
Online detection of Botnets on Network Flows using Stream
Mining

Victor G. Turrisi da Costa1, Bruno Bogaz Zarpelão1,
Rodrigo Sanches Miani2, Sylvio Barbon Junior1

1Computer Science Department – State University of Londrina (UEL)
Londrina – PR – Brasil

2School of Computer Science (FACOM) – Federal University of Uberlândia
Uberlândia – MG – Brazil

{victorturrisi, brunozarpelao, barbon}@uel.br,

miani@ufu.br

Abstract. The threat posed by botnets of infecting a large number of devices and
using them together to perform several malicious actions has become a growing
issue to the Internet security. One way to deal with it is to have methods able to
correctly identify those botnets and then run necessary countermeasures. Many
approaches using machine learning (ML) have been proposed over the years
to cope with botnet detection. Nonetheless, the algorithms commonly employed
cannot adapt to new data without significant effort. In this sense, a ML research
topic referred to as stream mining may be a solution. Stream mining algorithms
are specially tailored to learn incrementally with new instances, without con-
suming significant memory or time. This work proposes an approach using the
Very Fast Decision Tree, a classification algorithm used on stream mining that
can learn incrementally when needed, to identify botnets by observing network
flows. When evaluating the approach on multiple scenarios with different bot-
nets, we were able to achieve high performance metrics on the majority of sce-
narios, while using a significantly low number of labelled instances.

1. Introduction
The Internet security has been a growing concern with the popularisation of its services
and the continuous increase in the number of active users. Among the major concerns,
botnets are one of the most widespread and hazardous threats. They consist of a group of
infected devices that work together to perform a vast range of malicious activities, such as,
Distributed Denial of Service (DDoS) attacks, stealing sensitive information and gener-
ating spam [Silva et al. 2013, Kidmose et al. 2016, Costa et al. 2017]. A botnet has three
main components that often characterises it, the bots, the botmaster and the Command and
Control (C&C) infrastructure. The bots correspond to the devices that are compromised
by a bot malware (a malware that takes control of this device). The botmaster consists
of malicious users that own a botnet and control its bots. Lastly, the C&C infrastructure
describes the way the bots and the botmaster communicate among themselves.

One common approach to deal with botnets consists of detecting suspicious ac-
tivities using Intrusion Detection Systems (IDSs), and then perform the necessary se-
curity measures [Silva et al. 2013, Grill and Pevnýa 2016]. IDSs often rely on machine



learning (ML) algorithms to learn malicious behaviours and use the modelled patterns
in detection task. In this sense, these algorithms need to be able to continuously adapt
to identify new botnets [Hammerschmidt et al. 2017]. Over the years, many works
have proposed solutions for botnet detection, e.g., [Livadas et al. 2006, Saad et al. 2011,
Stevanovic and Pedersen 2014, Jianguo et al. 2016], but new botnets have developed new
mechanisms to make them more robust and sophisticated [Silva et al. 2013], greatly in-
creasing the difficulty of identifying and disrupting them. Hence, solutions capable of
quickly adapting to changes in botnet behaviour are required.

Stream mining, as described in [Domingos and Hulten 2000, Gama et al. 2010,
Krawczyk et al. 2017], is a branch of ML that views data as a possibly infinite stream
and, by doing so, algorithms are specially designed to learn in an online fashion, one
instance at a time. Additionally, memory and time limitations are specifically stud-
ied in this area, so that the algorithms also need to be able to cope with these chal-
lenges [Domingos and Hulten 2000, Gama et al. 2010, Krawczyk et al. 2017]. Many al-
gorithms were specially developed to handle data streams, with the Very Fast Decision
Tree (VFDT) [Domingos and Hulten 2000] being largely used across many fields. This
algorithm is a modification of traditional decision trees with the ability to learn one in-
stance at a time by using statistical properties, while it also consumes less memory com-
pared to its batch counterparts, and is significantly faster than them.

With this in mind, we propose to detect botnets in an online manner by analysing
network flows employing the VFDT. Nonetheless, other algorithms for data streams could
also be employed, but we chose the VFDT because it is a very memory conservative
algorithm, with the possibility of using it in low memory devices. Our approach can
be easily updated when novel botnets become known, without any need to retrain the
model from scratch. In other words, it is not required to store all labelled data used to
train the model. Additionally, we also considered the cost of labelling instances, limiting
the number of labels available for the proposed solution. The solution was evaluated on
eleven different scenarios of the CTU dataset [Garcı́a et al. 2014], which contains labelled
network flows from legitimate and malicious botnet traffic.

The main contributions of this work are:

1. We provide a data stream based approach for botnet detection that is also capable
of being updated online without training from scratch;

2. We perform empirical tests of the proposed approach on all scenarios of the CTU
dataset, achieving high performance on the majority of scenarios, even with lim-
ited number of labelled instances.

The remainder of this paper is organised as follows. Section 2 presents botnet de-
tection related work. Section 3 contains theoretical foundation about traditional machine
learning and machine learning on data streams. In Section 4, the proposed approach is
presented. Our experiments and results are contained in Section 5. The conclusion of this
paper is presented in Section 6.

