
Multi-Criteria Optimized Deep Learning-based Intrusion
Detection System for Detecting Cyberattacks in Automotive

Ethernet Networks

Luigi F. Marques da Luz1,2, Paulo Freitas de Araujo-Filho1,3,
Divanilson R. Campelo1

1Centro de Informática – Universidade Federal de Pernambuco (CIn - UFPE)
Av. Jorn. Anı́bal Fernandes – s/n – Recife – PE – Brazil

2Centro de Estudos e Sistemas Avançados do Recife (CESAR)
Rua Bione - 220 - Recife - PE - Brazil

3École de Technologie Supérieure, Université du Québec,
Montreal, QC, H3C 1K3, Canada

{lfml,pfaf,dcampelo}@cin.ufpe.br

Abstract. Connected and autonomous vehicles (CAVs) are part of the Internet
of Things, exposing them to cyberattacks. CAVs comprise several systems, such
as advanced driver assistance systems, that require high bandwidth for criti-
cal data transmission, where automotive Ethernet plays an essential role as an
enabling technology. In this paper, we propose a deep learning-based intrusion
detection system for detecting replay attacks in an automotive Ethernet network.
It uses a convolutional neural network architecture and a multi-criteria opti-
mization technique. Our experimental results show a reduction of 900x in the
storage size and a speedup of 1.4x in the detection time with a negligible drop
in the F1-score compared to existing work.

1. Introduction
Connected and autonomous vehicles (CAVs) have been playing a significant role in im-
proving safety and reducing the costs of the transportation segment. CAVs have advanced
driver assistance systems (ADAS) that will enhance the drivers’ user experience, safety,
and security by introducing features such as parking assistance, pedestrian detection, col-
lision avoidance, and adaptive cruise control [Kukkala et al. 2018]. LIDARs and camera
sensors are essential to improve the vehicle’s perception system. Such sensors require
higher bandwidths than the automotive networks such as controller area networks (CAN)
can provide [Matheus and Königseder 2021].

Trends in the automotive industry require a flexible, scalable, and future-proof
in-vehicle network technology to address the rapidly changing customer expectations
[Matheus and Königseder 2021]. As automotive Ethernet provides higher bandwidths,
it is an enabling technology for autonomous driving applications. Precisely, automotive
Ethernet comprehends several standards to meet different bandwidth requirements. For
instance, IEEE 100BASE-T1 provides a 100 Mbps operation over a single twisted pair
balanced cabling, while CAN and FlexRay provide only 500 Kbps and 10 Mbps of data
rate, respectively [Matheus and Königseder 2021, Bandur et al. 2021].

Moreover, automotive Ethernet also comprehends a set of standards that compose
audio-video bridging (AVB) and time-sensitive networking (TSN) [Tuohy et al. 2015].
AVB comprises standards that provide improved synchronization, low latency, and re-
liability for Ethernet networks. On the other hand, TSN defines mechanisms for the
time-sensitive transmission of control data over deterministic Ethernet networks. Among
those standards, the IEEE 1722-2016 standard defines the audio-video transport proto-
col (AVTP), which guarantees the reliable transmission of high bandwidth time-sensitive
Ethernet traffic such as video for CAVs [IEEE 2016].

CAVs enable several applications, such as transportation efficiency enhance-
ment, safety improvement, and alleviation of environmental damage due to their
connectivity to the outside world [Sun et al. 2022]. However, this comes with
their exposure to cyberattacks that may harm drivers, passengers, and pedestri-
ans [Koscher et al. 2010, Liu et al. 2017, Jo and Choi 2021, Miller and Valasek 2015,
Ghosal and Conti 2020]. Therefore, it is essential to defend connected vehicles against
such threats.

Encryption and authentication are effective ways of guaranteeing security, but
they are usually unsuitable for in-vehicle networks (IVN). IVN environments are cost-
constrained, require real-time reliability, and have limited computing capacity and stor-
age resources. Intrusion detection systems (IDSs) have shown promising results in de-
tecting attacks in these scenarios [Wu et al. 2020]. IDSs work as a second line of de-
fense and the last resort when other security mechanisms fail. As a matter of fact,
[UN Regulation 2021] establishes that commercial vehicles must be able to detect cyber-
attacks, making intrusion detection capability a requirement for vehicles manufactured
after July 2022.

