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Abstract. Nowadays, time series data underlies countless research activities.
Despite the wide range of techniques to capture and process all this information,
issues such as analyzing large amounts of data and detecting unusual behaviors
on them still pose a great challenge. In this context, this paper suggests SH-
ESD+, a statistical technique that combines the Extreme Studentized Deviate
(ESD) test and a decomposition procedure based on Loess to detect anomalies
on time series data. The proposed technique employs robust metrics to identify
anomalies in a more proper and accurate manner, even in the presence of trend
and seasonal spikes. Simulation studies are carried out to evaluate the effective-
ness of the SH-ESD+ using the published Numenta Anomaly Benchmark (NAB)
collection. Computational results show that the SH-ESD+ performs consistently
when compared against state-of-the-art and classic detection techniques.

1. Introduction

Over the past years, the amount of information available has grown at an ever-increasing
pace around the world. Regardless the application domain, companies are collecting data
in order to perform better analysis, to make better decisions, and consequently to become
more competitive [Witten et al. 2011]. Essentially, such analysis and decision making
depend on how data is collected and measured. In this paper, it is considered that avail-
able data comes in the form of time series [Box et al. 2015], which represents the most
straightforward way for modeling any system which involves temporal measurements.

One notable application area of time series data is anomaly detection. The process
of identifying unusual behaviors on data has been a major topic of research during the past
decade and finds its significance across many fields, such as business, the stock market,
weather and power consumption [Chou and Telaga 2014, Akouemo and Povinelli 2016].
Anomalies may occur in a time series for one of two different reasons: (i) as a function
of the inherent variability of the data; and (ii) given to errors on data. Anomalies inserted
in the first category are very important, since they may contain valuable and often critical
information, which ultimately can support decision-making. On the other hand, anomalies



inserted in the second category are often caused by human mistakes, such as errors in
collecting, recording or entering data, and shall not be considered in this paper.

Developing proper anomaly detection techniques became critical for computer
networks, given the huge number of datasets and transactions to be analyzed and the
unavailability of skilled analysts to discover and understand the appropriate statistical
models for further assessment of such data [Agrawal et al. 2017]. There is, therefore, a
central question that guides the current research in this paper: “What is the most appro-
priate technique to detect anomalies on time series data efficiently and, mostly important,
without any sort of human interaction?”. In general, the anomalous behaviors are to be
identified in an online manner, or offline on previously recorded data. Online detection
puts real-time constraints on the detection system. For example, the technique must pro-
cess data and outputs a decision in real-time, rather than making some passes through
batches of files [Ahmad et al. 2017]. Nonetheless, this paper focuses on offline anomaly
detection, i.e., where there are no real-time constraints to be considered.

Recently, authors in [Ahmad and Purdy 2016] have conceived a robust anomaly
detection technique, named Seasonal-Hybrid ESD (SH-ESD). The designed technique
is composed of a statistical test hypothesis and a time series decomposition method, and
are being primarily used to detect both local and global anomalies in a variety of time
series. In addition to that, it employs a set of robust metrics, e.g., piecewise approxima-
tion and Loess regression [Cleveland 1979, Montgomery and Runger 2013], for improv-
ing decomposition accuracy and easing the identification of such anomalies.

This paper suggests a slightly distinct approach, named Enhanced Seasonal Hy-
brid ESD (SH-ESD+) for detecting anomalies on time series. The SH-ESD+ is intended,
but not restricted, to cope with some limitations of SH-ESD and from standard anomaly
detection methods. First, it includes robust statistical techniques to minimize the number
of false positives and handle effectively with any kind of anomalies on data. It also em-
ploys automatic parameter identification procedures to leverage model performance at a
low computational cost. The effectiveness of SH-ESD+ is assessed by means of compu-
tational experiments using the Numenta Anomaly Benchmark (NAB), which provides a
controlled open-source environment for testing anomaly detection algorithms.

The remainder of this paper is organized as follows: Section 2 addresses the cen-
tral concepts related to anomaly detection on time series and presents some related work.
Section 3 introduces the suggested SH-ESD+ technique for detecting anomalies in time
series data. Section 4 evaluates the proposed technique using NAB. Finally, Section 5
summarizes the main conclusions of the current research.