2. Related Work
This section presents previous work that performed botnet detection on the CTU dataset
[Garcı́a et al. 2014]. Wang and Paschalidis [Wang and Paschalidis 2016] proposed a two-
phase approach for botnet detection. Their idea consists of first detecting and collecting



network anomalies associated with the presence of a botnet by using statistical measures,
and then identifying the bots by analysing these anomalies. The detection phase quantifies
and monitors flow-level data as histograms, which are then used to construct graphs of
highly interactive nodes (hosts that communicate with each other). They evaluated their
approach on scenarios 1, 2, 6, 8 and 9 of the CTU dataset, obtaining very low recall
(0.0734 on mean) and satisfactory precision (0.7360).

Jianguo et al. [Jianguo et al. 2016] proposed to detect botnet behaviour data by
using traditional machine learning (ML) algorithms and network flow features. They eval-
uated their work in two malicious datasets (scenario 2 of the CTU dataset and a dataset
containing the Zeus botnet) and one dataset from the a laboratory in Berkeley that con-
tained only legitimate data. They obtained very high performance metrics, even while
using a logistic regression, but they employed a fully labelled dataset, in the sense that a
large number of labelled instances were used. Additionally, they did not use legitimate
nor background traffic from the CTU dataset, so a direct comparative link between the
performance achieved in their work and ours is impossible to make.

Hammerschmidt et al. [Hammerschmidt et al. 2016] created a solution using fi-
nite state machines and network flow features to detect devices infected by bot malwares.
The authors state that recent methods that deal with botnet detection work in a batch
setting, which creates time and memory constraints. In this sense, they propose to ad-
equate their approach to deal with network data in a stream setting. When evaluating
their approach on scenarios 10, 11 and 12 of the CTU dataset, they achieved high host
identification rates, however, their solution does not identify malicious botnet flows, re-
quiring a high number of flows to perform the detection task. Hammerschmidt et al.
[Hammerschmidt et al. 2017] is an extension of the same paper with additional theoreti-
cal links to the data stream mining field.

Ijaz et al. [Ijaz et al. 2017] proposed a genetic algorithm based solution to detect
malware attacks. They evaluated the performance of their approach at detecting each
type of attack present on the KDD dataset [Bay et al. 2000] and two attack types from
scenario 2 of the CTU dataset. On the CTU dataset, they obtained satisfactory results
on both attacks, however, their approach lacks online capacity, needing many round of
optimisation and batch data for the genetic algorithm.

Chen et al. [Chen et al. 2017] evaluated three unsupervised machine learning al-
gorithms, self-organising map (SOM), local outlier factor (LOF), and k-NN outlier, to
build a normal behaviour profile to be used for botnet detection. They evaluated their
solution on the CTU dataset. By adding derived features to the original ones, they could
obtain a very high detection rate (91.3%), but with inherited high false positive rates due
to the nature of the algorithms employed. Nonetheless, a very significant performance, in
the sense that the algorithms employed did not have access to any labelled data.

Khanchi et al. [Khanchi et al. 2017] proposed an approach using genetic program-
ming and ML on data streams to detect botnet flows. The authors also imposed a budget
to restrict the amount of labelled data their approach had access to. They evaluated the
approach on the CTU dataset and obtained a relatively high performance using a con-
siderable small number of labelled instances. Nonetheless, authors imply that labelling
legitimate instances have the same cost than botnet instances, which does not hold true



in reality, since it is easy to gather network data from proven legitimate servers, such as,
from Google. In this sense, more legitimate data could be used without greatly increasing
labelling costs.

Unlike solutions that use traditional ML algorithms, our solution is able to learn
continuously, without the need to store all labelled data and use it to retrain the solution
when new data becomes available, adapting to novel botnets more easily. Likewise, the
prediction model is updated on the fly, different from the traditional ML that process past
data, even obsolete, to obtain a model. Additionally, ML algorithms for data streams
consume significant less memory than their traditional batch counterparts, which makes
possible to deploy it in different network components. Some works proposed solutions
that work in an online setting, but there is still large room for improvement.

3. Machine Learning and Data Stream Mining

Machine learning techniques are able to model knowledge based on data. Afterwards,
those models can be applied in a range of tasks such as classification problems. In recent
scenarios, the massive amount of data available demands specialised algorithms capable
of learning from it [Gama et al. 2010, Krawczyk et al. 2017]. To address this issue, data
stream mining algorithms, in contrast to traditional ML algorithms, are specially tailored
to be able to learn incrementally without the need to store all data, in fact, processing data
in the form of a continuous and infinite stream. Additionally, the evolving nature of data
streams throughout the time produces a phenomenon called concept drift. Concept drifts
are related to changing the behaviour of patterns formed along the time, consequently, old
data becomes obsolete and can negatively impact the performance of the predictive model
[Gama et al. 2010, Krawczyk et al. 2017].

When dealing with network traffic analysis, a huge amount of information is avail-
able and so, the constraints to deal with it align with the ones of ML on data streams. One
of the most used algorithms in data stream ML is called Very Fast Decision Tree (VFDT),
proposed by [Domingos and Hulten 2000]. It is a modification of the standard decision
trees applied in traditional ML tasks to address incremental learning, as well as time and
memory limitations. Unlike traditional decision trees, the VFDT can learn one instance
at a time by storing sufficient information by taking advantage of a statistical property
called Hoeffding Bound (HB). Moreover, the prediction model obtained by this algorithm
is based on lightweight statistics about the instances instead of the instances themselves.