Meanwhile, deep learning (DL) techniques have been adopted in IDSs because of
their ability to learn hidden patterns in complex data, thus presenting promising results
[Lansky et al. 2021, Jeong et al. 2021]. On the other hand, DL models usually demand
high computational power and storage size due to the many inner connections and lay-
ers of these models, increasing the cost of applications that use this kind of technology
[Bianco et al. 2018]. Hence, there is still room for improvement to ease the adoption of
DL-based IDSs in resource-constrained environments such as IVNs, once the cost is one
of the major concerns of the automotive industry [Wu et al. 2020].

Therefore, in this paper, we propose a DL-based IDS that uses a loss function
that simultaneously improves storage size, detection time, and detection results during
the model training step, generating an optimized model regarding its storage size and de-
tection time. We aim to shorten the gap between deploying DL-based IDSs in resource-
constrained environments. This optimization occurs by inducing a lower bit represen-
tation and sparsity in the neural network’s weights during the training process without
requiring a post-training optimization process such as model quantization or pruning.

Our application scenario will distinguish benign or malicious AVTP packets in
an automotive Ethernet network, specifically replay attacks. To perform this attack, the
intruder must have pre-captured packets that will be reinjected into the network to confuse
the network nodes that rely on this information. In this scenario, malicious packets may
put in danger the life of the driver and people around them when the injected information

is one of the sources of the decision-making process of the CAV. In a nutshell, the main
contributions of this work are:

• We propose an IDS to detect malicious traffic in an AVTP network that uses a
multi-criteria optimization technique that improves detection results, storage size,
and detection time. By doing so, we shorten the gap between deploying DL-based
IDSs in resource-constrained environments such as an automotive network.

• An experimental comparison between the existing works. This comparison shows
a reduction of 900x and 1.43x, respectively, in the storage size and detection time
compared to the method presented in [Jeong et al. 2021] while maintaining similar
results regarding the F1-score.

This paper is organized as follows. In Section 2, we present the recent advances in
automotive intrusion detection systems. Section 3 introduces the architecture of our pro-
posed IDS and describes its optimization technique. Section 4 explains the experimental
setup and methodology used to evaluate our IDS. In Section 5, we show the results of IDS
and compare them to those of state-of-the-art automotive Ethernet IDSs. Finally, Section
6 concludes our paper and discusses future works.

2. Related Works
Given its challenges, automotive network intrusion detection has been an active research
field in recent years. Hence, the work in [Freitas De Araujo-Filho et al. 2021] presented
an intrusion prevention system to detect and prevent unknown cyberattacks before receiv-
ing a CAN frame. Similarly, the work in [Seo et al. 2018] relies on a generative adversar-
ial network that can detect zero-day attacks in a CAN network only using normal traffic
data.

As for the works considering intrusion detection on automotive Ethernet, the au-
thors of [Jeong et al. 2021] proposed an IDS based on a 2D-convolutional neural network
(2D-CNN) for detecting replay attacks in AVTP packets. Their model achieved F1-score
and recall values greater than 0.9704 and 0.9949, respectively. However, as their model
relies on supervised learning, it requires labeled data, which is complicated and some-
times impossible to obtain and cannot detect unknown attacks. Moreover, it requires
GPUs to achieve short detection times, incurring a high deployment cost.

On the other hand, the authors of [Carmo et al. 2022] relied on the XGBoost al-
gorithm to detect replay attacks in AVTP packets. They have achieved Receiver Operator
Characteristic Area Under Curve (ROC AUC) values of 0.9805 and a detection time of
620 µs/sample using low-cost CPU-based hardware, such as a Raspberry Pi. However,
they do not evaluate the model’s storage size, so it is unclear whether their IDS can run
on microcontroller devices, such as those used in ECUs.

In [Alkhatib et al. 2022], the authors evaluated the detection time, model size,
and detection-related metrics of two autoencoder-based models, a convolutional autoen-
coder (CAE) and a long short-term memory-based autoencoder (LSTM-AE) to develop
an anomaly detector for detecting zero-day cyberattacks in AVTP packets. They achieved
an F1-score of 0.98, an detection time of 0.45 seconds, and a 101 MB storage size for
the CAE model, while for LSTM-AE, they obtained an F1-score around 0.80, a detection
time of 2.70 seconds, and a storage size of 52 KB.

