
SAXJS: An Online Change Point Detection for
Wearable Sensor Data

Giovanna A. Riqueti1, Pedro H. Barros1, João B. Borges2, Felipe D. Cunha3

Osvaldo A. Rosso4 , Heitor S. Ramos1

1Department of Computer Science
Universidade Federal de Minas Gerais (UFMG)

Belo Horizonte, MG 30123-970, Brazil

2Department of Computing and Technology
Universidade Federal do Rio Grande do Norte (UFRN)
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Abstract. Wearable electronics are devices used by humans that can continuously
and uninterruptedly monitor human activity through sensor data. The data
collected by them have several applications, such as recommending running
techniques and helping to monitor health status. Segmenting such data into
chunks containing only a single human activity is challenging due to the wide
variability of underlying process characteristics presented in the data. To deal
with this problem, we propose a new change point detection algorithm based on
the Symbolic Aggregate approXimation (SAX) transformation, the probability of
transition between symbols, and the Jensen-Shannon distance.

1. Introduction
The wearable electronics market is rising in 2022 and has reached significant success in
the last decade. The total market worth was nearly $80 billions in 2020, having tripled
since 2014, and the expectation for 2025 is of $140 billions [IDTechEx 2021]. Wearable
electronics can monitor individual activities continuously and closely without interrupting
or limiting user movements. These devices, and others like them, offered a range of features
that made them appealing to consumers, including fitness tracking, health monitoring, and
convenient access to information and communication [Gao et al. 2016].

Detecting breakpoints or transitions based on sensor data has many applica-
tions, such as the segmentation of running activity to evaluate the cause of an injury
[Napier et al. 2017], identification human activity transitions [Thakur and Biswas 2022]
and helping monitoring health status to detect emergencies [Nachiar et al. 2020].



This problem of detecting breakpoints can be formulated as change point detec-
tion [Aminikhanghahi and Cook 2017].

The change point problem consists of discovering the points in time at which
the time series changes its behavior. Time series is an ordered data sequence, and we
can divide the algorithms to detect these changes into two main groups: offline and
online [Aminikhanghahi and Cook 2017]. Offline techniques only apply with the com-
plete time series information [Truong et al. 2020]. Online techniques, otherwise, can be
real-time or ε-real-time, where the ε is the number of points necessary to look ahead
[Aminikhanghahi et al. 2018].

Online algorithms are one of the most crucial challenges in the study area of change
point detection, and it is an essential characteristic to improve its usability in wearable
sensors. Typically, wearable devices are small and portable, so they have limited space for a
battery. As a result, they need to be efficient in their use of power to have a long battery life.
Hence, another critical issue in this field is the low computational cost to run the algorithm
in the devices [Benson et al. 2018]. In addition, the data collection can be uncompleted,
noise distorted due to human error or environment changes [Shinmoto Torres et al. 2013].
Therefore, the algorithm must handle non-stationary data and be robust for different
systems.

In order to create a change point algorithm that solves the problem of human
activity segmentation in wearable sensors, we propose a new online method based on Sym-
bolic Aggregate approXimation (SAX) [Lin et al. 2007] transformation and the Jensen-
Shannon distance [Lin 1991] between the probabilities of transitions among the SAX
symbols. The SAX is a non-parametric transformation, which is an advantage for con-
structing an adaptable algorithm for different systems. In addition, by being a distance,
the Jensen-Shannon has the advantage of being symmetric compared to dissimilarity
measures [Zunino et al. 2022].

Our approach uses two consecutive sliding windows of the time series, transforming
them into the SAX representation, and then constructs a probability distribution matrix
between symbol transitions. After constructing the matrix, we calculate the Jensen-
Shannon distance between the probabilities of the two windows. For each Jensen-Shannon
value, we applied the Savitzky–Golay filter [Press and Teukolsky 1990], which fits a low-
degree polynomial based on its adjacent data to smooth the data. As the Jensen-Shannon
value is smoothed we also apply a maximum value detection algorithm that analyzes a
user-determined number of neighbors. The maximum value must be greater than a defined
threshold value to be considered as a possible change point.

