
DINT: A Dynamic Algorithm for In-band Network Telemetry
Henrique B. Brum1, Carlos R. P. dos Santos2, Tiago C. Ferreto1

1Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre, Brazil

2Department of Applied Computing, Federal University of Santa Maria (UFSM)
Santa Maria, Brazil

henrique.brum@edu.pucrs.br, tiago.ferreto@pucrs.br, csantos@inf.ufsm.br

Abstract. Network monitoring is fundamental for the correct and expected func-
tioning of today’s large computer networks. In-band Network Telemetry (INT)
has become one of the main tools for collecting network information in recent
years. By piggybacking information using business packets, INT can deliver
real-time network statistics to monitoring engines. However, INT’s fine granu-
larity comes with a high network overhead cost. This paper focuses on balanc-
ing this trade-off between accurate monitoring and high telemetry overhead. To
achieve it, we propose DINT, a Dynamic INT algorithm capable of adapting
to different traffic patterns while keeping an accurate view of the network and
reducing flooding it with redundant telemetry data. In our experiments, DINT
presented higher adaptability compared to other techniques, providing a more
accurate view of the network while requiring fewer telemetry data.

1. Introduction
Computer networks have drastically evolved over the last years, primarily because of
the global adoption of the Internet and the subsequent expansion of Cloud solutions.
To properly maintain these new complex networks, it is fundamental that modern man-
agement and monitoring techniques be employed. The Software Defined Networking
(SDN) paradigm has emerged as a promising solution to meet this end, as it can improve
and facilitate the network operator’s tasks. Following SDN’s idea of separating the data
plane from the control plane and the capability of programming network functions, a new
branch of SDN called the Programmable Data Plane (PDP) was proposed as a way to
provide even more control over the network’s data plane capabilities. The Programming
protocol-independent packet processors (P4) [Bosshart et al. 2014] is one of the leading
technologies for controlling packet forwarding planes in networking devices.

As these new techniques started appearing, new monitoring solutions emerged
in traditional SDN and PDP. Although SDN has improved the flexibility of the network
measurement architecture, the flow collection and sampling methods used in conventional
network measurement techniques were preserved [Tan et al. 2021]. Because of that, pro-
posed traditional SDN monitoring frameworks continued to collect network information
via pull commands (e.g., [Chowdhury et al. 2014] and [Tangari et al. 2018]). In pull-
based monitoring solutions, a centralized control plane or network management system
periodically queries network switches for updated statistics. With the emergence of PDP,
network telemetry [Yu 2019] became a mainstream research topic encompassing different
telemetry techniques. Network telemetry is the automated process for remotely collecting

and processing network information [Tan et al. 2021]. In-band network telemetry is one
of the most promising variations of network telemetry. With in-band network telemetry,
network information is collected by inserting network metadata in packets by switching
nodes, meaning that telemetry data and user data share the same link or even the same
packet.

Following the trends in network monitoring, the P4 Language Consortium
(P4.org) proposed its implementation of in-band network telemetry, the In-band Network
Telemetry (INT) [Kim et al. 2015]. INT is a framework that allows data packets to query
switch-internal states such as queue size, link utilization, and queuing latency without the
intervention of a centralized control plane. By collecting information directly from the
switches, INT can achieve fine-grained real-time data plane information. Nonetheless, the
minute view of the network provided by INT comes at the cost of high telemetry overhead.
This high overhead exists because every switching device receiving a packet with an INT
header inserts network information in the packet. High telemetry overhead can lead to
poor throughput and overload the monitoring application with too much information. To
tackle this issue, multiple solutions have been proposed. Still, most of them delegate too
much of their logic to the control plane, which can incur latency and affect the applica-
tion’s performance [Kfoury et al. 2021]. Regarding the few works that employ most of
the logic on the data plane, some limitations include the absence of dynamic thresholds
to determine when to collect statistics (e.g., [Sheng et al. 2021]) and the lack of periodic
telemetry reports (e.g., [Chowdhury et al. 2021]).