In [Alkhatib et al. 2021], the authors evaluated the performance of DL-based IDSs
for detecting cyberattacks in automotive Ethernet, obtaining F1-score and ROC AUC val-
ues greater than 0.8. However, they focused only on using DL techniques to detect attacks
in an offline intrusion detection scenario, i.e., it is impossible to prevent the cyberattack
as it happens only in a posteriori-analysis step.

In contrast to the existing works, our work proposes a technique to simultaneously
optimize its detection-related metrics (such as accuracy, precision, recall, F1-score, and
ROC AUC), timing requirements, and storage size during the training step without being
directly attached to a model architecture. This points toward shortening the gap between
deploying DL-based IDSs in resource-constrained environments such as ECUs.

3. Proposed System
In this section, we propose a DL-based IDS whose primary goal is to detect replay cyber-
attacks in an AVTP network, that is, classify a packet as benign or malign. Besides the
correct packet classification, our secondary goal is to generate an optimized model regard-
ing its detection time and storage size, to have a system that enables real-time detection
and is more suitable to be deployed in in-vehicle network environments.

Our IDS uses the 2D-CNN and feature generator proposed in [Jeong et al. 2021]
as its reference architecture and pre-processing step, respectively. Alongside, our IDS
uses the multi-criteria optimization technique proposed in [Girish et al. 2022] (further de-
scribed in Sub-section 3.3) that improves the model detection metrics, detection time, and
storage size simultaneously during the training step. Once the training step is concluded,
an optimized model is obtained, which has fewer internal connections and uses fewer bits
to represent its weights when compared with the reference architecture. The optimized
model will be further used as the deep learning algorithm of the detection agent of our
IDS.

Our architecture comprises an AVB listener and a detection agent (presented in
Figure 1). The AVB listener acts as a media converter to read the AVB packets sent by
the automotive Ethernet switch. Finally, the detection agent deploys the optimized deep-
learning algorithm that detects cyber-attacks. The detection is triggered when a total of
“window size + 1” packets are grouped and provided to the feature generator. When a
frame is considered malicious, the IDS informs that the network is under attack. The
algorithm of our proposed IDS is presented in Algorithm 1.

It is worth mentioning that our detection agent (feature generator and deep-
learning model) could be further used in other in-vehicle networks, such as CAN. To
illustrate the possibility of use in other networks, we present an adapted architecture on
the right side of Figure 1 of how our detection agent could be deployed in a CAN network.
It is essential to mention that it would be necessary to fine-tune the feature generator and
retrain the deep-learning method for this new scenario.

3.1. Attack model
To execute a replay attack, an attacker initially must have access to the network (in our
case, an IVN) and sniff a group of packets or already possess pre-captured packets. With
the packets in hand, the attacker resends them to the network to confuse the nodes that
use this information. In the case of connected vehicles, where the perception system

Figure 1. On the left is our proposed IDS architecture to be deployed in an au-
tomotive Ethernet environment. On the right is how our architecture could be
adapted to be deployed in a CAN bus environment.

Algorithm 1 Proposed Multi-criteria Optimized IDS
w: Window size = 44
Train the detection agent’s deep learning model
Obtain the optimized deep learning model from the training step
while The automotive Ethernet switch receives AVTP packets do

group a set of w + 1 sequential AVTP packets in an array X
uses the array X as input of the Feature Generator (Sub-section 3.2) and get feature
use feature as input to the optimized deep learning model
if The frame is considered malicious then

The detection agent sends a signal informing that the network is under attack
end if

end while

is responsible for driving decision-making, a replay attack may endanger the life of the
driver and the people around them.

An example of how the replay attack could be harmful is presented in Figure
2. Here, the camera ECU captures the road traffic images, and the ADAS detects three
people crossing the street, which triggers a slow down or stop command for the powertrain
ECU. If a replay attack happened at this moment, the vehicle would be misguided by the
received image that shows no one crossing the street and would continue driving, which
could lead to an accident.

3.2. Feature generator
For the feature generator, we have chosen to maintain the one initially proposed in
[Jeong et al. 2021], which will be briefly described in this section. An AVTP packet con-
tains 438 bytes, but the authors of [Jeong et al. 2021] found that only the first 58 bytes
contained interesting information regarding its header and payload fields. For the sake of
simplicity, we will refer to these first 58 bytes as “sampled packet”.