These statistics are a simple counting procedure to handle nominal attributes. On
the other hand, numerical attributes are computed by more sophisticated lightweight tech-
niques. The most applied strategy is the Gaussian estimators [Pfahringer et al. 2008],
which uses very few memory and result in a predictive performance as close as if the
VFDT was trained using all instances at the same time. The aforementioned character-
istics support the VFDT to compute metrics normally used across all decision trees, as
information gain (IG).

Given a variable x, whose value fluctuates between a range R, that was indepen-
dently observed n times and presented an observed mean of x, the HB states that the true
mean of this variable is at least x− ε when n grows to infinity with statistical probability



1− δ, where

ε =

√
R2 ln(1

δ
)

2n
. (1)

We can check if the best feature is indeed the best if its IG value is greater than the second
highest IG value by at least ε (computed using Equation 1).

To increase the performance of the VFDT, Gama et al. [Gama et al. 2003], pro-
posed the use of functional leaves. Functional leaves implement an additional prediction
layer, where each leaf applies an adaptive Naive Bayes (NB) to perform predictions. This
adaptive NB algorithm uses the prediction of a NB when it has superior accuracy than
a most common classical approach. Otherwise, it is assigned the prediction as the class
most present in the leaf. It is important to notice that this accuracy is computed incremen-
tally and that the same leaf may alter between using NB or most common. At last, the
VFDT has a competitive performance in comparison to decision trees fashioned to batch
training from conventional datasets [Domingos and Hulten 2000]

4. Proposed Approach
We propose a network-based approach to detect botnets by analysing bidirectional net-
work flows in an online manner using the VFDT. In this sense, the approach is able to
be incrementally updated when new instances become available. Additionally, memory
and time constraints are also considered, resulting in a very lightweight solution. The
approach can be divided into two main steps: instance creation and botnet detection.

The objective of the instance creation step is to generate, from network packets,
the data instances that will be processed by VFDT. The instance creation starts with a
stream of network packets that is organised into bidirectional flows by a router. In prac-
tice, any router that supports RFC 5103 [Trammell and Boschi 2008], which defines im-
plementation details for routers to be able to generate bidirectional network flows, can be
used. Bidirectional flows differ from conventional flows in the sense that the equipment
is capable of inferring the direction of the communication among hosts. The features that
compose each instance are extracted from each outputted flow. In this way, each flow is
transformed into a single data instance to be processed by VFDT. The data instances are
then sorted by their end times.

All features employed in this work are present in Table 1. We also ignored features
related to IP addresses, since they are not related to the behaviour of the botnet and would
generate some bias. In this case, the solution would just associate malicious traffic to
the IP addresses of the infected devices and not detect botnet actions based on network
behaviour. Additionally, we derived a new feature based on the mean amount of bytes
per packet. It is interesting to note that this new feature is independent of data from other
network flows and can be easily implemented.

At first, in the botnet detection step, the VFDT is initialised with the first instance
available. After this point, the algorithm is able to perform predictions at any time. How-
ever, based on a single sample, all predictions will concern to the single class learned. For
each new instance processed, the VFDT tries to predict its class, and outputs this predic-
tion. In this sense, the VFDT will answer if that network flow corresponds to a botnet
instance or not. Additionally, this prediction is used to computed the performance statis-



Table 1. Description of features used.
Feature Description
Duration Duration of the flow in seconds.
Protocol Type of protocol used on the flow, e.g., TCP and UDP.
Source port The source port of the connection.
Destination port The destination port of the connection.
Direction Direction of the flow.
State Transaction state.
sTos Type of service from source to destination.
dTos Type of service from destination to source.
Total packets Total number of packets on the flow.
Total bytes Total bytes on the flow.
Source Bytes Total bytes from source to destination.
Extended Feature
Mean bytes per packet The mean amount of bytes per network packet

tics of the approach. If the ground truth label of that instance is available, the instance
is used to update the VFDT model. The update works in the following manner. First,
the new instance is sorted to a leaf of the VFDT. Then, the statistics about that instance
are incorporated into the node. Lastly, the tree checks if it is possible to split that leaf,
according to the HB, and splits it if needed. Since the VFDT is able to learn in an online
fashion, there is no need to retrain it from scratch, and so, each instance processed is dis-
carded after the VFDT learned from it. The ground truth labels are provided by a human
expert, who can insert new knowledge into the VFDT. Given the fact that the VFDT can
be updated with a single instance at a time, labelled data can be provided at any rate.
Likewise, there is no specific order in which instances should be provided.

A full overview of the approach can be seen in Figure 1.

Figure 1. Proposed Approach.

5. Experiments and Evaluation
To evaluate our approach in a real-world scenario capable to support the
data stream with incidence of botnet behaviour, we chose the CTU dataset
[Garcı́a et al. 2014]. Many recent proposals were also evaluated with this
dataset [Wang and Paschalidis 2016, Jianguo et al. 2016, Hammerschmidt et al. 2016,
Hammerschmidt et al. 2017, Ijaz et al. 2017]. It contains 13 different network scenarios
that vary in quantity and type of botnets. Each scenario contains legitimate and back-



ground traffic in the form of labelled bidirectional network flows. The last two differ
in the sense that the first is traffic between confirmed uninfected machines and trustful
sources, i.e., a Google’s server, while the other refers to traffic that was not confirmed as
legitimate nor botnet.

