for the most diverse purposes apply distinct load patterns against systems
components. The impact on performance, though, can be difficult to predict. In order to
provide controlled and reproducible workloads in our tests, we investigated the perfor-
mance interference caused by a well-defined set of application workloads. To represent
some application patterns, we implemented micro benchmarks to stretch specific systems
resources. These benchmarks can be set to increase or decrease the workload intensity
over the experiment life time. This is done by adding or removing work threads at spe-
cific instants of the execution. This feature enforces fluctuation on the load intensity
throughout test execution.

Our benchmarks represent CPU-intensive, I/O-intensive and memory-intensive
patterns. The CPU-intensive benchmark implements π calculation. It calculates the num-
ber π until its 100th decimal place. The I/O-intensive benchmark implements random
readings and random writings. These operations manipulate a pre-allocated 20GB of files
and read or update blocks of 512 bytes per time. The memory-intensive benchmark imple-
ments similar operations over a pre-allocated 200MB-integer-array on memory. Both I/O
and memory intensive benchmarks repeat the operations until the end of a pre-established
execution time.

5.3. Environment and configuration

In our experiments the test environment is composed by 1 host machine with 4 cores
(Intel Xeon E3-1240V5 processor), 16GB of RAM, 1TB of hard disk, operating system
Windows Server 2012 R2 and VMware Workstation 12 Player as hypervisor. The hosted
virtual machine are configured with 1 processors, 1 GB of RAM, 80 GB of virtual hard
disk, and operating system Windows Server 2012 R2. The virtualization mode used was
Intel VT-x/EPT and acceleration for binary translation was disabled.

Systems performance monitoring is performed by Perfmon (Performance Moni-
tor) [Microsoft ], a native tool available in Windows operating systems. This tool allows
the selection of a set of performance counters, which are responsible for collecting infor-
mation about processors, memory, disk, etc. In our experiments, data is collected every
second and the number of performance counters under monitoring varies according to the
experiment.

5.4. Monitoring overhead

We evaluate the monitoring overhead for different scenarios. The scenarios executed
differ by the number of active VMs, varying from 1 up to 2 VMs running concurrently,
and by the kind of workload. The modeled workload profiles represent CPU-intensive,



I/O-intensive (disk reads, writes and reads/writes) and memory-intensive (reads/writes)
processes. For all scenarios, each active VM was exposed to exactly the same workload.1

In our experiments, a single thread is responsible for measuring the application
throughput. The time interval between throughput sampling is 1 second. To analyze
monitoring overhead, we have measured the application throughput in two different se-
tups. In the first case, to avoid external contention, only the application benchmark is
executing. Then, to observe monitoring overhead, we run the application together with
the monitoring tool. When monitoring is running, the Perfmon tool is configured to col-
lect information from 9,108 performance counters.

The overhead caused by monitoring calculation gives a ratio between the through-
put observed when monitoring is disabled and when it is enabled. The overhead re-
turns the percentage of operations that could be executed whether monitoring was dis-
abled. Considering the average operations per second performed with monitoring en-
abled (OME) and the average operations per second performed with monitoring disabled
(OMD), the overhead is given by Equation 3.

Overhead(%) = 100−
(
OME × 100

OMD

)
(3)

Figure 3 shows the number of reads commands in a single VM for executions of
the I/O-intensive benchmark set to perform read-only operations. In this scenario only
one VM is executing, i.e., there is no other VMs allocated to the host machine. The
continuous line shows the throughput when monitoring is disabled and the dashed line
when it is enabled. As can be observed, the number of read commands is consistently
lower when the monitor is executing. The average throughput when performance monitor
is disabled is 73.17 operations per second, while the average throughput when monitor
is enabled is 51.46 operations per second. The monitoring overhead is 29.67%, which
means the performance of application is almost 30% worst due to the monitor influence.

Figure 4 depicts the monitoring overhead for applications running on multiple
VMs. In our experiments, the infrastructure was configured as: just a single VM, or two
VMs running in a host. The bar chart indicates the application patterns, which are rep-
resented by memory-intensive, CPU-intensive and disk-intensive workloads. The disk
benchmark was set up to perform read-only operations (Disk R), write-only operations
(Disk W), and a mix with 50% of read and 50% of write operations (Disk R/W). The
clustered bars labeled as “1 VM” and “2 VMs” shows the monitoring overhead for execu-
tions with one guest VM and two guest VMs, respectively. With 1 and 2 VMs executing,
the monitoring overhead for CPU and memory-intense workloads is between 4% and 7%.
These benchmarks are the less affected, since monitoring activity is mostly disk-intensive.
The impact of monitoring becomes more noticeable when application also competes for
disk, which is the case of disk-intensive workloads. As observed, for read-only operations
the monitoring overhead accounts for up to 30%.

