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Abstract. Smart urban mobility emerged from the urban citizen’s need for a
fast urbanization environment, using personal devices and city infrastructure
integration, data generation, and mobility services provided on congested and
possibly dangerous urban roads. However, traditional routing services need to
consider users’ experience, comfort and health because they usually choose only
routes with the shortest paths or less traffic. This work proposes a route selection
method based on a personalized preference for different user profiles, and
essential geolocated factors from data collection, including crime occurrences
and air quality factors. The suggestion method allows safer, healthier, and
more pleasant paths for drivers and analytic data for city planners compared to
single-criteria route selection approaches.

1. Introduction
The extensive urbanization process and consumer demand in many world scenarios cause
a delay in urban mobility evolution and represent significant global challenges. Passenger
and goods transportation services imply fleet growth, causing traffic congestion and poor
air quality in city areas. However, urban mobility flow improvement relies on economic-
ecological sustainability allied to drivers’ satisfaction attainment [Savithramma et al. 2022].

A personalized experience-aware route selection scheme must consider multiple
factors in smart city transportation. For instance, technology, policy, community, and
environment sectors must be consulted and attended to improve city transportation and
achieve the smart transportation systems status [Legaspi et al. 2020]. Through information
technologies implementation, the exchange and processing of sectors’ data contribute to
mobility solutions addressing all factors that affect the quality of life and business when
implementing city mechanisms.

The modernization and popularity of connected devices with usage in different
social areas bring ubiquity to technology. Many web-connected things interact among them
and users, resulting in extensive data acquisition for a route selection scheme. In addition,
the Internet of Things (IoT) represents systems and physical objects interconnected to the
Internet for data exchange between heterogeneous devices without human intervention
[Nguyen et al. 2022]. For instance, IoT applied to urban mobility can present smart



elements, such as traffic lights, parking lots, and flow management, which provide a vast
amount of data for a personalized experience-aware route selection scheme.

In this context, Geographic Information Systems (GIS) evolved with technological
advances, presenting a new representation of spatial data beyond typical maps. Vehicular
navigation systems apply geo-spatial and geo-referred data, which offer a dense data
quantity and variety [Bellini et al. 2022]. GIS provides assistance to urban drivers, but it
the lack of criminality and accident data that may lead to a potentially dangerous path.

Moreover, air pollution constitutes a more significant threat to public health, causing
one in eight deaths worldwide, as 92% of the world’s population lives where pollution
exceeds safe limits [Brito et al. 2022]. Criminality also affects the urban reality, risking
social stability and economic progress, which results in the urgent need to prevent it
[Han et al. 2020]. In this context, government administration worldwide with open data
policies provides access to criminality and road accident occurrence for research purposes,
developing solutions for minimizing events [Liu et al. 2019]. Therefore, custom navigation
solutions can help different drivers’ preferences and needs, offering securer, faster, or
healthier urban trips.

This paper applies the Analytic Hierarchy Process (AHP) as a decision support
method for route alternative ranking and considers four personalized drivers’ profile
preferences, named as, Worker, Green, Safe, and Tourist, providing adaptive weights
for each features. For instance, relative weights attributed to health, security, comfort,
and well-being affect alternative route ranking according to a user profile. A London
urban open dataset provides an Origin-Destination (OD) pair with route alternatives and
normalized factors weights [Rodrigues et al. 2021]. We present a comparison between
different user profile weights and “greedy” options, which consider a single criterion as
the higher weight for route selection, proving the efficiency of customized preference.
The evaluation shows superior statistical performance for our personalized profile method
compared to greedy profiles for route selection considering all values.

This paper’s organization follows: Section 2 summarizes the main related works to
this paper’s scope. Section 3 presents the scenario overview of the proposed methodology
with decision support routing ranking, adding pollution criterion weight for selection
through implementation. Section 4 presents the evaluation method for the personalized
profiles ranking after implementation. Finally, Section 5 presents the paper’s conclusions
and future works.