Once the sampled packets are gathered, they are aggregated into groups of w sam-
pled packets, where w is called the “window size”. Once these groups are established, the
byte-per-byte difference between each consecutive sampled packet is taken. At last, the
bytes are split into nibbles, and each group is considered an input sample for training the
IDS. This feature generator process is illustrated in Figure 3.

Figure 2. On the left is the original frame, where the people crossing the street are
detected by the ADAS. On the right is the frame received during a replay attack,
where the vehicle is misguided to see no one crossing the street. Adapted from
[Burke 2019].

Figure 3. The steps of the feature generator.

3.3. Optimization technique

The optimization technique considered in the proposed IDS is the LilNetX framework,
initially proposed in [Girish et al. 2022]. This technique optimizes the storage size, de-
tection time, and detection metrics simultaneously during the training step, preventing the
need for a post-training step such as quantization and pruning methods. LilNetX is based
on a loss function that updates the network weights Θ according to:

L(Θ) = L(Θ)detection + L(Θ)storage size + L(Θ)detection time, (1)

the detection term uses cross-entropy to improve the model’s ability to classify the sam-
ples correctly. The storage size term relies on the latent space representation of the
network weights, which is obtained by adapting the compression technique proposed in
[Oktay et al. 2019]. Such representation has a learned probability model of the network
weights and imposes a small bit representation based on an entropy penalty. The detection
time term introduces sparsity also using entropy but bringing the latent space parameters
to zero to reduce the number of computations. At last, the zero-valued parameters are
brought back to the original network weights by using a linear transformation without
linear coefficients. The transformation process of the network weights is illustrated in
Figure 4.

Figure 4. The transformation process of network weights shape during the Lil-
NetX framework optimization.

3.4. Deep-learning model architecture

The reference architecture for our IDS was the 2D-CNN originally presented in
[Jeong et al. 2021] and briefly described in Table 1. The main differences in our ar-
chitecture are regarding the use of the LilNetX framework, where we have added the
boundary hyperparameter, which is responsible for controlling the variance of the network
weights and plays a significant role in the convergence of the optimization technique. Ac-
cording to [Girish et al. 2022], the boundary must be greater than 0.5. The authors of
[Girish et al. 2022] state the network’s weights initialization follows a uniform probabil-
ity distribution, and the weights must be greater than 0.5 to avoid being directly rounded
to 0 during the optimization process. We have experimented with boundary values in
the interval of 0.55 and 0.75. We have also added weight decoders to the convolutional
and dense layers, where these decoders will map the layers’ weights in the latent space
representation using a probability model to achieve a small bit representation.

Table 1. 2D-CNN architecture and hyperparameters.
Layer name Activation Regularization Hyperparameters Weight Decoder

Conv2D 1 ReLU
Batch
Norm

in ch=1, out ch=32, kernel size=5,
stride=1, padding=’same’ Conv5x5

MaxPool 1 - - kernel size=2, stride=2 -

Conv2D 2 ReLU
Batch
Norm

in ch=32, out ch=64, kernel size=5,
stride=1, padding=’same’ Conv5x5

MaxPool 2 - - kernel size=2, stride=2 -
Flatten - Dropout in feat=20416, out feat=64 Dense
Dense ReLU Dropout in feat=64, out feat=1 Dense
Output Sigmoid - - -

4. Methodology and Experimental Evaluation
In this section, we provide the methodology and experimental setup used to evaluate our
proposed IDS. We made our code available at https://github.com/luigiluz/multi-criteria-
dl-based-ids-for-automotive-ethernet to ease the reproduction of our experimental results.

We have chosen the Python programming language and the PyTorch framework
due to their vast use for machine learning and deep learning applications and their wide

https://github.com/luigiluz/multi-criteria-dl-based-ids-for-automotive-ethernet
https://github.com/luigiluz/multi-criteria-dl-based-ids-for-automotive-ethernet

documentation and community. The experiments were conducted in Google Colab Pro
GPU NVIDIA Tesla P100 for the training and validation steps related to detection metrics.
For the timing metrics, it was used an Intel(R) Xeon(R) CPU @ 2.20GHz.