Knowing the constraints of using INT and the shortcomings of the state-of-the-
art solutions, we propose an algorithm capable of accurately presenting the network state
while reducing the telemetry overhead. In this work, we introduce DINT, a dynamic In-
band Network Telemetry algorithm that runs directly in data plane devices. Specifically,
each switch running DINT keeps track of the network’s traffic, and when it detects an
abrupt traffic rate change according to dynamic thresholds, the switching device updates
its telemetry insertion time. To alleviate the job of the network operator of finding suit-
able thresholds for a vast range of possible network traffics, DINT regularly updates its
thresholds to consider the latest traffic patterns.

Our major contributions are summarized as follows:
• A Dynamic In-band Network Telemetry algorithm for programmable data plane

devices. DINT automatically adjusts its telemetry insertion rate according to the
network traffic;

• An extensive evaluation of DINT against a naive approach, a classical monitoring
solution, and a state-of-the-art mechanism;

• Source code, testing scripts, and results are available in our GitHub repository 1 to
give further insights into our solution and evaluation process while also enabling
reproducibility.
The rest of the paper is organized as follows. In Section 2, we present the main

concepts and technologies used in our work. In Section 3, we present our algorithm and
some implementation considerations. Then, we evaluate DINT and compare it with three
other solutions in Section 4. We discuss the related work and compare their differences
with our proposal in Section 5. Finally, we present our final remarks in Section 6.

1DINT repository - https://github.com/HenriqueBBrum/DINT/tree/main

2. Background

The P4 language [Bosshart et al. 2014] is an open-source, domain-specific programming
language for network devices, specifying how data plane devices process packets. De-
spite its initial focus on programming hardware or software switches, P4 has expanded
and now covers a wide variety of devices such as network interface cards, network appli-
ances, ASICs, NPUs, and FPGAs [Kaur et al. 2021]. P4 was designed with three main
objectives: reconfigurability, protocol independence, and target independence. Recon-
figurability is the capacity to easily change a P4 program to process packets as desired.
Protocol independence means that P4 supports any protocol. Target independence refers
to the fact that P4 programs are free from specific hardware features; they only need to
conform to the vendor’s device architecture.

INT is a monitoring framework developed by the P4 Language Consortium
(P4.org) that enables transit nodes, such as switches, to embed network information in
any passing packet. Using INT, a monitoring application can achieve fine-grained infor-
mation about the network status without the intervention of the control plane. According
to the INT specification [Group 2020], there are three agents: INT Source Node, INT Sink
Node, and INT Transit Hop. INT Source Node is responsible for embedding telemetry
instruction into packets. INT Transit Hop only needs to fill in telemetry metadata accord-
ing to the instruction of the INT packet. INT Sink Node extracts and reports the telemetry
results to a monitoring engine.

One limitation of INT is the excessive overhead it causes. Excessive overhead can
be detrimental to the network’s goodput. In [Chowdhury et al. 2021], the authors con-
ducted an analytical study to measure the impact of INT data plane overhead on network
goodput. Their experiments showed that even for just one hop, network goodput can be
reduced by around 20%. These results show the need for techniques to accurately present
the network status while keeping the network’s overhead to a minimum.

3. Dynamic INT Algorithm

This section presents DINT, a dynamic monitoring algorithm based on INT framework to
monitor programmable network devices. DINT aims to achieve an accurate network view
while incurring low network overhead.

3.1. DINT: A Dynamic INT algorithm

DINT was designed with two goals: 1) To reduce network overhead without losing moni-
toring quality; 2) To keep the algorithm light enough to run it in commodity PISA devices,
where the programming capabilities are limited.

DINT inserts network information in regular packets between a minimum and a
maximum period, and the occurrence of changes in traffic volume updates this interval.
Therefore, DINT continuously collects network information at a frequency that depends
on the network’s behavior. For instance, a higher frequency is used when traffic is more
erratic, while a lower frequency is used when it is more steady. The algorithm presented
in Algorithm 1 is responsible for updating the period that network information is collected
in each programmable device and the thresholds used to check if a significant change has
happened.

Algorithm 1 DINT Algorithm
Input: Tmin and Tmax as minimum and maximum telemetry insertion interval; α as

telemetry insertion interval growth rate, threshold value ∆ , positive integer k, SMA
divisor β.