2. Related Works
This section presents the main state-of-art works which approach the multi-criteria method,
navigation systems, and trip influencer factors. For urban-logistic routing recommendation,
[Wu et al. 2022] proposed a vehicle-route optimization approach using contextual traffic
data and multi-criteria decision analysis. The author built the contextual data from the
urban transportation database and Google Maps routing API metadata. The work presented
an urban route selection for deliverymen used in urban logistics, needing to be more
beneficial for citizen use. Besides, the criteria for selection are limited to average speed,
congestion degree, distance, and worker personal interest.

[Sarraf and McGuire 2020] added an analytic choice method for the developed
safer route planning application, comparing different multi-criteria methods outcomes for



the same objective. Regardless, the proposed system analyzed both historical and live
monitoring, considering vehicle accidents in the analysis area, offering safer routes and
urban infrastructure reports for future enhancement.

[Kaivonen and Ngai 2020] proposed real-time monitoring with data gathering on
pollution through urban public transportation networks, covering the whole city area,
addressing air quality issues as urban environment criteria. The authors evaluated data
collection on mobile sensors compared to stationary air sensors, choosing an efficient way
to map pollution in the urban environment. Although, the solution does not return a less
polluted route alternative for user selection.

[Zhang et al. 2022] proposed a routing method for Vehicular Ad Hoc Network
based on the relative speed, the angle between node and neighbors, the connection angle
between destination node and its neighbors, and the node density of neighbors, as criteria
and combined all these criteria into a node location algorithm. Their proposal is an efficient
routing approach for VANETs but did not consider contextual data for humanized mobility
and only improves communication metrics between devices

[Hsieh and Lin 2022] proposed a route recommendation method for taxi drivers
that considers real-time predictions and traffic network information, aiming for higher
profit. The criteria for this approach rely on pick-up probability, drop-off distribution, road
network, distance, and time factors. The authors did not consider health, comfort, and risk
factors, only the usual navigation criteria compared to standard methods.

[Solé et al. 2022] proposed a method for feature measurement that affects driver
security and pleasure on urban trips. This work evaluated different route selection methods
with single or multi-criteria and some pre-defined profiles. The authors intended the best
route identification from a dataset about the City of London containing weights of different
trip influencing factors, but did not consider air pollution as a criterion.

The literature review indicates the integration need for other factors in vehicle
trip suggestion, using emerging technology to enhance the data acquisition step for route
selection from each driver’s necessities. Table 1 shows the relation between previous works
and this paper on different issues, such as the multi-criteria approach, various criteria in
the selection, including air pollution, and providing the best route ranking based on defined
user profiles preference. This paper presents contributions on each element integration,
contrasting state-of-art approaches.

Table 1. Features addressed in related works
Work Multi-criteria Air pollution Comfort and Routes User

Approach factor security factors ranking Profiles
[Wu et al. 2022] ✓ ✗ ✗ ✓ ✗

[Sarraf and McGuire 2020] ✓ ✗ ✓ ✓ ✗

[Kaivonen and Ngai 2020] ✗ ✓ ✗ ✗ ✗

[Zhang et al. 2022] ✓ ✗ ✗ ✗ ✗

[Hsieh and Lin 2022] ✓ ✗ ✗ ✓ ✗

[Solé et al. 2022] ✓ ✗ ✓ ✓ ✓

Proposed Methodology ✓ ✓ ✓ ✓ ✓



3. Multi-criteria Route Selection
This section describes how our method works, combining the multi-criteria decision-
making method and the urban routes’ contextual data. We also define the necessary steps
for validating the AHP criteria preferences and introduce the planned user profiles. At
least, we detail the method application specifying the implemented algorithm, highlighting
its efficiency.

3.1. Scenario Overview
Figure 1 presents the overview for a personalized experience-aware multi-criteria route
selection scheme. The criteria definition step processes all contextual route-related data.
The selection method step defines the AHP method criteria and alternatives validation with
user profile weights description. Finally, the method evaluation steps evaluate the method
application by comparing the custom profiles with greedy profiles.