2. Related work
The field of anomaly detection was first researched in the context of time series analysis
as early as the 19th century. According to [Chandola et al. 2009], an anomaly can be
defined as a point in time where the behavior of a given system is unusual and significantly
different from previous, normal behavior. There are mainly two types of anomalies that
are studied in the literature and are also illustrated in Figure 2:

• Temporal anomaly occurs when an individual data point deviates from the con-
sidered regular pattern with respect to the rest of data, independent of where it
occurs. It is considered the simplest form of an anomaly;



Figure 1. CPU utilization for an Amazon EC2 instance (data from the NAB
[Lavin and Ahmad 2015]). The first anomaly represents a temporal change point,
while the second anomaly represents a large spatial spike in the data.

• Spatial/contextual anomaly appears when a data point or a sequence of data
points is considered as an anomaly regarding its local neighborhood (or a specific
temporal context), but not otherwise. Temporal anomalies are often subtle and
hard to detect. However, they can serve as an early warning for problems with the
underlying system [Ahmad et al. 2017].

In recent years, several techniques have been proposed in the literature for de-
tecting anomalies in time series data [Chandola et al. 2009]. Particularly, they may be
divided into two large groups, subject to specific learning procedures: unsupervised and
supervised ones. The vast majority of anomaly detection techniques are used to be unsu-
pervised, i.e., they are able to model the underlying structure of a given time series without
any prior knowledge about such data. Under this category, there are the instance-based
techniques [Laxhammar and Falkman 2014], clustering methods [Akoglu et al. 2015],
adaptive filtering [Li et al. 2014] and evolving fuzzy systems [Moshtaghi et al. 2015] to
name a few. On the other hand, supervised techniques are related to artificial neural net-
works [Zhou et al. 2016], user-driven systems [Theissler 2017] and most of the statistical
methods, such as the Box-Jenkins [Kadri et al. 2016].

The autoregressive integrated moving average (ARIMA) is one of the most pop-
ular models to detect temporal anomalies on time series data, given its ability to model
trend and seasonality from data [Bianco et al. 2001]. The ARIMA has been also extended
to cope with multivariate data and to dynamically determine the period of its seasonal pe-
riodicity [Hyndman and Khandakar 2007]. Another widely used approach is known as
change point detection [Lu et al. 2004]. The idea is to model a time series into two in-
dependent moving windows and detect when there is a significant deviation in some of
them. Techniques that use change point detection are often extremely fast to compute and
have a low memory overhead. However, the detection performance of those can be sensi-
tive to the size of the windows and thresholds, which may result in many false positives
as the data changes, thus requiring frequent updates to the used thresholds.



Over the past decade, the research on anomaly detection has experienced a rapid
growth, as many companies have opted to open source components of their infrastruc-
ture. Examples of those include: the Skyline project, which provides an open source
implementation of a number of statistical techniques for detecting anomalies in streaming
data [Stanway 2013]; the EGADS, an open source framework developed by Yahoo for
detecting anomalies in large scale time-series data [Laptev et al. 2015]; the S-ESD and
SH-ESD statistical learning based techniques released by Twitter, which are used to detect
anomalies in the cloud automatically [Ahmad and Purdy 2016]; and the Robust Anomaly
Detection (RAD) algorithm of Netflix, which recently was released to the public as a part
of the Surus project [Agrawal et al. 2017]. Additional techniques for anomaly detection
on time series data include [Burnaev and Ishimtsev 2016, Lavin and Ahmad 2015].

3. The SH-ESD+ technique

This section describes the proposed SH-ESD+ (Enhanced Seasonal Hybrid Extreme Stu-
dentized Deviates) technique to automatically detect anomalies on time series data. The
core idea behind SH-ESD+ is to use a modified version of STL decomposition (discussed
in Section 3.2) to extract the residual component from a previous, transformed input time
series, and then to apply an also modified version of the ESD test (addressed in Sec-
tion 3.3) to detect anomalies in such residual. This process allows SH-ESD+ to detect
both global anomalies, that extend the expected seasonal minimum and maximum values,
and local anomalies, that would otherwise be masked by such seasonality.