1: if observation window interval >= Tmin then
2: if diff byte count > |∆| then
3: λ = Tmin

4: else
5: λ = min(λ · α, Tmax)
6: end if
7: ∆ = UpdateThreshold(k, β, current obs byte count)
8: end if
9:

10: if telemetry insertion interval >= λ then
11: AddTelemetryToPacket(telemetry data)
12: end if

Algorithm 1 works as follows. At every Tmin milliseconds (observa-
tion window interval), it calculates the amount of traffic that has passed since its pre-
vious observation window (diff byte count). When the difference in traffic is greater
than a threshold value ∆, i.e., a significant change in the network traffic has occurred,
the algorithm sets the telemetry insertion period λ to a minimum period value of Tmin.
A change in the network traffic can mean either an increase or decrease in through-
put. By contrast, if the difference is smaller than ∆, i.e., no significant changes
in the throughput have happened, it increases λ by α times until it reaches a maxi-
mum period value of Tmax. After updating the telemetry insertion period, it also up-
dates ∆ to keep up with the most recent network traffic measurements by calling the
UpdateThreshold(...) function. Finally, it checks if the telemetry window interval has
elapsed (i.e., telemetry insertion interval >= λ). In such a case, it adds telemetry
information to the current packet. This algorithm executes every time a packet enters the
programmable device.

3.2. Update thresholds using Moving Average
Even though fixed thresholds might work for contained and predictable traffic, their scope
is limited to the presumed network behavior. Any fluctuations in the expected traffic
pattern will result in either high telemetry overhead or an inaccurate view of the network.
An algorithm that periodically adapts itself to the latest network information is essential
to solve these issues.

To tackle this problem while considering that PISA devices have many program-
ming limitations [Chowdhury et al. 2021] (e.g., no floating point numbers, no division,
and no loops), DINT employs moving average functions to compute the dynamic thresh-
olds. Moving average is an adequate solution to this problem since it can be programmed
into a PISA device with minimum modifications and provide a clear picture of the current
network’s behavior. More specifically, DINT uses the Simple Moving Average (SMA)
function, which is the unweighted mean of the previous k data entries. SMA is a method
that needs minimal parameter tuning to find a satisfactory configuration.

Since the division of run-time values is impossible in the P4 language, the right
shift operation is used to replace it. Although it is feasible to divide compile-time values,
the average for the SMA calculation is restricted to comprising only the last 2n data mea-
surements, where n is used in the right shift operation. The UpdateThreshold(...) function
of Algorithm 1 uses SMA and is described in Algorithm 2.

Algorithm 2 Update Threshold
Input: Positive integer k, SMA divisor β, Byte count of the current observation window

current obs byte count.
Output: SMAk/β

1: sum = sum+ current obs byte count
2: obs window count = obs window count+ 1
3: if obs window count == k then
4: mean = sum >> n {n is 2n = k}
5: ∆ = mean/β
6: sum = 0
7: obs window count = 0
8: end if
9: return ∆

Algorithm 2 is called every time a packet enters the observation window in Al-
gorithm 1. This means that at every k-th observation window, the ∆ value is updated to
reflect the average of the k previous observation windows. The value returned by SMA
is an estimated guess on how the network traffic is behaving and how it might behave.
Knowing this, the new ∆ is going to be the I-th part of the SMA, meaning, for exam-
ple, that if the SMA of the last k observation windows reported a network throughput of
100MB/s, and β is 10, the new ∆ is going to be 10MB/s. Otherwise, the new ∆ would be
too big for the current traffic trend. Table 1 presents a description of DINT’s parameters.