First, this proposed algorithm was tested on synthetic data sets to analyze the
weaknesses and strengths of the approach in a change point ideal scenario. After validation
on the synthetic data set, the algorithm was evaluated using the Human Activity Sensing
Consortium (HASC) Challenge data [Kawaguchi et al. 2011a], which is a collaborative
project to acquire wearable sensor data information. The HASC Challenge data is a bench-
mark for both wearable sensors [Cleland et al. 2018] as it is for change point detection
methods [Aminikhanghahi and Cook 2017] such as RuLSIF [Liu et al. 2013] and TIRE
[De Ryck et al. 2021].

The rest of this paper is structured as follows: In Section 2, we review the literature



about change point detection approaches and the techniques used to segment wearable
sensor data. In Section 3, we formulate our change point detection problem. In Section
4, we describe our proposed change point algorithm. In Section 5, we describe our
evaluation measure and discuss the results for the synthetic data sets and the results for the
HASC Challenge data. Finally, in Section 6, we concluded the work and showed future
perspectives.

2. Related Work
This section reviews the existing research progress in change point detection and data
segmentation in wearable sensors.

2.1. Change point detection

Figure 1. Diagram of change point detection methods. Strongly based on
[Aminikhanghahi et al. 2018].

Figure 1 presents a taxonomy of the techniques used for change point detection.
The supervised learning approaches need manual labeling change point examples to train
the model to predict the correct output for new input times series data [Ko et al. 2015,
Saatçi et al. 2010]. However, this strategy has some disadvantages, as it is challenging to
have an extensive and diverse training set to address multiple state change alternatives.

Conversely, unsupervised learning (UL) strives to find patterns or relation-
ships in a data set without being given any labeled examples. In a change point
detection scenario, UL segments the data and thereby analyzes its statistical struc-
ture [Aminikhanghahi et al. 2018]. Space modeling is a UL paradigm where states repre-
sent the time series, and to detect change points, these approaches estimate the distance
between these state spaces. For example, the Subspace Identification (SI) algorithm
[Kawahara et al. 2007] builds an observation matrix based on the state space model gener-
ated through a sliding window. Based on this matrix, the authors calculate the distances
between the subspaces to detect change points.

Another UL paradigm estimates the likelihood rate of two consecutive inter-
vals and checks whether they come from the same probability distribution. Specifi-
cally, Cumulative Sum (CUSUM) accumulates the likelihood deviations to a reference
point, and when its accumulated sum exceeds a threshold, the approach detects a change



point [Page 1955]. Other studies using CUSUM make several modifications on it, such
as the likelihood ratio estimate [Verdier 2020]. Algorithms like CUSUM and Change-
Finder [Yamanishi and Takeuchi 2002] rely on pre-designed parametric models and are
less flexible in real-world scenarios.

Some recent studies try to solve this problem by estimating the density ratio without
knowing the two probabilities’ density directly. The RuLSIF algorithm [Liu et al. 2013]
applies the Unconstrained least-squares importance fitting (uLSIF) [Kanamori et al. 2009]
method that learns the density ratio using a least-square fitting framework. The uLSIF
has a weakness that density ratios can be unbounded if the denominator is not defined. In
order to solve this problem, RuLSIF considered the relative density ratio using a Gaussian
kernel.

Recently, the algorithm partially time-invariant representation (TIRE)
[De Ryck et al. 2021] uses an autoencoder to estimate time-invariant features. The authors
use the Fourier transform to extract frequency domain information and combine both (time
and frequency) features. Lastly, the autoencoder uses the Euclidean distance between
the sliding window to detect changes in the dynamics. Still, probabilistic methods try
to estimate the probability of a window according to the prior probabilities. One of the
most used algorithms that follow this trend is the Online Bayesian Network (OBN)
[Adams and MacKay 2007].

Following the Kernel-based approach, the KernelCPD [Celisse et al. 2018]
[Arlot et al. 2019] is implemented with a Pruned Exact Linear Time (Pelt)
[Killick et al. 2012]. Pelt detects change points by minimizing a cost function over pos-
sible locations and the number of change points. To reduce the computational cost, Pelt
prunes the data set using the minimal distance between change points (a.k.a. minsize), a
cost function regularizer (i.e., a larger regularized value induces the model to find more
change points), and the grid of possible change points.