4.1. Dataset presentation and preparation
The dataset used to evaluate our proposed IDS is the publicly available AVTP intrusion
dataset [Jeong et al. 2021]. We have chosen this specific dataset to evaluate our results be-
cause it is the most used dataset regarding automotive Ethernet intrusion detection works
[Jeong et al. 2021, Alkhatib et al. 2022, Carmo et al. 2022], which enables the compari-
son of our results with more existing works.

It consists of real network traffic, available in .pcap files, which were collected
from a vehicle containing a camera that captured video streams and sent them over as
AVTP packet payloads. The authors collected data in two different scenarios: in a labora-
tory environment (referred to as Dindoors) and in a real-world traffic environment (referred
to as Doutdoors). These packets were made available in different .pcap files that need to
be combined and preprocessed.

As the datasets are made available in .pcap files, it is necessary to prepare them
to be used to train and evaluate our IDS. This preparation process is presented in Figure 5.
The first step is to filter only the AVTP packets. The filtering process is done by choosing
the packets that have only 438 bytes in length. After that, the labels are generated to
classify the packet as “benign” or “malign”. If the corresponding raw AVTP packet is
the same as one of the injected AVTP packets, it is considered “malign”, otherwise it is
“benign”. In sequence, the corresponding features are generated (applying the method
explained in Sub-section 3.2). At last, the features and labels are combined to generate
the prepared dataset. This preparation process is executed once for indoor and outdoor
data.

Figure 5. AVTP Intrusion dataset preparation process.

The resulting samples distribution of each prepared dataset is: Dindoors has 446,372
benign packets and 196,892 malign packets, while Doutdoors has 1,494,253 and 376,236
benign and malign packets, respectively.

4.2. Experimental evaluation
The experimental evaluation of our IDS is divided into two phases: the training phase
and the test phase. In the training phase, only indoor collected packets were used. This

set was split into two subsets, training and validation. The first subset was used to train
the IDS, as it learns the hidden patterns of both benign and malign AVTP packets. Once
the IDS is fully trained, its performance is evaluated using the validation subset. In order
to make the model less dependent on the data, a stratified 5-fold cross-validation process
was used, which splits the dataset into 5 different folds, each one containing a training
and validation subset with a proportional amount of benign and malign samples. For
each fold, the model that presented the best overall performance regarding the evaluation
metrics was saved to be further used in the test phase.

In the test phase, all the 5 best models that were obtained in the training phase are
evaluated using the evaluation metrics on the test set. An overall view of our methodology
is presented in Figure 6.

Figure 6. Methodology of training and evaluation proposed multi-criteria opti-
mized automotive Ethernet IDS.

5. Results and Discussion
In this section, we present and discuss the detection results, detection time, and storage
requirements of our proposed IDS, while also comparing it to two state-of-the-art auto-
motive Ethernet IDSs.

5.1. Detection results
To evaluate the detection results of our IDS, we evaluated its accuracy, recall, precision,
F1-score, and ROC AUC values. At first, the validation set was used to perform hyper-
parameter tuning. The only hyperparameter that needed to be tuned was the boundary,
which controls the weights’ initialization variance and plays a significant role in model
convergence while using the LilNetX framework. The boundary value that provided the
best results was 0.55. The validation results are presented in Table 2.

As seen in Table 2, 4 of 5 folds presented F1-score values greater than 0.97, which
shows that the model obtained good results for the data available in the validation set. The
mean value of the results was dragged down due to the fold number 2 results. Fold number
2 had the lowest recall value among all folds. We believe the reason behind this is that
for this specific fold, there is a small amount of injected samples between the grouped
samples, making it easier to confuse it with a benign sample and increasing the false
negatives rate.

For the test set, we have obtained F1-Score values greater than the ones in the
validation set. We credit this improvement to the correct detection of the malicious frames

Table 2. Detection-related metrics of the k-fold cross-validation for the indoors
(training/validation) set.

Fold Accuracy Precision Recall F1-score ROC AUC
0 0.9861 0.9832 0.9711 0.9770 0.9871
1 0.9883 0.9840 0.9779 0.9808 0.9902
2 0.9632 0.9698 0.9080 0.9375 0.9621
3 0.9867 0.9831 0.9733 0.9780 0.9902
4 0.9826 0.9811 0.9618 0.9712 0.9822

Mean 0.9814 0.9802 0.9584 0.9689 0.9823

in the outdoor environments since the injected packets are the same as used in the model
training and contain only 36 possible packets. We present our test set detection results in
Table 3 alongside their comparison with two other works.