In Table 2, the amount of flows per type, for each scenario, are presented.

Table 2. Description of scenarios from the CTU dataset. Adapted from
[Garcı́a et al. 2014]

Scenario Total Flows Botnet Flows Legitimate Flows Background Flows
CTU 1 2,824,636 40,961 (1.44%) 30,387 (1,07%) 2,753,290 (97.47%)
CTU 2 1,808,122 20,941 (1.15%) 9,120 (0.50%) 1,778,061 (98.33%)
CTU 3 4,710,638 26,822 (0.56%) 116,887 (2.48%) 4,566,929 (96.94%)
CTU 4 1,121,076 2,580 (0.23%) 25,268 (2.25%) 1,093,228 (97.51%)
CTU 5 129,832 901 (0.693%) 4,679 (3.60%) 124,252 (95.7%)
CTU 6 558,919 4,630 (0.82%) 7,494 (1.34%) 546,795 (97.83%)
CTU 7 114,077 63 (0.05%) 1,677 (1.47%) 112,337 (98,47%)
CTU 8 2,954,230 6,127 (0,21%) 72,822 (2.46%) 2,875,282 (97.32%)
CTU 9 2,753,884 184,987 (6.68%) 43,340 (1.57%) 2,525,565 (91.70%)
CTU 10 1,309,791 106,352 (8.11%) 15,847 (1.20%) 1,187,592 (90.67%)
CTU 11 107,251 8,164 (7.60%) 2,718 (2.53%) 96,369 (89.85%)
CTU 12 325,471 2,168 (0.66%) 7,628 (2.34%) 315,675 (96.99%)
CTU 13 1,925,149 40,003 (2.07%) 31,939 (1.65%) 1,853,217 (96.26%)

Additionally, we also present the botnet types per CTU scenario with a brief de-
scription of their C&C protocols and their main malicious actions in Table 3.

Table 3. Botnet types per scenario. Adapted from [Khanchi et al. 2017]
Botnet Family Scenarios C&C Protocol Main Malicious Actions
Neris 1, 2 and 9 IRC Spam, fraud, and network scanning
Rbot 3, 4, 10 and 11 IRC DDoS
Virut 5 and 13 HTTP DDoS, spam and data theft
Menti 6 IRC Data theft
Sogou 7 HTTP Spam and data theft
Murlo 8 IRC Network scanning
NSIS.ay 12 P2P Data theft

The CTU dataset divides botnet flows into two different categories: botnet flows
and C&C flows. The first corresponds to network data from infected devices which were
being used as bots. The latter consists of communication between the infected devices
and the C&C infrastructure of the botnet. We treated both types as data with a botnet
label. Additionally, we tailored another class, called background, which is formed by
CTU’s legitimate and background traffic. It is important to note that to create a reliable
evaluation focused on botnet detection, our background class was not tagged as legitimate,
since some botnet instances may have gone unnoticed by the filters employed to the CTU
dataset and been classified as background.

We did not evaluate the scenarios 5 and 7 since they presented an unfit num-
ber of botnet flows, 901 and 63, respectively. Indeed, different from some prior
work [Wang and Paschalidis 2016, Jianguo et al. 2016, Hammerschmidt et al. 2016,
Hammerschmidt et al. 2017, Ijaz et al. 2017], we proposed to test our approach on all



scenarios with a significant number of instances (more than one thousand).

When carrying out the experiments, we sorted the flows by their end time. We
computed this time by using their start time and adding the duration of the flow.

To measure the performance of our approach, we used precision, recall and false
positive rate (FPR). These metrics can be easily computed by the following equations:

1. precision = TP
TP+FP

, which represents the percentage of botnet-classified flows
that are indeed botnets;

2. recall = TP
TP+FN

, which measures how effective the classifier is in identifying all
botnets instances;

3. False positive rate: FP/(FP + TN)

where, TP, TN, FP, FN represent the true positives, true negatives, false positives and false
negatives, respectively.

Accuracy is normally used across many works, but was not employed here due
to the high imbalance rate among background and botnet instances, which would result
in an accuracy of around 95% if the approach predicted all instances as background.
Additionally, to measure the memory consumption of the approach, we computed the
size in bytes of the VFDT constructed for each scenario.

When evaluating data stream algorithms, unlike traditional ML algorithms,
some validation strategies such as hold-out and cross-validation cannot be em-
ployed. Thus, we employed a method called prequential testing [Gama et al. 2010,
Domingos and Hulten 2000, Krawczyk et al. 2017]. This consists of presenting an in-
stance, without its label, to the classifier being evaluated and asking for a prediction.
After this, the prediction is stored and used to compute the performance metrics desired.
When all performance statistics are updated, the true label of that instance is presented to
the classifier, which is then able to learn from it. Due to the fact that labelling instances is
very costly for a human expert, we limited the number of instances with ground truth that
were available for the classifier. To do this, we presented the ground truth for all instances
(both botnet and background) until a number of n botnet instances. After that, no instance
had its true label presented to the classifier and, in this sense, the classifier stopped up-
dating. In other words, the classifier learned from all instances until it had learned from
a number of n botnet instances. We varied this n value from 100 to 10000 with a step of
100 on scenarios 1, 2, 3, 4, 6, 8, 10, 11 and 12. For scenario 9, the range of n was from
100 to 40000, and for scenario 13 from 100 to 20000, both with the same step of 100. We
used different values for these two scenarios because the performance achieved by using
the other range was not satisfactory and presented room for improvement, since there was
still a lot of botnet instances on the scenarios. However, it is important to note that the
classifier was evaluated using all instances.