The SAXJS proposed in this work is a new approach to the Subspace modeling
strategy using SAX symbols [Lin et al. 2007]. SAX is a non-parametric and low-cost
operation seldom explored in literature in this area. Our major novelty is estimating
the probability distribution of SAX symbols’ transition. Moreover, we use the Jensen-
Shannon [Lin 1991] distance to estimate the distance between two consecutive slices
(windows) in a probability space to discriminate change points. By being a distance, the
Jensen-Shannon has an advantage compared to the dissimilarity measures used in RuLSIF.

2.2. Data segmentation in wearable sensors
Wearable data usually comes into a continuous data flow. Segmenting this data can help
distinguish valuable segments most suitable for the activity recognition [Ni et al. 2016]
and help to improve the model accuracy in this task [Alhammad and Al-Dossari 2021].

According to the literature, the sliding window is a typical segmentation time
series approach. These methods can be divided into fixed or dynamic windows. The
main challenge is identifying the optimal window size since the activities can have dif-
ferent duration times. In such case, the window must contain at least one activity cycle
[Ige and Noor 2022]. For example, [Fida et al. 2015] estimates the window size by using
information about the sensor data, its environment, and the association of both. Other ap-
proaches use event [Selles et al. 2005] or sensor signal information [Bulling et al. 2014].



We can use change point algorithms to segment time series, for example, Bayesian
change point detection [Booth and Smith 1982] and CUSUM [Zhang et al. 2010]. How-
ever, [Prajapati and Mahapatra 2009] CUSUM has difficulty dealing with sudden changes
since they are not of the same probability distribution. Multivariate Online Change de-
tection Algorithm (MOCA) [Patterson et al. 2016] detects changes in a multivariate data
stream. MOCA detects a change point candidate in an analyzed window, which maximizes
the heuristic function, and after this stage, MOCA verifies the hypothesis using a statistical
test.

As SAXJS is a non-parametric approach, it has the advantage of being adaptable to
different systems and changing environments. SAXJS is also more robust compared to the
fixed or dynamic window approach. Unlike MOCA, our focus is on univariate rather than
multivariate problems.

3. Problem formulation
Before we present our proposal, we will briefly define and formalize the problem. These
definitions will be used throughout the paper.
Definition 1 A time series is a series of data points indexed (or listed or represented
graphically) by some time representation. More commonly, a time series is a sequence of
successive points typically equally spaced in time; thus, it is a discrete-time data sequence.

Definition 2 Let S be a time series with st ∈ S in a particular timestamp t with size
n. We assume the existence of some probability distribution function P for st ∈ S.
Therefore, with this definition, the time series can be considered a stochastic process
[Traversaro et al. 2018]. Since P can be described by a set of parameters πt for a given
point st, we can formalize that in the existence of a change point in the times series
S = {s1, s2, s3, · · · , sn} we have

πs1 = πs2 = · · · = πs∗T
̸= πsT∗+1

= · · · = πsn ,

where we consider the change point between πT ∗ and πT ∗+1 because πT ∗ ̸= πT ∗+1. More
formally, ∃T where we have T ∗ ≤ T < T ∗ + 1. We define T ∗ as being the time of the
change point of S in the interval {s1, s2, s3, · · · , sn}.

Detecting a change point is a challenging task as it tries to identify a change in
the intrinsic characteristics of the data rather than an anomaly. Some of the approaches
consider finding outliers (anomalies) and, by doing so, investigate how these outliers
are related to the change points [Takeuchi and Yamanishi 2006]. The change points are
related to a change in the dynamics of the underlying model. So, change points have
characteristics of a new model and can not be considered an outlier. Assuming a model
change, detecting a change point can be seen as a change of dynamics (or phase transition)
detection.
Definition 3 Let A be an algorithm that finds a change point T in the interval
{s1, s2, s3, · · · , sn} for a time series S. We define that A-performance is given in λ-
real time as the interval needed to detect the change point T . So, if an algorithm is said
to be λ-real time we have it find the change point T in the interval [t− λ, t + λ], where
t − λ ≤ T < t + λ. The offline approach considers the whole time series S having a
λ value approximated to n, as for the online approach the λ can be a smaller number
compared to n.