The operation of SH-ESD+ is divided in three steps: data transformation, time
series decomposition and residual analysis. Since the proposed technique performs offline
anomaly detection only, the input data is composed by a sequence of n univariate data
points from a given input time series, represented by X = [X1, . . . ,Xn] ∈ Rn. The
output, denoted by A = [A1, . . . ,Am] ∈ Rm, is a sequence of m < n anomalies of X .

3.1. Data transformation

Data transformations are common methods that can serve many functions in quantitative
analysis of data. While there are many reasons to use transformations, the focus of this
paper is on those who improve the normality of data, as parametric statistical tests tend
to benefit from normally distributed data. Hence, it was considered using the so-called
Box-Cox transformation [Box and Cox 1964], which can be defined by Equation (1):

Yi =


(Xi + λ2)λ1 − 1

λ1

if λ1 6= 0,

log (Xi + λ2) if λ1 = 0,

(1)

where Yi is the i-th transformed observation of Xi, Y = [Y1, . . . ,Yn] ∈ Rn and λ1, λ2 are
the parameters that define the nature of the transformation. In practice, one can choose λ2

such that Yi + λ2 > 0 for any Yi. The analysis of Box-Cox requires the correct inference
on the transformation parameter λ1. In this paper, this process is carried out by using the
Maximum Likelihood method, which is commonly used since it is conceptually easy and
the profile likelihood function is simple to compute. The entire procedure for obtaining
the estimated value of λ1 is detailed in [Johansen and Juselius 1990].



3.2. Time series decomposition

Time series data can exhibit a variety of patterns at the same time. One simple method
to describe them is called decomposition [Box et al. 2015]. Typically, a time series can
be decomposed into three components: the trend, the seasonal variation and the residual.
The trend is the long-term change in the mean level and often thought of as the under-
lying growth or decline component in the series. The seasonal part is concerned with
the periodic fluctuations in the series over a fixed period. Once the trend and seasonal
components have been accounted for, the remaining data is attributed to a set of residuals.

In classical decomposition procedures, the idea is to create separate models for
these three components and then combine them, either additively or multiplicatively.
However, if anomalies are found in the input data, this procedure can potentially affect
normality of the residual component. Therefore, decomposition of Y is performed in this
paper by STL [Cleveland et al. 1990], a robust approach that uses Loess regressions to de-
rive the seasonality. STL consists of two recursive procedures: an inner loop nested inside
an outer loop. The inner loop iteratively updates the trend and seasonal components, re-
peating the process ϕ times. On the other hand, the outer loop assigns robustness weights
to each data point through ϑ passes, which allows for reducing or even eliminating the
effects of anomalies on the trend and seasonal components.

The appropriate choice between the additive and multiplicative models is another
point to emphasize in order to get a successful time series decomposition. The additive
model is usually considered when the magnitude of the seasonal pattern in the data does
not depend on the magnitude of the data, while the multiplicative model is used otherwise.
In order to avoid auto selecting between these two models, one can transform the data until
the variation in the series becomes stable over time, and then use an additive model. In
this paper, this can be accomplished by taking logarithms of both sides of the model:

log(Y) = log(T ) + log(S) + log(R) (2)

where log(Yi) = log(Ti) + log(Si) + log(Ri) is the i-th data point of log(Y),
T = [T1, . . . , Tn] ∈ Rn, S = [S1, . . . ,Sn] ∈ Rn and R = [R1, . . . ,Rn] ∈ Rn are the
trend, seasonal and residual components of Y , respectively. The outline below presents a
brief description about the phases involved in STL:

Inner loop – Generate updates for components of trend T (k+1) and seasonal S(k+1). Run
ϕ times iteratively for k = 1, . . . , ϕ:

1. Detrending. A detrended series, Y(k)
det = Y − T (k), is computed. To carry out

this procedure on the initial pass through the inner loop, the starting values for the
trend component is defined as T (1) = [01, . . . , 0n].

2. Sub-cycle series smoothing. The detrended series Y(k)
det ∈ Rn is broken into v

non-overlapping sub-cycle series C(k)
1 , . . . , C(k)

v with sizes equals to n
v

data points.
A sub-cycle series comprises a sequence of values at each position of a seasonal
cycle. Then, each sub-cycle series is smoothed by the Loess regression. Finally,
the collection of smoothed values for all of the sub-cycle series are recombined to
yield a single temporary smoothed seasonal series, defined as C(k).