Table 1. DINT parameters
Parameter Description
Tmin Minimum telemetry insertion period
Tmax Maximum telemetry insertion period
α Period multiplier
k The number of observation windows for the SMA
β Fraction to consider as the new ∆ from the SMA

3.3. Implementation Considerations

While INT [Kim et al. 2015] is a robust framework, we developed a simpler variation of
INT-MD (INT eMbedded Data) that only monitors network throughput. For more com-
plex topologies and requirements, INT is preferred, but our implementation was adequate
for the goals of this paper. In our adaptation depicted in Figure 1, all programmable
devices are an INT source, INT transit, and INT sink simultaneously. They can insert
telemetry headers, add network information, and extract telemetry headers for monitor-
ing purposes. Like INT, we use a similar header that carries meta-information about the

telemetry headers (INT header) and a stack of headers carrying network metadata (INT
metadata header). When a packet with an INT header arrives at the last switch before
the final host, the original packet is cloned. The monitoring information is removed from
the original packet before forwarding it to the final host. The cloned packet has its pay-
load removed, and only the monitoring information is forwarded to the monitor. Table 2
presents the description and the number of bits used by the DINT metadata header fields.

Table 2. DINT metadata header
Field Bits used Description
Bottom of Stack 1 Identifier of the last metadata header
Switch ID 7 Identifier of a device
Egress Port ID 32 Identifier of a packet’s egress port
Amount bytes 32 Amount of bytes counted since last report
Previous telemetry time 48 Previous telemetry collection timestamp
Current telemetry time 48 Current telemetry collection timestamp

A final consideration is that in our variation, data plane packets do not have INT
headers by default, only when there is an INT metadata header. This is mentioned be-
cause the state-of-the-art technique used for comparison in the evaluation section allows
INT headers without any metadata header. Figure 1 presents an example of DINT’s work-
flow. The INT header (black rectangle) is inserted by switch SW1, as it is the first to
insert network telemetry into the packet. Since each switch decides when to send network
statistics, in this example, only switches SW1 and SW3 insert a telemetry metadata header
(purple rectangle for SW1 and orange rectangle for SW3) in the incoming packet. This is
an improvement upon previous solutions that always added network information when a
packet had an INT metadata header since it reduces the overall telemetry overhead while
maintaining an accurate network view.

Figure 1. DINT’s workflow example

4. Evaluation
In this section, we first describe our experimental setup and the evaluation methodology.
Next, we define our evaluation metrics, followed by a demonstration that most parame-
ters of DINT are not traffic-dependent but are general configurations of how accurate the
monitoring needs to be at the cost of increased telemetry overhead. Finally, we compare
DINT against a naive monitoring approach, a classical monitoring technique [Kim et al.
2018], and a state-of-the-art mechanism [Chowdhury et al. 2021].

4.1. Experiment Setup
Our simulation environment is an Ubuntu 20.04 virtual machine provided by the P4 lan-
guage GitHub repository. We use the default tools installed in the Ubuntu VM to build
our network prototype. Mininet emulates the specified network topology, and the ref-
erence P4 software switch, BMv2, is used to enable data-plane programmability within
the Mininet switches. Our network prototype is a full mesh topology, as depicted in Fig.
2. It consists of one monitoring host (red hexagon), four switches (blue rectangles), and
five end-user hosts (green circles). The monitoring host is connected to all switches, the
switches are connected to all other switches, and each user host is only connected to one
switch.

Figure 2. Experiment topology.

For the workload used in the experiments, we adapted the traffic pattern described
in Payless [Chowdhury et al. 2014]. Fig. 3 illustrates the duration, the communicating
pair, and the throughput for each flow of the evaluation traffic. After defining the desired
traffic pattern, we captured the real traffic of one simulation with tshark and reused it for
all subsequent tests with tcpreplay. Reusing the same traffic guarantees that every test has
the same input, and if any substantial divergence happens, it is due to the algorithm being
tested or the network emulator.

Figure 3. Timing diagram of the evaluation traffic

4.2. Evaluation Metrics
We used the following metrics in our experiments:

Network throughput Network throughput is measured as the amount of traffic
flowing from a specific source to a specific destination at a certain point in time
and measured in Mbps units. For this evaluation, we report the throughput of the
switch S2 (Fig 2).
Normalized Root Mean Squared Error (NRMSE) We evaluate a monitoring
technique’s accuracy by measuring the telemetry information’s deviation from the
ground truth using NRMSE. To compute the NMRSE, we first measure the real
and the telemetry reported throughput and use them to calculate the Root Mean
Squared Error (RMSE). Then, we normalize the RMSE value by dividing it by the
difference between the maximum and minimum values of the real traffic data and
obtain the NRMSE.
Telemetry Overhead We define telemetry overhead as the total amount in bytes
of all telemetry headers used to carry out network information. INT headers with
no INT metadata headers are discarded.