4. SAXJS algorithm
In this section, we define our symbolization method, our probability distribution approach,
and the distance measure used in this work.

4.1. SAX transformation

Figure 2. SAX whole process using two sequential windows [Lin et al. 2007].

First, we discretize the time series window wt into a symbolic string sequence using
the Symbolic Aggregate Approximation (SAX) transformation [Lin et al. 2007]. The SAX
process with two sequential windows is shown in Figure 2.

The SAX algorithm considers that since a normalized time series has a Gaussian
Distribution [Larzen and Marx 1981], we can determine the breakpoints that divide the
time series into b equal-sizes areas under the Gaussian curve, being b a user-defined value.
The breakpoints are a sorted list of numbers B = {β1, ..., βα−1} such that the area under a
N (0, 1) Gaussian curve from βi to βi+1 =

1
b

are all equal-sized.

Therefore, all the time series elements are represented by letters according to
their value compared to the breakpoints. For example, if the value is under the smallest
breakpoint, it is mapped to the symbol “a”.

Let αi represent the ith element of the alphabet, for example, α1 = a and α3 = c.
Thus, considering the time series X ≡ {xt}nt=1 of size n and time t, the mapping from
a time series representation to a word Ĉ = {ĉ1, · · · , ĉn} is obtained by Ĉi = αj , if
βj−1 ≤ ci < βj.

4.2. Transition frequency matrix
After we had the SAX symbolization with b symbols, we constructed a matrix of the
transition frequency of each symbol. As it is shown in Figure 3 for a small window,
considering the SAX sequence Ĉ = {ĉ1, ..., ĉn}, we count the sequential connections from
one symbol αt to another symbol αt+1. The user-defined τ variable determines the jump
in the connections; for example, the symbol ct will connect with the symbol ct+τ . The
matrix is converted into a probability matrix by normalizing the values to sum 1. Then, the
probability matrix is converted to a 1-dimensional array by row order.



Figure 3. Example of how we construct the symbols’ transition frequency matrix
and the effects using different τ . The SAX sequences are the same use in
Figure 2.

4.3. Jensen-Shannon distance calculation

For each window wt and wt+N , we have the Pt and Pt+N probability distribution of the
occurrence of each connection between symbols. The Jensen-Shannon distance between
Pt and Pt+N is calculated.

We calculate the Jensen-Shannon distance measure in time stamp t between the
consecutive windows wt = (Xt−N , ..., Xt−1) and d(Xt, ..., Xt+N), where N is the user-
defined window size. Both consecutive windows move to time stamp t + 1, and the
Jensen-Shannon distance measure is calculated again.

4.4. Data smoothing and peak detection

After we calculate the Jensen-Shannon distance we apply the Savitzky–Golay filter. The
Savitzky–Golay filter is a digital filter that can be applied to time series in order to smooth
the series by fitting a low-degree polynomial with its adjacent data and using a linear
least squares method [Press and Teukolsky 1990]. The number of adjacency points G is a
parameter chosen by user definition and the polynomial degree is fixed at 3. In order to
detect the peaks we use the argrelextrema function in python [Virtanen et al. 2020],
which calculates the relative extrema of data considering a neighborhood. For the size of
the neighborhood, we set the value of N/2 for both sizes. Therefore, to evaluate if a point
t is a change point, our method needs 3N

2
+G points.

5. Experiments
In this section, we experimentally investigate the performance of the proposed and other
existing change point methods such as KernelCPD [Celisse et al. 2018] [Arlot et al. 2019],
RuLSIF [Liu et al. 2013] and TIRE [De Ryck et al. 2021]. The evaluation strategy is



detailed in Section 5.1 and the parameter settings are defined in Section 5.2. First, we
investigate the performance of the proposed algorithm on a synthetic data set in Section
5.3 and, then, on the HASC Challenge 2011 database [Kawaguchi et al. 2011b] in Section
5.4.

5.1. Evaluation Measure
Following the strategy used in [Liu et al. 2013], the Receiver Operating Character-
istic (ROC) curve and the area under the curve (AUC) are calculated using the
definition of true positive rate (TPR) and false positive rate (FPR) described in
[Kawahara and Sugiyama 2009] as

• True positive rate (TPR): ncc

nrc

• False positive rate (FPR):nal−ncc

nal

where ncc is the number of times the change point alarm was correct, nrc is the number of
all ground truth change points, and nal is the number of all change points alarms.