3. Low-pass filter of smoothed seasonal series. Apply a low-pass filter in C(k), thus
generating the output L(k). The filter consists of a moving average of length v,
followed by another moving average of length v, followed by a moving average
of length 3, followed by a Loess regression.

4. Detrending of smoothed seasonal series. The seasonal component from (k + 1)-
th step is S(k+1) = C(k) − L(k). The value from L(k) is subtracted to prevent
low-frequency power from entering the seasonal component.

5. Deseasonalizing. A deseasonalized series Y(k+1)
des = Y − S(k+1) is computed.

6. Trend smoothing. The deseasonalized series Y(k+1)
des is smoothed again, thus result-

ing in the updated trend component T (k+1). Using the classical STL procedure for
trend estimation eases filtering the trend from the raw data, but this is highly sus-
ceptible to introduce artificial anomalies in the residual after decomposition. To
this end, this paper combines two alternative approaches to extract the trend from
a time series: piecewise median [Ahmad and Purdy 2016] and piecewise cubic
splines [Poirier 1973]. The first approach is used as a default model for trend es-
timation, as it preserves edges and prevents impulses from distorting the baseline
signal level. The second approach can handle effectively with mean shifts and it is
more robust against short-term changes in time series with seasonality. However,
it is only employed when the series presents:

• Seasonal periodicity (v). The estimation of v is formulated as a model se-
lection problem that accommodates any periodic signal shape. In context,
a range of likely periods is firstly estimated using the fast, robust Welch’s
periodogram averaging technique [Welch 1967]. Next, a time-domain pe-
riod estimator based on cross-validated residual errors [Hastie et al. 2009]
chooses the best integer period among that range and assigns it to v.

• Mean shift (u). The determination of u is performed by the two-sample
Students t-Test [Snedecor and Cochran 1989]. For each data point Yi, the
means of n

10
points before and after Yi are compared, and the test statistics

is computed, having ρ as the critical value at 5% of the t distribution.

Outer loop – Calculate robustness weights. Run ϑ times, for l = 1, . . . , ϑ:

1. Residual estimation. The residual is calculated asR(l) = Y − S(k) − T (k).
2. Assign robustness weights. For each data point R(l)

i ∈ R(l), it is assigned a ro-
bustness weight from ω(l+1) ∈ Rn according to:

ω
(l+1)
i = B

(
R(l)
i

6× median|R(l)|

)
, i = 1, . . . , n (3)

where B : R→ R is the bi-square weight function, which is defined as:

B(z) =

{
(1− z2)2 for |z| ≤ 0 < 1,
0 for |z| > 1

(4)

Each weight ω(l+1)
i is used to make the smoothings at phase 2 and 6 converge

closer to the “true” decomposed components in the next iteration.



The actual value forϕ (steps of inner loop) should be large enough to reach conver-
gence. In this paper, such value is the number of iterations where the difference between
Ydes at steps k and k − 1 remains greater than a threshold:

ϕ = max(k)

∣∣∣∣∣
(
||Y(k)

des − Y
(k−1)
des ||

n
≥ 10−2

) ∣∣∣∣∣ k = 1, 2, . . . (5)

In a similar way, this paper set ϑ (steps of outer loop) as equal to two, since the
use of the proposed technique for trend estimation provides robustness in such process.

3.3. Residual analysis

The use of STL allowed the use of a variety of statistical methods to find anomalies in
the residual R. This paper adopts the so-called generalized ESD (Extreme Studentized
Deviate) test [Rosner 1975] for this purpose. The generalized ESD is used to detect one
or more anomalies in a univariate time series that follows an approximately normal dis-
tribution. It consists in a generalization of the Grubbs test [Grubbs 1950], where it is
not necessary to specify the exact number of anomalies, but an upper bound γ for the
suspected number of anomalies to be found.