1Experiments with more than two VMs presented a severe performance degradation when the whole set
of counters where being monitored, so we decided not to include them in our analysis.



0 50 100 150 200

30
40

50
60

70
80

90

Time (seconds)

T
hr

ou
gh

pu
t (

re
ad

s/
se

co
nd

)

0 50 100 150 200

30
40

50
60

70
80

90

Time (seconds)

T
hr

ou
gh

pu
t (

re
ad

s/
se

co
nd

)
Monitoring disabled Monitoring enabled

Figure 3. Throughput of read-intensive workload in a single VM.

0

10

20

30

1 VM 2 VMs
Setup

O
ve

rh
ea

d 
(%

)

Workloads
Disk R
Disk R/W
Disk W
CPU
Memory

Figure 4. Monitoring overhead using full performance counter set according to
the number of virtual machines.

5.5. Performance counters correlation

The main goal of this paper is to reduce monitoring overhead without affecting the mon-
itor accuracy. Our approach returns a representative subset of counters based on feature
selection of performance counters for each application pattern. By applying the steps de-
fined in Section 4 over the data acquired by experiments from Section 5.4, we observe
an expressive reduction in the number of relevant performance counters. From a total of
9,108 performance counters, we have selected 124 counters for the CPU-intensive bench-
mark; 384 for the read-intensive benchmark; 316 for the write-intensive benchmark; 384
for read/write intensive benchmark; and 376 for memory-intensive benchmark.



With less performance counters under monitoring, it is expected a reduction on
resources usage and contention. Monitor will have less influence in scheduling and inter-
ruption time (e.g. CPU time allocation and logging information). On the one hand, with
a reduced set of counters, there is less data about the system to collect and store. On the
other hand, less information would give a less accurate view of the system health.

Our approach reduces only counters that have a high correlation with others.
Therefore, the ability to evaluate systems performance is not prejudiced. For example,
performance counters % Processor Time and % Idle Time measure the percentage of CPU
usage and idleness, respectively. Consequently, as one increases, the other decreases pro-
portionally. For that reason, only one of them need be monitored. Analogously to this
example, other pairs or groups of counters describe complementary information, then
some of them can be omitted. Our approach captures these correlations among counters.
Notice that figuring out these correlations manually for a large number of counters would
be impractical.

5.6. Overhead reduction
After reducing the the performance feature space by excluding redundant counters, we
reproduce the same test scenarios described in Section 5.4 and evaluate the monitoring
overhead.

Figure 5 shows the number of read commands performed by a single VM run-
ning at the host machine. This scenario replays the workload applied in Figure 3. As
can be observed in the graph, the overhead caused by the performance monitor is almost
imperceptible. The average throughput when monitor is disabled is 73.17 operations per
second. When monitoring is enabled the throughput reaches 67.08 operations per second.
This represents an important reduction of monitoring overhead, since the application per-
formance were around 51.46 operations per second before feature selection.

0 50 100 150 200

30
40

50
60

70
80

90

Time (seconds)

T
hr

ou
gh

pu
t (

re
ad

s/
se

co
nd

)

0 50 100 150 200

30
40

50
60

70
80

90

Time (seconds)

T
hr

ou
gh

pu
t (

re
ad

s/
se

co
nd

)

Monitoring disabled Monitoring enabled

Figure 5. Throughput of read-intensive workload in a single VM after performance
counters selection.

Figure 6 compares the monitoring overhead caused by the measurement of the



whole set of counters and the reduced set of counters. Solid bars represent the overhead
caused by the original set of counters and dashed bars shows the overhead caused by the
reduced set of counters. As observed, the performance counter set nominated by our ap-
proach consistently reduces the monitoring overhead for all workload patterns. CPU and
memory-intensive workloads present a negligible overhead when the subset of counters
is configured. The highest overhead observed by the optimized monitor is perceptible
in read-only, disk-intensive workload, approaching 10%. However, this overhead corre-
sponds to only one third of the overhead measured in the equivalent scenario with the
whole set of counters enabled.

0

10

20

30

1 VM 2 VMs
Setup

O
ve

rh
ea

d 
(%

)

Workloads
Disk R
Disk R/W
Disk W
CPU
Memory

Monitoring
Counter set
Counter subset

Figure 6. Monitoring overhead contrast between the use of full performance
counter set and reduced performance counter set according to the number of
virtual machines.