Moving on to the comparison with other state-of-the-art automotive Ethernet
IDSs, the first IDS we compared our results with was introduced in [Jeong et al. 2021]
and is referred to as 2D-CNN. The second IDS was proposed in [Carmo et al. 2022] and
is referred to as XGB-Model, which uses an ensemble tree-based machine learning model
and benefits from the low detection time of tree-based models.

Table 3. Detection-related metrics for the outdoors (test) dataset.
Method Accuracy Precision Recall F1-score ROC AUC

Our work 0.9913 0.9698 0.9884 0.9788 0.9974
2D-CNN 0.9919 0.9637 0.9979 0.9805 0.9989
XGB-ML 0.9747 0.9727 0.9357 0.9538 0.9805

Table 3 compares our results with the aforementioned works. When compared
to the 2D-CNN results, we have obtained results that slightly differ only in the third or
fourth decimal digit for most of the metrics. We credit this insignificant difference to
using a convolutional neural network as our reference architecture. It is well known that
CNN architectures are suitable for finding spatial relations in the data as its mainly used
for image processing tasks. The XGB-ML method presented the worst results in the
detection-related metrics for 4 out of 5 metrics of the test set, mainly because the XGB
model is unsuitable for detecting spatial relations in the data, as it was initially developed
to be used with tabular data.

5.2. Storage size

To compute the storage size of our proposed IDS, the number of bytes necessary to store
the resulting network weights was used. The storage size was optimized interactively
during training. By its end, the storage size of the model that presented a minimal drop in
detection metrics was 11.7 KB. This value represents an improvement of approximately
900x if compared to the model proposed in [Jeong et al. 2021]. A possible reason for
this improvement is that the network weights distribution has a low standard deviation,
making most of their values concentrated in a short range, enabling their representation
with a small number of bits without damaging its detection results. The reduction in the
number of filters also has a direct impact on the model storage size since it has fewer
weights that need to be stored. A comparison of the obtained results is presented in Table

4. The XGB-ML method’s storage size was obtained by saving the model as a .pkl and
measuring the KBs needed to store the file.

The obtained storage size indicates that our IDS could be easily stored in memory-
constrained devices, such as cheap microcontrollers, which usually have less than 1 MB
of available storage. This result indicates that the amount of bits used to represent the
network’s weights is a crucial point to deploying DL-based IDSs in constrained-resources
ECUs.

Table 4. Storage size metrics
comparison.

Method Storage size
(KB)

Our work 11.7
2D-CNN 10617.0
XGB-ML 10600.0

Table 5. Detection time metrics
comparison.

Method Detection time
(µs/sample)

Our work 1589
2D-CNN 2273
XGB-ML 250

5.3. Detection time

We computed the detection time as the mean time taken for the IDS to process a sample,
i.e., we measured the total execution time to process a batch of samples and divided it
by the number of samples in the batch. For the CPU used in our experiments, we have
obtained a mean detection time of 1589 µs/sample. This result is less than real-world
examples of the time between packet intervals of 3,157 and 1,735 µs/sample mentioned
in [Jeong et al. 2021], showing that we can detect anomalies before a new packet arrives.

A comparison between our detection time results and the two other state-of-the-art
methods is presented in Table 5. We have improved compared to the 2D-CNN method,
primarily because of the optimized model’s reduced number of necessary computations.
We have removed the unnecessary computations from our final model. Specifically, the
first convolutional layer proposed in [Jeong et al. 2021] (and presented in Table 1) was
reduced from 32 to 27 output channels, while the second layer was decreased from 64 to
26 output channels. As this second layer serves as the input of the fully connected layer,
the number of units in this last layer was also reduced from 20416 to 8294 units.

The difference between the XGB-ML model results is due mainly to the difference
between the computations performed by each model. Where our model relies on matrix
multiplications, the XGB-ML is based primarily on comparisons, a much less timing
consuming computation.

5.4. Trade-off analysis

Finally, we analyzed the trade-off between the three evaluated DL-based IDSs for auto-
motive Ethernet. Table 6 summarizes their F1-score, detection time, and storage size. The
detection time and storage size in Table 6 were obtained by reproducing the works from
both [Jeong et al. 2021, Carmo et al. 2022]. Our proposed IDS provided well-balanced
trade-off metrics, especially regarding storage size. Even with the difference in the de-
tection in comparison to XGB-ML, we can still detect a cyberattack before a packet is
received.