All modules of the solution were implemented in Python version 3.6 and the ex-
periments were carried on a desktop PC with a core Intel i7-6700K and 16 GB of RAM.

5.1. Results and Discussion

At first, we will present the mean numerical performance of our approach on the scenarios
of the CTU dataset. After that, performance along the training process is presented. Then,



we present a discussion about the performance of the solution according to botnet family.
Lastly, a summarising discussion about the results are presented.

In Table 4, the numeric results for the best performing limit of n botnet instances
are presented. We denote best as the combination of a low value of n together with the
predictive performance achieved. It is possible to observe that the number of instances
used to achieve a significant predictive performance greatly varies among datasets. This
means that some botnets are inherently difficult to identify using very few instances, while
others, scenarios 4, 6, 8, 10 and 11, presented very distinct behaviour from background
data. We can observe that in all scenarios the FPR was very low, with scenario 9 having
the highest FPR among them, with a value of 0.7%. Lastly, since the memory costs of a
solution are important, we report the number of bytes each tree consumed after all training
was done. Since the VFDT presents no pruning mechanisms, which means that no leaves
are ever removed from the tree, the size reported corresponds to the maximum size. The
trees presented a mean size of 0.751 MB, with the lightest tree having 0.272 MB and the
most memory consuming tree having 1.508 MB in size. The memory consumed is very
low and can even be ignored in most applications. Even if we hold all trees in memory,
they would use mere 8.262 MB, being suitable for lightweight or embedded devices.

Table 4. Performance of the VFDT for the best maximum limit of botnets.

Dataset
Labelled botnet

instances (n)
Labelled

background instances Precision Recall FPR Size(MB)

CTU 1 16.3% (6700) 49.9% (1389655) 0.927 0.917 0.0011 1.104
CTU 2 41.1% (8600) 25.8% (461868) 0.675 0.696 0.0039 0.633
CTU 3 31.7% (8500) 75.6% (3545024) 0.962 0.967 0.0000 1.197
CTU 4 65.9% (1700) 90.1% (1007538) 0.967 0.940 0.0000 0.623
CTU 6 28.1% (1300) 30.1% (166930) 0.955 0.959 0.0003 0.272
CTU 8 31.0% (1900) 43.0% (1269715) 0.934 0.946 0.0001 0.707
CTU 9 15.2% (28200) 58.5% (1114439) 0.924 0.921 0.0072 1.139

CTU 10 0.4% (500) 40.5% (487595) 0.999 0.996 0.0000 0.380
CTU 11 2.4% (200) 86.6% (85846) 0.992 0.995 0.0006 0.295
CTU 12 78.4% (1700) 72.6% (234991) 0.664 0.422 0.0014 0.404
CTU 13 49.7% (19900) 40.2% (758694) 0.635 0.451 0.0055 1.508

In Figures 2 and 3, the final mean precision and recall values obtained for each
CTU scenario are presented. In the x-axis, we have the limit number n, in percentage,
according to the number of botnet instances on that dataset, of botnets instances that
limited the update process. Likewise, the percentage of background instances which had
their ground truth labels presented to the VFDT is also reported in the same axis. On the
y-axis, we have the percentage values. The green line in the plots corresponds to the best
performing limit of n botnets in each scenario.

It is possible to see that for scenarios 1, 3, 4, 6, 8, 9, 10 and 11 the approach was
able to achieve very high values of precision and recall (greater of equal to 90% on both
metrics). A interesting behaviour is present in scenario 3. Around a limit of 5000 botnet
instances, the VFDT presented high precision and recall values, but increasing this value
negatively impacted its performance until a maximum of around 8500 instances, in which
the performance stabilised. From the limit of 5000 to 8500 botnets, some patterns in
botnet actions may have changed and by learning from it, the performance of the solution
was compromised. In this sense, further analysis of the scenario may be interesting to



detect those patterns and study them.

Scenario 2 had a reasonable performance, achieving a metrics around 70% when
using a limit around 8200 and 8600 botnet instances. Lastly, scenarios 12 and 13 pre-
sented the worst performances. On the first, the low number of botnet instances may have
provided too little information for the VFDT. On the latter, even using a very high limit
of instances, performance was still very low and further analysis on the characteristics of
the botnets in that scenario may assist at increasing performance. Additionally, scenario
12 contains the only P2P botnet in the CTU dataset. Using the P2P protocol for its C&C
infrastructure, provide that botnet great flexibility and robustness [Le et al. 2016], obfus-
cating its activities. Likewise, the usage of a HTTP C&C infrastructure in the botnet in
scenario 13, difficult detection, as the actions of this botnet can be hidden amongst the
huge number of normal web traffic, as HTTP is a common and widely-used protocol for
home, educational and corporate networks [Eslahi et al. 2015].