For the synthetic data set, a detection alarm at time t is considered correct if a
true change point exists at step t∗ such that [t ∗ −I, t ∗ +I], being I equal to 10 as it
is used in [Liu et al. 2013]. In order to avoid duplication, the kth alarm at the step tk if
tk − tk−1 < 2I is removed. The HASC data set was tested with I = 10 and with I = 100.

In addition to the ROC curve and AUC value, we also evaluate the detection delay,
which is the measure of how close each predicted change point is to the actual change
point by the following Equation 1 based on [Aminikhanghahi et al. 2018]

delay =

∑ncc

i=1 Predicted(CP )i − Actual(CP )i
ncc

. (1)

5.2. Parameter settings
For SAXJS, we report the results for two different parameter settings. For both evaluations,
synthetic data sets and HASC Challenge 2011, the SAX number of symbols b varies one
by one from 3 to 9, the τ value varies one by one from 2 to 15, and the threshold varies
from 0.15 to 0.55 by 0.01. The window size N and the Savitzky–Golay window G were
different in the two-parameter settings, for the synthetic data set N varies from 50 to 100
by ten, and G varies from 11 to 41 by 10. For the HASC Challenge, N varies from 300
to 800 by 100 and G = [81, 101, 201]. The difference in N was due to the sizes of both
databases and change points distance, as the maximum distance between each change point
in the synthetic data sets is 100.

The first baseline method we used was the KernelCPD. For both data sets, we
tested the three main kernels: linear, cosine, and Gaussian, and the jump varied from 1 to
10 by 1. For the synthetic data set, the minsize varied from 10 to 50 by 10, and for HASC,
it varied from 50 to 150 by 10. Second, we considered the RuLSIF method. Because
the validation data set in [Liu et al. 2013] largely overlaps with ours, we used the same
parameter settings, except for the window size in the HASC evaluation that we consider a
variation from 300 to 800 by 100 due to the bigger size of the data set. The data smoothing
applied and the set of its parameters was the same as SAXJS, which makes the method
online. The threshold varies from 0.1 to 2 by 0.1. Next, due to significant data overlap, we
use TIRE with the same configurations as [De Ryck et al. 2021].



5.3. Synthetic data sets
First, we evaluate the algorithm using three synthetic data sets with manually inserted
change points suggested in [Liu et al. 2013].

• Dataset 1 (Jumping mean): The following 1-dimensional model borrowed from
[Yamanishi and Takeuchi 2002] is used to generate 5000 samples (i.e., t = 1, . . . ,
5000):

y(t) = 0.6y(t− 1)− 0, 5y(t− 2) + ϵt

where ϵt is a Gaussian noise with mean µ and standard deviation 1.5. The initial
values are set as y(1) = y(2) = 0, and a change point is inserted every 100-time
steps by changing µ at time t according to

µN =

{
0, N = 1,

µN−1 +
N
16
, N = {2, ..., 49},

where N is a natural number such that 100(N − 1) + 1 <= t <= 100N .
• Dataset 2 (Scaling variance): The same model as Dataset 1 is used, but a change

point is inserted every 100 steps by changing the standard deviation α at time t as

α =

{
1, N = {1, 3, ..., 49}
ln(ϵ+ N

4
), N = {2, 4, ..., 48}

• Dataset 3 (Changing Frequency): The model used to generate the series follows
the equation y(t) = sin(ωx) + ϵt, where ϵt Gaussian noise with standard deviation
0.8. A change point is inserted at every 100 points by changing ω at time t as:

ω =

{
1, N = 1

ωN−1ln(ϵ+
N
2
), N = {2, ..., 49}

Table 1. AUC values for synthetic data sets

SAXJS KernelCPD RulSIF TIRE
Jumping Mean 0.908 0.830 0.805 0.870
Scaling variance 0.952 0.307 0.739 0.868
Changing Frequency 0.566 0.407 0.299 0.583

In Figures 4a, 4b, and 4c, we plotted samples of the synthetic data sets (blue
curves), true change points (black vertical lines), and the change point score (red curves)
obtained by SAXJS method. Analyzing the plots, we can see that the algorithm captures
the mean and variance changes, while there are some false positives for the frequency
dataset, as it is shown in Figure 4c.