Table 6. Trade-off analysis between detection time, storage size, and F1-score.
The F1-score was obtained by considering the mean value of the test set evalua-
tion for each work.

Method Detection time (µs/sample) Storage size (KB) F1-score
Our work 1589 11.7 0.9788
2D-CNN 2273 10617.0 0.9805
XGB-ML 250 10600.0 0.9538

We have optimized both model storage size and detection time with a minimal
drop of 0.0017 points in the F1-score. This storage size result means the model could be
potentially stored in a simple microcontroller such as an RP2040 with only 264 KB of
internal RAM and costs less than $1.

Although the XGB-ML model obtained a significant result regarding the detection
time, its large storage size could be related to its ensemble method characteristic. It uses
many simpler models to compose a more robust model, which means the storage size
increases with the number of simpler models.

At last, maintaining a high value of the F1-score is extremely important when
working with safety-critical systems such as vehicles, where a misdetection may lead
to an accident. We credit our minimal drop of F1-Score to using the 2D-CNN as our
reference architecture, which has a higher capability of detecting and modeling complex
data, such as network traffic containing images in their payloads.

6. Conclusions and Future Works
This work proposed a DL-based IDS for detecting replay attacks in an automotive Ether-
net network. Unlike previous works, our IDS optimizes detection results, detection time,
and storage size simultaneously during the training step by applying the LilNetX frame-
work introduced in [Girish et al. 2022]. The optimization process relies on adding two
terms to the loss function: the storage size and the detection time. These terms update
the network weights based on their transformations in latent space parameters, inducing
a small bit representation and weights sparsity based on their entropy.

We have also analyzed the trade-off between detection results, detection time, and
storage size. The balance of the abovementioned metrics is essential to design and de-
ploying an IDS in a resource-constrained environment such as an IVN. We have also
compared our results with other state-of-the-art intrusion detection systems for automo-
tive Ethernet networks. In [Jeong et al. 2021], the authors proposed a 2D-CNN IDS that
achieved higher detection metrics but required GPU-based devices to achieve real-time
detection. In [Carmo et al. 2022], the authors proposed a simpler model based on the
XGBoost algorithm, which achieved good results regarding detection time in low-cost
hardware but with the cost of a more significant drop in detection metrics.

Malicious attackers create new cyberattacks constantly, and IDSs must be able to
detect these kinds of threats. For future work, we aim to develop IDSs that detect zero-
day attacks. In this direction, unsupervised deep learning models such as autoencoders
[Alkhatib et al. 2022] have been shown as a suitable technique for detecting unknown
attacks and still have room for optimization to meet the detection time and storage size
requirements for automotive networks. We also intend to conduct experiments with hard-

ware equipment used by the automotive industry.

References

[Alkhatib et al. 2021] Alkhatib, N., Ghauch, H., and Danger, J.-L. (2021). SOME/IP Intru-
sion Detection using Deep Learning-based Sequential Models in Automotive Ethernet
Networks.

[Alkhatib et al. 2022] Alkhatib, N., Mushtaq, M., Ghauch, H., and Danger, J.-L. (2022).
Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet
Networks.

[Bandur et al. 2021] Bandur, V., Selim, G., Pantelic, V., and Lawford, M. (2021). Making
the case for centralized automotive e/e architectures. IEEE Transactions on Vehicular
Technology, 70(2):1230–1245.

[Bianco et al. 2018] Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Bench-
mark analysis of representative deep neural network architectures. IEEE Access,
6:64270–64277.

[Burke 2019] Burke, K. (2019). How does a self-driving car
see? https://blogs.nvidia.com/blog/2019/04/15/
how-does-a-self-driving-car-see/. Accessed: 2022-12-30.

[Carmo et al. 2022] Carmo, P., Araujo-Filho, P., Campelo, D., Freitas, E., Filho, A. O., and
Sadok, D. (2022). Machine learning-based intrusion detection system for automotive
ethernet: Detecting cyber-attacks with a low-cost platform. In Anais do XL Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuı́dos, pages 196–209, Porto
Alegre, RS, Brasil. SBC.