By taking into consideration the botnet types of each scenario, we are able to infer
additional information about the performance of our approach. The solution was able to
identify Neris botnet after a few thousand instances for scenarios 1 and 9, however, due to
background data in scenario 2, the performance was greatly compromised. On the other
hand, Rbot botnet was very easy to detect on all scenarios. Virut botnet was only present
in scenario 13, since we removed scenario 5 due to the lack of enough botnet instances,
however, its behaviour was the hardest to identify, together with NSIS botnet. Lastly,
Menti botnet also presented a very distinguishable behaviour. In general, the approach
was able to easily identify IRC botnets despite their very diverse set of malicious actions,
struggling to identify botnets based on other C&C protocols.

The approach consumes very few memory and also obtained high performance
metrics across the majority of scenarios. Additionally, it can be updated in real time when
new labelled instances become available, increasing its applicability in the real world.
If we had employed traditional ML algorithms, the solution would be limited to the la-
belled instances used at the time of training. Likewise, if new labelled instances become
available, the algorithm would have needed to be retrained from scratch.

6. Conclusion and Future Work

Botnets are an existing and growing threat to the Internet security and so, approaches to
deal with them are needed. One way to tackle this issue is to detect botnet actions and
infected devices to then provide the necessary security measures.

In this paper we presented an approach to deal with botnet detection in an online
manner, which can even be extended using other algorithms or updating techniques. The
approach is able to classify unknown network flows as botnet or not, being lightweight
and with the additional property that it can be updated on the fly.

To evaluate this approach, we performed empirical evaluations on the CTU
dataset, which contains different scenarios with network traffic data from botnets, lim-
iting the maximum number of instances the approach had access to its ground truth label.
We obtained high prediction performance metrics (precision, recall, and FPR) in the ma-
jority of scenarios. Likewise, the memory consumption of the VFDT was very low, with
a mean size of 0.272 MB on all scenarios.



precision recall best n

Scenario 1 Scenario 2
0.

00
2 

- 0
.2

4
0.

01
 - 

0.
27

0.
03

 - 
0.

29
0.

04
 - 

0.
31

0.
05

 - 
0.

33
0.

06
 - 

0.
35

0.
08

 - 
0.

37
0.

09
 - 

0.
40

0.
10

 - 
0.

42
0.

11
 - 

0.
43

0.
12

 - 
0.

44
0.

14
 - 

0.
45

0.
15

 - 
0.

47
0.

16
 - 

0.
50

0.
17

 - 
0.

50
0.

19
 - 

0.
51

0.
20

 - 
0.

51
0.

21
 - 

0.
51

0.
22

 - 
0.

52
0.

23
 - 

0.
52

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.
00

5 
- 0

.2
0

0.
03

 - 
0.

20
0.

05
 - 

0.
20

0.
08

 - 
0.

21
0.

10
 - 

0.
21

0.
12

 - 
0.

21
0.

15
 - 

0.
21

0.
17

 - 
0.

21
0.

20
 - 

0.
21

0.
22

 - 
0.

22
0.

24
 - 

0.
22

0.
27

 - 
0.

22
0.

29
 - 

0.
22

0.
32

 - 
0.

22
0.

34
 - 

0.
22

0.
36

 - 
0.

23
0.

39
 - 

0.
23

0.
41

 - 
0.

26
0.

43
 - 

0.
28

0.
46

 - 
0.

31

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
Scenario 3 Scenario 4

0.
00

4 
- 0

.3
8

0.
02

 - 
0.

39
0.

04
 - 

0.
39

0.
06

 - 
0.

40
0.

08
 - 

0.
40

0.
10

 - 
0.

40
0.

12
 - 

0.
40

0.
13

 - 
0.

41
0.

15
 - 

0.
42

0.
17

 - 
0.

42
0.

19
 - 

0.
73

0.
21

 - 
0.

73
0.

23
 - 

0.
73

0.
25

 - 
0.

74
0.

26
 - 

0.
74

0.
28

 - 
0.

75
0.

30
 - 

0.
75

0.
32

 - 
0.

76
0.

34
 - 

0.
76

0.
36

 - 
0.

77

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.
04

 - 
0.

36
0.

08
 - 

0.
38

0.
12

 - 
0.

39
0.

16
 - 

0.
40

0.
19

 - 
0.

41
0.

23
 - 

0.
67

0.
27

 - 
0.

68
0.

31
 - 

0.
69

0.
35

 - 
0.

69
0.

39
 - 

0.
69

0.
43

 - 
0.

70
0.

47
 - 

0.
70

0.
50

 - 
0.

70
0.

54
 - 

0.
87

0.
58

 - 
0.

88
0.

62
 - 

0.
89

0.
66

 - 
0.

90
0.

70
 - 

0.
91

0.
74

 - 
0.

92
0.

78
 - 

0.
93

0.
81

 - 
0.

94
0.

85
 - 

0.
96

0.
89

 - 
0.

96
0.

93
 - 

0.
98

0.
97

 - 
0.

99

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Scenario 6 Scenario 8

0.
02

 - 
0.

07
0.

06
 - 

0.
11

0.
11

 - 
0.

15
0.

15
 - 

0.
18

0.
19

 - 
0.

22
0.

24
 - 

0.
27

0.
28

 - 
0.

30
0.

32
 - 

0.
35

0.
37

 - 
0.

40
0.

41
 - 

0.
44

0.
45

 - 
0.