4.3. Evaluation of DINT Parameters
Our first set of results aims to demonstrate that most parameters of DINT are not traffic-
dependent but are simply a trade-off on how accurate the monitoring is required to be at
the cost of increased telemetry overhead. Moreover, the results obtained in this evaluation
are used in Section 4.4 when comparing DINT with other monitoring methods. DINT has
five possible parameters: the minimum telemetry insertion interval Tmin; the maximum
telemetry insertion interval Tmax; the rate at which our telemetry insertion interval grows
α; the number of previous data measurements used in the SMA function k; and, β as the
relation between the SMA result and the new ∆. Despite the need to set these parameters,
just k has a relatively more complicated tuning process.

Figure 4. NMRSE of DINT varying α
with different Tmin values.

Figure 5. Telemetry Overhead vary-
ing α with different Tmin values.

Choosing the value for these four parameters is just a question of how accurate
the monitoring needs to be at the cost of increasing telemetry overhead. For Tmin, Tmax,
and α values, smaller values incur higher accuracy, while greater values must be used if
network limitations and high telemetry overhead are a problem. To give a perspective,
0.1s is a small value for Tmin while 10s is big. For setting β, it is the opposite relation;
greater values result in more accurate reports.

In Figures 4 and 5, we demonstrate this trade-off for the parameter α. As we
can see in Figure 4, in all telemetry insertion time values (Tmin), the lower the α is, the
smaller the NMRSE and, correspondingly, the higher its accuracy. In Figure 5, we see
the trade-off between accuracy and telemetry overhead, as lower values of α and Tmin

have a higher telemetry footprint. In both figures, for every pair, α and Tmin, five tests
were executed, and the error bar is the standard deviation of those tests. This process is
repeated for all subsequent NMRSE and Telemetry Overhead graphs.

The reason that each of these four parameters presents this behavior is explained
next. Since Tmin indicates the shortest telemetry collection interval, we have finer granu-
larity by using smaller values. The parameter Tmax defines the maximum time the moni-
toring engine is allowed to be unaware of the network situation; with smaller values, the
monitor receives more telemetry reports and is more accurate. The α parameter specifies
how quickly should the monitoring interval go from the most accurate value to the least
one; smaller α values take more time to perform this task meaning more telemetry data is
collected. The β parameter adjusts what is considered a significant change in the network
traffic; greater β values result in a smaller ∆, which means that the algorithm is more
susceptible to smaller traffic variations, resulting in more telemetry reports and higher
accuracy.

4.3.1. Choosing k

While tuning Tmin, Tmax, α and β is quite straightforward as presented before, setting
parameter k, which is used in Algorithm 2 to define how often the ∆ value is updated, is
a little more complicate. We show this by executing experiments with three different k
values.

Figure 6. NMRSE of DINT varying k
with different Tmin values.

Figure 7. Telemetry overhead vary-
ing k with different Tmin values.

Like the α evaluation, we have an NMRSE graph, Figure 6, and a Telemetry
Overhead graph, Figure 7. In contrast to the findings of the evaluation of the previous
parameters, changing k does not produce a clear trend. Although reducing Tmin increases
the performance in general, there is not a clear winner for k values. For example, k=8
provides the best performance with Tmin equal to 0.25s and 0.5s but has the worst perfor-
mance when Tmin is 1.0s. A probable explanation for these results is that large k values
with higher Tmin take too much time to update the ∆ whereas small k values with low

Tmin update ∆ too frequently.

4.4. DINT Comparison with other Monitoring Methods

After evaluating DINT’s parameters and showing that tuning is required to achieve an op-
timal solution, we compare it with three other monitoring techniques: a naive method, a
classical monitoring algorithm, and a state-of-the-art technique. The naive method inserts
telemetry data into a packet based on a static interval. The classical monitoring algorithm
(sINT) [Kim et al. 2018] uses the control plane to increase the telemetry insertion fre-
quency in reaction to significant changes in consecutive INT metadata or reduce it if no
significant changes have happened after a pre-defined stabilization time. DINT’s main
distinctions from sINT are that it dynamically updates what is considered a significant
change to reflect the latest network traffic, requires no control plane intervention, and
each switch decides when to insert network information into the packet.