In Table 1, we can see the AUC results for SAXJS and other change point methods.
The results show that SAXJS has a better performance in the variance and jumping mean
dataset and a fair performance detecting frequency changes, which achieves second place
under our evaluation, slightly behind the TIRE method. Another advantage of our algorithm
is the online approach that does not require to have the whole series information such as
KernelCPD and TIRE. The RulSIF implementation used in our work is also an online
approach.



(a) Jumping mean (b) Scaling variance

(c) Changing Frequency (d) person101

Figure 4. Illustrative time-series samples (upper) and the change point score
obtained by our proposed method (lower). The true change-points are
marked by black vertical lines.

Table 2. AUC values for HASC Challenge using I = 10.

SAXJS KernelCPD RulSIF TIRE
person101 0.884 0.664 0.602 0.074
person102 0.746 0.573 0.175 0.008
person103 0.812 0.710 0.830 0.536
person104 0.817 0.605 0.430 0.010
person105 0.909 0.544 0.574 0.054
Mean 0.834 0.619 0.522 0.136

5.4. HASC Challenge 2011

Next, we evaluate the performance of SAXJS in comparison to other existing change point
methods cited in [Liu et al. 2013] using one wearable sensors database: HASC (Human
Activity Sensing Consortium) Challenge 2011 [Kawaguchi et al. 2011a].

HASC Challenge is a collaborative project to collect a large-scale human activity
database. The project is based on collecting data from accelerometer wearable sensor data
of the following activities: ”stay”, ”walk”, ”jogging”, ”skip”, ”stair-up” and ”stair-down”
[Kawaguchi et al. 2011a]. We tested the algorithm using the first 10 data sets and we take
the l2 − norm of the 3-dimensional accelerometer information following the example in
[Liu et al. 2013].

In Figure 4d, we plotted examples of HASC original time series (blue curve),
true change points (vertical black lines), and the change point score obtained by SAXJS
(red curves). It shows that the algorithm clearly captures all changing behaviors but has
difficulty capturing the frequency changes between 5000 to 6000 and 7000 to 8000, which
is difficult to visualize even for human eyes.

Observing the results, it is possible to conclude that SAXJS has competitive results
although it is not better than KernelCPD in most cases. Table 2 shows the AUC results



Table 3. AUC values for HASC Challenge using I = 100.

SAXJS KernelCPD RulSIF TIRE
person101 0.949 0.978 0.852 0.863
person102 0.939 0.954 0.939 0.848
person103 0.946 0.997 0.905 0.917
person104 0.952 0.967 0.875 0.917
person105 0.958 0.929 0.863 0.917
Mean 0.949 0.965 0.887 0.892

Table 4. Delay time comparison for HASC Challenge of each method with best
parameters setting according to AUC.

SAXJS KernelCPD RulSIF TIRE
person101 18.27 43.25 15.12 38.56
person102 18.90 16.82 32.40 33.12
person103 21.09 12.42 12.20 22.60
person104 15.50 47.75 14.89 31.80
person105 8.55 51.58 9.56 33.12
Mean 16.46 34.36 16.83 31.84

for SAXJS and other change point methods considering I = 100. But considering a more
restrictive interval such as I = 10 showed in Table 3, the SAXJS has better results than
other methods due to its low delay to find the change point as shown in the delay time
mean in Table 4.

6. Conclusion
This paper proposes a novel online change point method that compares the distance between
the probability of SAX symbol transitions of two sliding windows. To improve the results,
we smoothed the distance results using a Savitzky–Golay filter. First, we evaluate synthetic
data sets. Our algorithm showed the best results when we evaluated mean and variance
changes, although it did not capture the frequency with the same accuracy. The results
for HASC Challenge 2011 were also satisfactory and competitive. Compared to other
methods, our results were best when we used a more restrictive delay, which is a neat
characteristic. We will investigate the model’s sensitivity to different hyper-parameters and
add a complexity analysis comparison for future work. Also, we will extend our analysis
to more data sets.
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