Given the upper bound, γ, the generalized ESD performs γ separate tests: a test for
one anomaly, and so on up to γ anomalies. At each test, the null (H0) and the alternative
(HA) hypothesis are: H0: There are no anomalies in R; and HA: There are up to γ
anomalies inR. In order to reject H0, the test statistics τ (k) must be applied:

τ (k) = maxni=1

(
|R(k)

i − µ
(k)
R |

σ
(k)
R

)
(6)

where µ(k)
R and σ(k)

R are the average and the standard deviation of R(k) at k = 1, 2, . . . , γ
respectively. Also, the critical value Γ(k) must be calculated:

Γ(k) =
(n− k)tp,n−k−1√

(n− k − 1 + t2p,n−k−1)(n− k + 1)
(7)

having tρ,ν as the ρ percentage point from the t distribution with ν degrees of freedom,
ρ = 1− α

2(n−k+1)
and α the level of significance, usually set as α = 0.05 (95% confidence)

according some extensive experimentation and analysis [Ahmad and Purdy 2016].

The next step aims to remove anR(k)
i ∈ R(k) that maximizes |R(k)

i −µ
(k)
R | and then

recompute Equations (6) and (7) with n − 1 observations. This process is repeated until
γ observations have been removed, resulting in τ (1), τ (2), . . . , τ (γ) test statistics, and im-
plicity in Γ(1),Γ(2), . . . ,Γ(γ) critical values. The number of anomalies is then determined
by finding the largest k such that τ (k) > Γ(k).

In this paper, the generalized ESD test was modified in order to avoid the direct
specification of such γ. Accordingly, consider that at the end of the k-th iteration, the
current vector of residuals R(k) and also its complement Q(k) are obtained. The vector



Q(k) contains the observations that were already removed fromR(k). The number of tests
is defined as the maximum value for k such that Condition (8) can be satisfied:

√
2σ

(k)
Υ ≥ σ

(k)
Ω (8)

where σ(k)
Υ and σ(k)

Ω are the standard deviations of vectors Υ(k) = [Υ
(k)
1 , . . . ,Υ

(k)
n−k] and

Ω(k) = [Ω
(k)
1 , . . . ,Ω

(k)
k ] respectively. Also, Υ

(k)
i = |R(k)

i − µ
(k)
R | and Ω

(k)
i = |Q(k)

i − µ
(k)
Q |,

where µ(k)
R and µ(k)

Q are the means of vectorsR(k) and Q(k) respectively.

The fundamental rationale behind Condition (8) is that anomalies could have a
substantial impact on the distribution of data, especially when considering the assump-
tions of normality and stationarity. A clear indicator of these impacts can be aligned with
changes in the mean shifts of such data when some anomaly is removed or included. In
context, the mean shifts vectors Υ(k) and Ω(k) from R(k) and Q(k) are computed at each
k, assuming absolute values for its components in order to avoid numerical instabilities.
Next, the standard deviations σ(k)

Υ and σ(k)
Ω for Υ(k) and Ω(k) are obtained.

In initial steps, the standard deviation σ(k)
Υ is used to be greater than σ(k)

Ω , given
the presence of anomalies in suchR(k). As k grows and potential anomalies are removed
from R(k), the value for σ(k)

Υ becomes smaller and for σ(k)
Ω increases. Through exten-

sive experiments and careful observation, one could check that when
√

2σ
(k)
Υ < σ

(k)
Ω , all

anomalies have already been removed from R(k) and included in U (k). Naturally, this
procedure may yield false positives, as consistent data points could be also included in
U (k). However, such concern can be easily addressed by checking the largest value of k
such that τ (k) > Γ(k). Figure 3.3 depict an example on automatic anomaly detection using
the modified generalized ESD test. In such example, the proposed technique has achieved
a total of 34 tests, where the largest k such that τ (k) > Γ(k) is 32.

Figure 2. Example of automatic anomaly detection using the modified ESD test.
The data points correspond to measurements from real speed traffic volume ob-
tained from the NAB [Lavin and Ahmad 2015].



4. Computational Experiments
This section presents the evaluation results for the proposed technique in the scope of
anomaly detection. The evaluation comprises a quantitative analysis of SH-ESD+ and
other state-of-the-art anomaly detection models using a real-world benchmark dataset.