The state-of-the-art technique (LINT) [Chowdhury et al. 2021] proposes an
accuracy-adaptive and lightweight INT capable of running on programmable devices that
use the same idea of significant changes and dynamic thresholds as our work. More
specifically, a device running LINT tries to estimate with each incoming packet the
amount of error that can be introduced at the collector if the requested telemetry data
items are not piggybacked on the current packet. When the device estimates that the pre-
diction error at the collector can go above an acceptable threshold, it inserts the current
observation into the packet. Despite the similarities, DINT differs from LINT by working
with time intervals, meaning it is harder to saturate the monitoring engine with excessive
packet-by-packet telemetry resulting from unfit configuration. Additionally, the monitor-
ing engine can always expect to receive the network status according to the time intervals
defined, something LINT does not guarantee as it only adds telemetry information when
a significant change occurs. Finally, DINT only inserts an INT metadata header when
adding network information and not in every packet.

4.4.1. Implementation Details

Two considerations need to be taken before starting our evaluation. First, since per packet
telemetry of network throughput is not optimal, we adapted LINT to run its algorithm
at every Tmin seconds interval, just like DINT and the static approach. This cannot be
applied to sINT as its logic is done at a monitoring host, not the switches. Second, in
LINT, it is unclear whether every packet has an INT header, even if the packet has no INT
Metadata Header. We assume LINT allows empty INT headers, but since the telemetry
overhead metric only considers telemetry reports with network information, the empty
INT headers are not considered.

Finally, for the parameters of each algorithm, we used the values described next.
sINTs fixed threshold makes it hard to find a good configuration. Still, we have found that
if the difference between two consecutive throughput reports is greater than 0.25 Mbps
and the stabilization time is 0.01 seconds, we can achieve acceptable results. For LINT,
we chose the parameters with the highest accuracy reported in its paper. Our solution
considers the following parameters: Tmax=10s, α=1.25s, k=8, β=10. α=1.25s and k were
chosen based on Section 4.3. We test all algorithms with three different Tmin values 0.25s,

0.5s, and 1s and each configuration (e.g., {DINT, 0.25s}, {DINT 1.0s}, etc) is tested five
times. The standard deviation of the five tests is represented by error bars in the NMRSE
and Telemetry Overhead graphs.

4.4.2. Analysis of Experiment Results

Figures 8 and 9 display the contrast between the actual network traffic (blue line) and the
one reported by the telemetry algorithm (red line). The gray area is the difference between
the two lines (i.e., the time intervals when the monitoring engine had an incorrect network
view). We present this comparison with the results obtained by DINT, in Figure 8, and
the ones by LINT, in Figure 9, when Tmin is equal to 1s.

Figure 8. Network traffic using DINT
with Tmin=1s.

Figure 9. Network traffic using LINT
with Tmin=1s.

To properly quantify the performance of each algorithm, we use NMRSE in Fig-
ure 10 and the total telemetry overhead in Figure 11. We also evaluate how different
telemetry insertion intervals (Tmin) perform for each method. Regarding the accuracy of
each algorithm, we can see in Figure 10 that LINT is the best at Tmin 0.25s and 0.5s while
DINT has the advantage at 1.0s.

Figure 10. NMRSE of the evaluated
techniques with different Tmin val-
ues.

Figure 11. Telemetry overhead of
the evaluated techniques with dif-
ferent Tmin values.