6. Conclusion
With a growing number of applications running on cloud, it is becoming more impor-
tant to leverage resources in a efficient way. Performance monitors, through information
collect from performance counters, are largely used as a mean of watching systems per-
formance. They are valuable tools for supporting loading balance, migration and resource
management decisions. However, the monitoring itself can hurt performance, specially in
virtualized environments.

This paper analyzes the performance overhead caused by system monitoring in
virtualized infrastructure. Different application patterns were evaluated and experimen-
tal results reveal significant resource contention introduced by monitoring activity. I/O-
intensive applications are the most affected, especially those with read-only operations.

We propose an approach capable to reduce monitoring overhead without affecting
the monitor accuracy. Our approach uses data mining strategies to select only the most
relevant performance counters for different application workloads. We apply hierarchical
cluster analysis to find out a relevant group of performance counters. By using the selected
set of performance counters, the monitoring overhead is drastically reduced. In some



cases, the overhead can be one third lower than the one observed with the whole set of
counters.

References
Alam, S. R., Barrett, R. F., Kuehn, J. A., Roth, P. C., and Vetter, J. S. (2006). Charac-

terization of scientific workloads on systems with multi-core processors. In Workload
Characterization, 2006 IEEE International Symposium on, pages 225–236. IEEE.

Alves, M. M. and Drummond, L. M. d. A. (2016). A quantitative model for
predicting cross-application interference in virtual environments. arXiv preprint
arXiv:1610.04309.

Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2015). De-
termining the Best Number of Clusters in a Data Set. https://cran.r-
project.org/web/packages/NbClust/NbClust.pdf, 3,0 edition.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The kdd process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11):27–34.

Fedorova, A., Blagodurov, S., and Zhuravlev, S. (2010). Managing contention for shared
resources on multicore processors. Communications of the ACM, 53(2):49–57.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition.

Jin, H., Qin, H., Wu, S., and Guo, X. (2015). Ccap: a cache contention-aware virtual
machine placement approach for hpc cloud. International Journal of Parallel Pro-
gramming, 43(3):403–420.

Mars, J., Tang, L., Hundt, R., Skadron, K., and Soffa, M. L. (2011). Bubble-up: In-
creasing utilization in modern warehouse scale computers via sensible co-locations. In
Proceedings of the 44th annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 248–259. ACM.

McDougall, R. and Anderson, J. (2010). Virtualization performance: perspectives and
challenges ahead. ACM SIGOPS Operating Systems Review, 44(4):40–56.

Mell, P. and Grance, T. (2011). The nist definition of cloud computing. Retrieved from
http://csrc. nist. gov/publications/nistpubs/800-145/SP800-145.pdf.

Microsoft. Windows reliability and performance monitor.
https://technet.microsoft.com/en-us/library/cc749249(v=ws.10).aspx. Last accessed:
Jun-2017.

Popiolek, P. and Mendizabal, O. (2012). Monitoring and analysis of performance impact
in virtualized environments. Journal of Applied Computing Research, 2(2):75–82.

Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., and Pu, C. (2010). Understanding perfor-
mance interference of i/o workload in virtualized cloud environments. In Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference on, pages 51–58. IEEE.

Rameshan, N. (2016). On the role of performance interference in consolidated environ-
ments. In IEEE/USENIX International Conference on Autonomic Computing (ICAC).
KTH Royal Institute of Technology.



Rameshan, N., Navarro, L., Monte, E., and Vlassov, V. (2014). Stay-away, protecting
sensitive applications from performance interference. In Proceedings of the 15th In-
ternational Middleware Conference, pages 301–312. ACM.

Shang, W., Hassan, A. E., Nasser, M., and Flora, P. (2015). Automated detection of per-
formance regressions using regression models on clustered performance counters. In
Proceedings of the 6th ACM/SPEC International Conference on Performance Engi-
neering, pages 15–26. ACM.

Shirvani, M. H. and Ghojoghi, A. (2016). Server consolidation schemes in cloud comput-
ing environment: a review. European Journal of Engineering Research and Science,
1(3):18–24.

Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of
diagnostic medical sonography, 6(1):35–39.

Yu, L. and Liu, H. (2004). Efficient feature selection via analysis of relevance and redun-
dancy. Journal of machine learning research, 5(Oct):1205–1224.

Zhang, J. and Figueiredo, R. J. (2006). Application classification through monitoring
and learning of resource consumption patterns. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, pages 10–pp. IEEE.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18.