4.1. Methodology

In order to provide some quantitative results on anomaly detection, an open source reposi-
tory called NAB (Numenta Anomaly Benchmark) is considered. NAB attempts to provide
a controlled and repeatable environment of tools to test and evaluate the performance of
anomaly detection techniques [Lavin and Ahmad 2015]. Also, NAB includes 58 artificial
and real-world data sets with over 350.000 records of server metrics, advertisement clicks
data and Internet traffic volume. One important aspect of NAB is its scoring methodol-
ogy for streaming applications. The NAB scoring system quantifies the degree to which
the detector under evaluation will be valuable in practical applications. In addition to
that, NAB also includes a window around each anomaly and incorporates a time-sensitive
scoring mechanism that favors early detection. At last, the so-called “application profiles”
define the weighting for the false positives (FP) and false negatives (FN) to illustrate sce-
narios where fewer missed detections or fewer erroneous detections are more valued.

Since the proposed technique was originally designed to cope with offline
anomaly detection, its operation on NAB have considered a single batch input file
containing all records for each data set to mimic automation in real-world deploy-
ments. The performance of SH-ESD+ was compared to several other approaches
in the literature, including: the Numenta Hierarchical Temporal Memory (HTM)
model [Ahmad et al. 2017], contextual anomaly detection techniques, such as KNN-
CAD [Burnaev and Ishimtsev 2016], the original SH-ESD technique from Twitter
[Ahmad and Purdy 2016] and others, such as Etsy’s Skyline, EXPoSE and Multinomial
Relative Entropy detector [Lavin and Ahmad 2015].

From the standpoint of computational efficiency, the measurements were carried
out in a quad-core notebook with a 2.7 GHz Intel processor and 8 GB of RAM using the
Linux operating system. The total time to run NAB’s complete dataset of 365.558 records
was 61 minutes or an average of 10 milliseconds per record.

4.2. Results

The results regarding the performance of such models are presented in Table 1. The first
column indicates the standard NAB score for each technique. The two central columns
indicate the scores for the reward “low FP” and “low FN” profiles of NAB. Finally, the
last column presents the lattency (in miliseconds) for each technique. Latency measures
the time taken to process a single data point for anomaly detection. Thus, latency time
reported is an average over three runs on 22.695 data records from NAB. A perfect, a
null and a random detector were also included in the simulations. The perfect one is
an idealized detector that makes no mistakes. In the last, the null is the worst possible
detector. The random scores reflect the mean across a range of random seeds.

Overall results show that the HTM-based anomaly detection technique scored the
highest value, followed by the proposed SH-ESD+ and KNN-CAD. One can see that
most of the techniques performed much better than a random detector, but none of them



Table 1. NAB scoreboard presenting results of each technique considered

Technique NAB Score Low FP Low FN Lattency (ms)

Perfect 100.0 100.0 100.0 –
Numenta HTM 70.1 63.1 74.3 12.5
SH-ESD+ 59.1 53.6 68.7 2.9
KNN-CAD 58.0 43.4 64.8 13.9
Relative Entropy 54.6 47.6 58.8 0.06
Twitter SH-ESD 47.1 33.6 53.5 3.4
Etsy Skyline 35.7 27.1 44.5 498.7
EXPoSE 16.4 3.2 26.9 2.8
Random 11.0 1.2 19.5 –
Null 0.0 0.0 0.0 –

has reached close to perfect score, which suggests that there is still significant room for
improvement. In addition, Table 1 also demonstrates that values for both application
profiles reach closer to high average NAB scores. It occurs mainly because a high score
indicates that the underlying model may be able to capture both spatial and temporal
anomalies in a more efficient manner, while a low score is often related to techniques that
cannot handle appropriately with one of such categories.

Based on a more detailed analysis of the results, it is possible to highlight the strict
trade-off between model accuracy and lattency time. In fact, the increase in time com-
plexity is a reflection of the difficulties in capturing the temporal patterns on time series
data [Ahmad et al. 2017]. However, the proposed SH-ESD+ performed considerably bet-
ter than Numenta HTM and KNN-CAD in terms of latency time, and also achieved close
proximity considering the accuracy metrics. One reason that lead to such a good result is
that SH-ESD+ combines the simplicity of the Twitter’s SH-ESD and some straightforward
calculations, which can easily provide optimized processes for SH-ESD.

From a different standpoint, Table 2 summarizes some properties of the consid-
ered techniques. Categorization is based on their ability to detect spatial and temporal
anomalies, to handle concept drifts, and to automatically set and/or to adjust their param-
eters as data is input. In general, one can see a rough correlation between the number of
properties satisfied for each technique in Table 2 and the NAB ranking in Table 1. This is
because the ability of each technique to detect anomalies and to handle concept drifts are
key to obtaining a good NAB score. Likewise, the level of automation greatly affects the
performance of most techniques, as adaption of parameters is critical for any technique to
learn continuously and to handle with sustained shifts of data over time.