There are some important observations to take from Figures 10 and 11. First,
methods that collect network data with intervals (static, LINT, and DINT) obviously
achieve better accuracy with smaller Tmin since they collect more information. For sINT,
the accuracy decreases even with the same telemetry overhead because the real data be-
comes more scarce. Second, the static method is outperformed by others solutions when
there is a slight difference between their telemetry overheads. This happens because the
static method simply collects data, while the other methods do it more intelligently by
collecting when a significant event happens. When Tmin is 1.0s, this condition is evident
as all other solutions have better accuracy even with less or similar telemetry overhead.
Lastly, we see that DINT can keep one of the most accurate network views while hav-
ing the smallest telemetry overhead in all scenarios. For example, when Tmin is 0.25s,
DINT has 60% less telemetry overhead at just 20% less accuracy compared to the most
accurate solution, i.e., LINT. Even better, when Tmin is 0.25s, DINT outperforms all other
solutions; it has the best accuracy and the lowest telemetry overhead.

5. Related Work
The advent of P4 and INT prompted the development of multiple monitoring approaches
with varying end goals. In DyPro [Dallanora et al. 2022], the authors formalize the prob-
lem of ensuring that telemetry dependencies are always satisfied under monitoring appli-
cation requirements as a Mixed-Integer Linear Programming (MILP) optimization model
and propose a heuristic that wisely finds a high-quality solution. Although DyPro success-
fully satisfies telemetry dependencies according to monitoring application requirements,
its main focus is to define the optimal probe packet path to collect all network information
according to different applications. In contrast, DINT’s main idea is to reduce network
overhead by adjusting the period it collects network information.

One of INT’s most challenging aspects is balancing an accurate network view
while keeping telemetry overhead minimal. To achieve this, sINT [Kim et al. 2018] re-
duces the number of telemetry reports by adjusting the insertion ratio of the INT header
according to thresholds particular to the monitored data. Despite sINT reducing telemetry
overhead compared to the naive INT implementation, it requires some complex threshold
tuning for each type of traffic, an issue our method overcomes through dynamic threshold
reconfiguration. Parallelly, PINT [Ben Basat et al. 2020] is a probabilistic framework for
in-band telemetry that provides similar visibility to INT while bounding the per-packet
overhead to a user-specified value. PINT improves INT’s default operation mode by the
probabilistic encoding of a flow’s relevant data into several packets. DINT is comple-
mentary to PINT since its purpose is to spread out information over multiple packets to
minimize the per-packet overhead, while DINT determines when to collect network in-
formation to reduce the overall telemetry overhead.

Still finding ways to achieve this balance, the authors of Sel-INT [Tang et al. 2019]
proposed and designed a run-time programmable selective INT scheme based on Proto-
col Oblivious Forwarding (POF) and implemented it in the OpenvSwitch (OVS) platform.
More specifically, the POF controller installs INT-related flow tables in the POF switches
on the forwarding path of a flow. The controller determines the sampling rate by an-
alyzing historical INT data with the Fourier transform. Cui et al. proposes SPT [Cui
et al. 2022], a sketch-based in-band network telemetry measurement framework. SPT
uses multiple techniques to reduce network overhead and provide flexible control. Some

of the techniques used are sketch-guided elephant flow selection, compression of control
instructions, and decomposition of measurement tasks of one packet into separate mea-
surement tasks carried by multiple sequential packets. In contrast, DINT works directly
on the data plane, meaning there is no communication delay between the switches and the
controller.

Even though using a centralized controller to determine the telemetry sampling
rate allows for more complex algorithms, the communication delay between the switching
devices and the controller can be a cause for concern. To tackle this issue, LINT [Chowd-
hury et al. 2021] proposes an accuracy-adaptive and Lightweight INT mechanism that
uses the Exponentially Weighted Moving Average (EWMA) to keep up with network sta-
tus. One of the limitations of LINT is that it works packet-by-packet, which can lead to
substantial telemetry overhead if an optimal configuration is not found. Moreover, sup-
pose no significant change happens in LINT; In that case, the monitoring engine stops re-
ceiving information and is oblivious to the latest network status. Differently, DINT works
by time intervals, meaning it’s harder to saturate the monitoring engine with excessive
telemetry resulting from unfit configuration and the monitoring engine can always expect
to receive the network status according to the time intervals defined. In DeltaINT [Sheng
et al. 2021], the authors propose to reduce INT overhead by selectively carrying network
states only when their values change significantly with a data plane native solution. By
using a sketch data structure, it can monitor multiple network states. However, DeltaINT
thresholds are static and are not updated according to the latest network status, in contrast
to DINT’s functioning.