[Freitas De Araujo-Filho et al. 2021] Freitas De Araujo-Filho, P., Pinheiro, A. J., Kaddoum,
G., Campelo, D. R., and Soares, F. L. (2021). An Efficient Intrusion Prevention System
for CAN: Hindering Cyber-attacks with a Low-cost Platform. IEEE Access, pages 1–1.

[Ghosal and Conti 2020] Ghosal, A. and Conti, M. (2020). Security issues and challenges
in V2X : A Survey. Computer Networks, 169:107093.

[Girish et al. 2022] Girish, S., Gupta, K., Singh, S., and Shrivastava, A. (2022). Lilnetx:
Lightweight networks with extreme model compression and structured sparsification.

[IEEE 2016] IEEE (2016). Ieee standard for a transport protocol for time-sensitive appli-
cations in bridged local area networks. IEEE Std 1722-2016 (Revision of IEEE Std
1722-2011), pages 1–233.

[Jeong et al. 2021] Jeong, S., Jeon, B., Chung, B., and Kim, H. K. (2021). Convolutional
neural network-based intrusion detection system for AVTP streams in automotive
Ethernet-based networks. Vehicular Communications, 29:100338.

[Jo and Choi 2021] Jo, H. J. and Choi, W. (2021). A Survey of Attacks on Controller
Area Networks and Corresponding Countermeasures. IEEE Transactions on Intelli-
gent Transportation Systems, pages 1–19.

[Koscher et al. 2010] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Check-
oway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., et al. (2010). Experi-

https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/

mental security analysis of a modern automobile. In 2010 IEEE symposium on security
and privacy, pages 447–462. IEEE.

[Kukkala et al. 2018] Kukkala, V. K., Tunnell, J., Pasricha, S., and Bradley, T. (2018). Ad-
vanced driver-assistance systems: A path toward autonomous vehicles. IEEE Con-
sumer Electronics Magazine, 7(5):18–25.

[Lansky et al. 2021] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S. H. T.,
Rashidi, S., Hosseinzadeh, M., and Rahmani, A. M. (2021). Deep learning-based
intrusion detection systems: A systematic review. IEEE Access, 9:101574–101599.

[Liu et al. 2017] Liu, J., Zhang, S., Sun, W., and Shi, Y. (2017). In-vehicle network attacks
and countermeasures: Challenges and future directions. IEEE Network, 31(5):50–58.

[Matheus and Königseder 2021] Matheus, K. and Königseder, T. (2021). Automotive ether-
net. Cambridge University Press.

[Miller and Valasek 2015] Miller, C. and Valasek, C. (2015). Remote Exploitation of an
Unaltered Passenger Vehicle. Defcon 23, 2015:1–91.

[Oktay et al. 2019] Oktay, D., Ballé, J., Singh, S., and Shrivastava, A. (2019). Scal-
able model compression by entropy penalized reparameterization. arXiv preprint
arXiv:1906.06624.

[Seo et al. 2018] Seo, E., Song, H. M., and Kim, H. K. (2018). Gids: Gan based intrusion
detection system for in-vehicle network. In 2018 16th Annual Conference on Privacy,
Security and Trust (PST), pages 1–6.

[Sun et al. 2022] Sun, X., Yu, F. R., and Zhang, P. (2022). A survey on cyber-security of
connected and autonomous vehicles (cavs). IEEE Transactions on Intelligent Trans-
portation Systems, 23(7):6240–6259.

[Tuohy et al. 2015] Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., and Kilmartin,
L. (2015). Intra-Vehicle Networks: A Review. IEEE Transactions on Intelligent Trans-
portation Systems, 16(2):534–545.

[UN Regulation 2021] UN Regulation (2021). Un regulation no. 155 - cyber security and
cyber security management system.
https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-155-cyber-security-and-cyber-security.

[Wu et al. 2020] Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., and Li, K. (2020). A
survey of intrusion detection for in-vehicle networks. IEEE Transactions on Intelligent
Transportation Systems, 21(3):919–933.

https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security

	Introduction
	Related Works
	Proposed System
	Attack model
	Feature generator
	Optimization technique
	Deep-learning model architecture

	Methodology and Experimental Evaluation
	Dataset presentation and preparation
	Experimental evaluation

	Results and Discussion
	Detection results
	Storage size
	Detection time
	Trade-off analysis

	Conclusions and Future Works