Another concern that contributes to a better or a worse detection accuracy is
the assumptions of each technique regarding the underlying distribution of data. This
is one of the main limitations of the Twitter’s SH-ESD technique, once it requires a
prior definition of two parameters that strongly depend from data distribution, i.e., the
length of seasonal periodicity and an upper bound for the number of suspected anomalies
[Ahmad and Purdy 2016]. On the other hand, the proposed SH-ESD+ technique employs
automatic procedures for identification and tunning with respect to both these parameters.



Table 2. Comparison of properties of each technique implemented on NAB

Technique Spatial
Anomaly

Temporal
Anomaly

Concept
Drifts

Parameter
Automation

Numenta HTM X X X Update only
SH-ESD+ X X X Set and update
KNN-CAD X X X Update only
Relative Entropy X X X Update only
Twitter SH-ESD X X X No automation
Etsy Skyline X × × No automation
EXPoSE X X X Update only

Still considering the relative performance between the Twitter’s SH-ESD tech-
nique and SH-ESD+, one can see that the proposed technique proved its effectiveness
with a higher score for all the considered metrics, as seen in Table 1. Moreover, the SH-
ESD+ could deal with several limitations of the SH-ESD at a similar computational effort.
For example, SH-ESD is not capable of detecting anomalies in time series which present
a flat signal after noisy ones or a noise in growing periodic patterns or disrupted data in
flat trends. Figure 3 gives a closer look about the mentioned limitations of SH-ESD.

(a) Flat signal (b) Exponential grow (c) Negative trend

Figure 3. Limiations of Twitter’s SH-ESD technique for detecting anomalies

In contrast, the proposed technique provides built-in mechanisms for identifying
anomalies in the three situations. For example, the detection of anomalies in Figures 3(a)
and 3(c) is carried out by the use of piecewise cubic splines, which provides a more accu-
rate estimation of trend component in relation to piecewise median. Also, the anomalies
in Figure 3(b) can be easily detected by the proposed technique given its additional mech-
anism to transform the data until the variation in the series becomes stable over time.

Figure 4 illustrates some comparison between the actual performance of SH-ESD
and SH-ESD+ techniques for four different NAB data streams. The selected data streams
present diverse characteristics, such as temporal and spatial noise, structural breaks and
short-term periodicities. The results strengthens the early discussion about the perfor-
mance of both models. The SH-ESD+ technique could handle concept drift detections
more effectively than SH-ESD. It also has detected subtle temporal anomalies in a more
accurate manner, while limiting the number of false positives. For the remaining, both
techniques have presented acceptable results in terms of anomaly detection. Therefore,
the decision of which one to choose should be made based on application requirements.



(a) Artificial daily flatmiddle (b) Artificial daily small noise

(c) Amazon EC2 CPU utilization (d) Amazon RDS CPU utilization

Figure 4. Time series from NAB collection, showing a variety of characteristics.
Blue circles represent the anomalies found by SH-ESD while red squares are
related to the anomalies detected by the proposed SH-ESD+ technique.

5. Conclusion
This paper addressed the problem of anomaly detection for time series data. When com-
pared to other state-of-the-art anomaly detection algorithms, the proposed technique adds
value when considering several mechanisms to cope with anomalies on time series, as
summarized in Table 2. It includes robust statistical techniques, like piecewise approxi-
mation and Loess smoothing, to minimize the number of false positives and handle effec-
tively with concept drifts. Also, the proposed technique does not need human interaction
as it employs advanced parameter identification procedures.

Computational experiments with a real-world benchmark dataset were carried out
to assess the performance of the proposed technique regarding its capability of performing
accurate anomaly detection. Results have shown that the proposed technique could detect
anomalies efficiently and accurately in the experiments, and also presented a considerably
lower execution time in relation to some state-of-the-art techniques, and so do Twitter’s
SH-ESD. Finally, results showed the overall good performance the proposed new version
of STL to derive anomalies from a time series and the robustness of ESD to detect them.
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