6. Conclusion
Balancing the amount of telemetry data collected while keeping an accurate network view
is crucial for monitoring applications. In this work, we achieve this goal by proposing
DINT, a dynamic and efficient in-band network telemetry algorithm. DINT can adapt
itself to send more network metadata when a significant change occurs and actively up-
dates what is considered a significant change based on the latest network traffic. We have
evaluated and compared DINT’s performance with three other INT-based techniques, in-
cluding a state-of-the-art one. Our comparison has shown that DINT is the most adaptive,
as it always has one of the most accurate network views, even though it uses the least
amount of telemetry data in every scenario.

In future work, we plan to evaluate DINT with more realistic network traffics and
topologies scenarios to consolidate it as a proper monitoring solution. Finally, we also
intend to use DINT with an implementation of the INT specification [Group 2020] since
INT is the main in-band telemetry framework for P4.

References
Ben Basat, R., Ramanathan, S., Li, Y., Antichi, G., Yu, M., and Mitzenmacher, M. (2020).

Pint: Probabilistic in-band network telemetry. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer communication, pages 662–680.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al. (2014). P4: Programming protocol-

independent packet processors. ACM SIGCOMM Computer Communication Review,
44(3):87–95.

Chowdhury, S. R., Bari, M. F., Ahmed, R., and Boutaba, R. (2014). Payless: A low cost
network monitoring framework for software defined networks. In 2014 IEEE Network
Operations and Management Symposium (NOMS), pages 1–9. IEEE.

Chowdhury, S. R., Boutaba, R., and François, J. (2021). Lint: Accuracy-adaptive and
lightweight in-band network telemetry. In 2021 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 349–357. IEEE.

Cui, M., Li, X., Wang, Y., Niu, T., and Yang, F. (2022). Spt: sketch-based polling in-
band network telemetry. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium, pages 1–7. IEEE.

Dallanora, L. M., Castro, A. G., da Costa Filho, R. I., Rossi, F. D., Lorenzon, A. F., and
Luizelli, M. C. (2022). Dypro: Dynamic probing planning for in-band network teleme-
try. In 2022 IEEE Symposium on Computers and Communications (ISCC), pages 1–6.
IEEE.

Group, T. P. A. W. (2020). In-band network telemetry (int) data plane spec- ification.

Kaur, S., Kumar, K., and Aggarwal, N. (2021). A review on p4-programmable data
planes: Architecture, research efforts, and future directions. Computer Communica-
tions, 170:109–129.

Kfoury, E. F., Crichigno, J., and Bou-Harb, E. (2021). An exhaustive survey on p4 pro-
grammable data plane switches: Taxonomy, applications, challenges, and future trends.
IEEE Access, 9:87094–87155.

Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., and Wobker, L. J. (2015). In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM, volume 15.

Kim, Y., Suh, D., and Pack, S. (2018). Selective in-band network telemetry for overhead
reduction. In 2018 IEEE 7th International Conference on Cloud Networking (Cloud-
Net), pages 1–3. IEEE.

Sheng, S., Huang, Q., and Lee, P. P. (2021). Deltaint: Toward general in-band network
telemetry with extremely low bandwidth overhead. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP), pages 1–11. IEEE.

Tan, L., Su, W., Zhang, W., Lv, J., Zhang, Z., Miao, J., Liu, X., and Li, N. (2021). In-band
network telemetry: A survey. Computer Networks, 186:107763.

Tang, S., Li, D., Niu, B., Peng, J., and Zhu, Z. (2019). Sel-int: A runtime-programmable
selective in-band network telemetry system. IEEE transactions on network and service
management, 17(2):708–721.

Tangari, G., Tuncer, D., Charalambides, M., Qi, Y., and Pavlou, G. (2018). Self-adaptive
decentralized monitoring in software-defined networks. IEEE Transactions on Net-
work and Service Management, 15(4):1277–1291.

Yu, M. (2019). Network telemetry: towards a top-down approach. ACM SIGCOMM
Computer Communication Review, 49(1):11–17.