48
0.

50
 - 

0.
51

0.
54

 - 
0.

56
0.

58
 - 

0.
59

0.
63

 - 
0.

63
0.

67
 - 

0.
67

0.
71

 - 
0.

70
0.

76
 - 

0.
74

0.
80

 - 
0.

78
0.

84
 - 

0.
84

0.
89

 - 
0.

87
0.

93
 - 

0.
92

0.
97

 - 
0.

96

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.
02

 - 
0.

04
0.

07
 - 

0.
07

0.
11

 - 
0.

13
0.

16
 - 

0.
24

0.
21

 - 
0.

29
0.

26
 - 

0.
37

0.
31

 - 
0.

43
0.

36
 - 

0.
46

0.
41

 - 
0.

51
0.

46
 - 

0.
54

0.
51

 - 
0.

58
0.

55
 - 

0.
63

0.
60

 - 
0.

68
0.

65
 - 

0.
72

0.
70

 - 
0.

75
0.

75
 - 

0.
78

0.
80

 - 
0.

81
0.

85
 - 

0.
84

0.
90

 - 
0.

86
0.

95
 - 

0.
91

1.
00

 - 
0.

96

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Figure 2. Mean precision and recall after prequentially learning until a maximum
number of botnets instances are reached. The x-axis represents the total amount
of botnet and background instances used to update the VFDT in percentage.

When used in the real-world, the proposed solution would require a router which
implemented the RFC 5103 to generate the bidirectional flows. These flows could be
processed in any device on the same network, or even remotely, generating alerts for the
network specialist.



precision recall best n

Scenario 9 Scenario 10
0.

00
1 

- 0
.4

1
0.

01
 - 

0.
46

0.
02

 - 
0.

49
0.

03
 - 

0.
51

0.
04

 - 
0.

52
0.

05
 - 

0.
53

0.
07

 - 
0.

54
0.

08
 - 

0.
55

0.
09

 - 
0.

55
0.

10
 - 

0.
56

0.
11

 - 
0.

57
0.

12
 - 

0.
57

0.
13

 - 
0.

58
0.

14
 - 

0.
58

0.
15

 - 
0.

59
0.

16
 - 

0.
59

0.
17

 - 
0.

59
0.

18
 - 

0.
60

0.
20

 - 
0.

60
0.

21
 - 

0.
61

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.
00

1 
- 0

.3
2

0.
01

 - 
0.

41
0.

01
 - 

0.
41

0.
02

 - 
0.

41
0.

02
 - 

0.
41

0.
02

 - 
0.

41
0.

03
 - 

0.
41

0.
03

 - 
0.

41
0.

04
 - 

0.
41

0.
04

 - 
0.

41
0.

05
 - 

0.
41

0.
05

 - 
0.

41
0.

06
 - 

0.
41

0.
06

 - 
0.

41
0.

07
 - 

0.
41

0.
07

 - 
0.

41
0.

08
 - 

0.
41

0.
08

 - 
0.

41
0.

09
 - 

0.
41

0.
09

 - 
0.

41

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
Scenario 11 Scenario 12

0.
01

 - 
0.

86
0.

06
 - 

0.
87

0.
11

 - 
0.

88
0.

16
 - 

0.
88

0.
21

 - 
0.

88
0.

26
 - 

0.
89

0.
31

 - 
0.

89
0.

36
 - 

0.
89

0.
40

 - 
0.

89
0.

45
 - 

0.
89

0.
50

 - 
0.

89
0.

55
 - 

0.
90

0.
60

 - 
0.

90
0.

65
 - 

0.
91

0.
70

 - 
0.

91
0.

75
 - 

0.
91

0.
80

 - 
0.

91
0.

85
 - 

0.
91

0.
89

 - 
0.

92
0.

94
 - 

0.
92

0.
99

 - 
0.

92

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.
05

 - 
0.

14
0.

09
 - 

0.
16

0.
14

 - 
0.

16
0.

18
 - 

0.
16

0.
23

 - 
0.

18
0.

28
 - 

0.
21

0.
32

 - 
0.

21
0.

37
 - 

0.
21

0.
42

 - 
0.

22
0.

46
 - 

0.
24

0.
51

 - 
0.

25
0.

55
 - 

0.
26

0.
60

 - 
0.

26
0.

65
 - 

0.
45

0.
69

 - 
0.

59
0.

74
 - 

0.
69

0.
78

 - 
0.

73
0.

83
 - 

0.
76

0.
88

 - 
0.

81
0.

92
 - 

0.
90

0.
97

 - 
0.

95

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Scenario 13

0.
00

2 
- 0

.0
1

0.
03

 - 
0.

03

0.
06

 - 
0.

05

0.
09

 - 
0.

07

0.
12

 - 
0.

09

0.
15

 - 
0.

11

0.
18

 - 
0.

13

0.
21

 - 
0.

14

0.
24

 - 
0.

16

0.
27

 - 
0.

18

0.
30

 - 
0.

20

0.
33

 - 
0.

23

0.
36

 - 
0.

25

0.
39

 - 
0.

28

0.
42

 - 
0.

31

0.
45

 - 
0.

35

0.
48

 - 
0.

38

Percentage of botnet and background instances used for training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Figure 3. Continuation of Figure 2.

As future work, we intend at testing ensembles solutions to tackle the same prob-
lem. Additionally, we expect to use active learning to make labelling process more effi-
cient.

References
Bay, S. D., Kibler, D., Pazzani, M. J., and Smyth, P. (2000). The uci kdd archive of

large data sets for data mining research and experimentation. SIGKDD Explor. Newsl.,



2(2):81–85.

Chen, W., Luo, X., and Zincir-Heywood, A. N. (2017). Exploring a service-based normal
behaviour profiling system for botnet detection. In 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pages 947–952.

Costa, V. G. T., Barbon Jr, S., Miani, R. S., Rodrigues, J. J. P. C., and Zarpelão, B. B.
(2017). Detecting Mobile Botnets Through Machine Learning and System Calls Anal-
ysis. Proceedings of the 2017 IEEE International Conference on Communications
(ICC), pages 917–922.

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 71–80.

Eslahi, M., Rohmad, M. S., Nilsaz, H., Naseri, M. V., Tahir, N. M., and Hashim, H.
(2015). Periodicity classification of http traffic to detect http botnets. In 2015 IEEE
Symposium on Computer Applications Industrial Electronics (ISCAIE), pages 119–
123.

Gama, J., Rocha, R., and Medas, P. (2003). Accurate decision trees for mining high-
speed data streams. Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’03, (January 2003):523.

Gama, J., Rodrigues, P. P., Spinosa, E., and Carvalho, A. (2010). Knowledge Discovery
from Data Streams. Web Intelligence and Security - Advances in Data and Text Mining
Techniques for Detecting and Preventing Terrorist Activities on the Web, pages 125–
138.

Garcı́a, S., Grill, M., Stiborek, J., and Zunino, A. (2014). An empirical comparison of
botnet detection methods. Computers & Security, 45(Supplement C):100 – 123.

Grill, M. and Pevnýa, T. (2016). Learning combination of anomaly detectors for security
domain. Computer Networks journal, 107:24–43.

Hammerschmidt, C., Marchal, S., State, R., Pellegrino, G., and Verwer, S. (2016). Ef-
ficient Learning of Communication Profiles from IP Flow Records. Proceedings -
Conference on Local Computer Networks, LCN, pages 559–562.

Hammerschmidt, C., Marchal, S., State, R., and Verwer, S. (2017). Behavioral clustering
of non-stationary IP flow record data. 2016 12th International Conference on Network
and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on
Management of SDN and NFV, ManSDN/NFV 2016, and International Workshop on
Green ICT and Smart Networking, GISN 2016, pages 297–301.

Ijaz, S., Hashmi, F. A., Asghar, S., and Alam, M. (2017). Vector Based Genetic Algorithm
to optimize predictive analysis in network security. Applied Intelligence.

Jianguo, J., Qi, B., Zhixin, S., Wang, Y., and Lv, B. (2016). Botnet Detection Method
Analysis on the Effect of Feature Extraction. Trustcom/BigDataSE/ISPA, IEEE, pages
1884–1890.

Khanchi, S., Vahdat, A., Heywood, M. I., and Zincir-Heywood, A. N. (2017). On bot-
net detection with genetic programming under streaming data label budgets and class
imbalance. Swarm and Evolutionary Computation, (August):1–18.



Kidmose, E., Stevanovic, M., and Pedersen, J. M. (2016). Correlating intrusion detection
alerts on bot malware infections using neural network. 2016 International Conference
on Cyber Security and Protection of Digital Services, Cyber Security 2016.

Krawczyk, B., Minku, L., Gama, J., and Stefanowski, J. (2017). Ensemble learning for
data stream analysis: A survey. Information, pages 1–86.

Le, D. C., Zincir-Heywood, A. N., and Heywood, M. I. (2016). Data analytics on net-
work traffic flows for botnet behaviour detection. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 1–7.

Livadas, C., Walsh, R., Lapsley, D., and Strayer, W. T. (2006). Using machine learning
techniques to identify botnet traffic. Proceedings - Conference on Local Computer
Networks, LCN, (1):967–974.

Pfahringer, B., Holmes, G., and Kirkby, R. (2008). Handling numeric attributes in hoeffd-
ing trees. In Proceedings of the 12th Pacific-Asia Conference on Advances in Knowl-
edge Discovery and Data Mining, PAKDD’08, pages 296–307, Berlin, Heidelberg.
Springer-Verlag.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., and Hakimian, P.
(2011). Detecting P2P botnets through network behavior analysis and machine learn-
ing. 2011 9th Annual International Conference on Privacy, Security and Trust, PST
2011, pages 174–180.

Silva, S. S. C., Silva, R. M. P., Pinto, R. C. G., and Salles, R. M. (2013). Botnets: A
survey. Computer Networks, 57(2):378–403.

Stevanovic, M. and Pedersen, J. M. (2014). An efficient flow-based botnet detection
using supervised machine learning. 2014 International Conference on Computing,
Networking and Communications (ICNC), pages 797–801.

Trammell, B. and Boschi, E. (2008). Bidirectional flow export using ip flow information
export (ipfix). RFC 5103, RFC Editor.

Wang, J. and Paschalidis, I. C. (2016). Botnet Detection based on Anomaly and Commu-
nity Detection. IEEE Transactions on Control of Network Systems, 5870(c):1–1.