Criteria Definition Selection Method

Method Evaluation

User profiles
Alternative

RankAHP method
Dataset

Acquisition
Data

NormalizationData
Characterization

Profile comparison

Figure 1. Methodology overview for route selection

The data acquisition phase in the criteria definition step consists in retrieving all
contextual and physical data for the dataset build. The authors [Rodrigues et al. 2021]
collected open data from websites and geographic tools to complete the dataset. We added
the pollution factor through the local air quality open database [Kelly and Kelly 2009]. In
the Data characterization phase, we insert all contextual and physical feature values to
the route alternatives, updating The London routes dataset with the pollution level. The
updated dataset contains eight criteria elements, described as follows:

• Crime: This criterion is related to the criminality level considering crime event
history in determined areas. An open data United Kingdom police repository
[Bibri and Krogstie 2020] containing all geolocated crime records are analyzed,
and the average crime severity assigns the crime criterion value.

• Accidents: Defines a danger level to vehicle accidents near a determined route.
The United Kingdom government’s open data repository [Bibri and Krogstie 2020]
provides geolocated accident records. The accident severity degree and the fatalities
that occurred define the criterion value.



• Nature: Natural landscapes and “green” areas affect trip aesthetics. Parks, gardens,
marinas, golf fields, nature reserves, lawns, meadows, and water define a pleasant
trip and decrease driver stress. The Overpass API provides the natural occurrence
through OpenStreetMap API [OpenStreetMap 2017], allowing the criterion value
through the intersected area between nature polygons.

• Attractions: Defines the tourist attractions near the route traces. Overpass API
[OpenStreetMap 2017] provides geolocated Points-Of-Interest (POI) data. The
attraction level indicates the POIs number in the region.

• Duration: Defines a traditional parameter for a vehicular navigation system
affecting driver trip perception. Long trips may be a stressful experience and
widely avoided. HERE API [HERE 2023] provides the estimated duration for each
route for alternative route tuple adding.

• Traffic: Represents the most stress-related trip factor, implying in-route travel time.
HERE API [HERE 2023] provides the route vehicle density level. The traffic level
is the comparison between duration with and without vehicle density.

• Length: Navigation system elementary factor provided by HERE Maps API
[HERE 2023], directly impacting the internal combustion engine vehicle consumption
and travel financial cost.

• Pollution: We added the pollution factor for the dataset with the London Air
Quality Open Data [Kelly and Kelly 2009]. The raw values the NO2 concentration
level near the route, with a 300m sensor tolerance, which affects users’ health.

The data normalization phase standardizes each criteria raw value from 0 to 1
for multi-criteria application on alternative selections. The Equation 1 calculates the
normalized value for each criterion raw value (Xi) in the dataset, with Xmax representing
the maximum value and Xmin the minimum value, which the lower occurrence indicates a
better index for selection, such as crime and accidents occurrence, estimate duration, trip
length, and pollution level. The Equation 2 normalizes the criterion raw value inversely for
some criteria for which the higher occurrence indicates a better index for selection, such as
natural areas, tourist attractions, and traffic ratio.

X̂i =
Xmax −Xi

Xmax −Xmin

(1)

X̂i =
Xi −Xmin

Xmax −Xmin

(2)

In the user profile phase of the selection method step, we define the pairwise
preference comparison between features for the four profiles (Worker, Green, Safe,
and Tourist). Afterward, the AHP method phase guarantees the matrix consistency for
preference if it needs any correction. The alternative rank phase defines the best route
selection as the product between the preference and alternative weights.

Finally, the method evaluation step analyses the best result for all routes for the
user and greedy profiles under a profile comparison, corresponding to selection preference
with higher priority on only one feature. These comparison objectives validate the user
preference as a practical way to make a route choice.



3.2. Selection Method

For the correct route selection among alternatives with different contextual information, we
need to choose a decision-making method that is simple and robust, aiming at scalability for
any urban environment application. The AHP method for route selection offers robustness,
considering dense criteria and weight with simple mathematical calculations for selection.
Figure 2 shows the route selection objective hierarchy, complementing traditional car
navigation system factors with pleasant and health factors. As initially arranged in the
dataset, alternative paths for OD pair sets range from two to seven selection paths.

Route selection

Duration Length Traffic Criminality Accidents Nature Attractions Air Pollution

Alternative 1 Alternative 2 ... Alternative n

Figure 2. Hierarchy model for route selection representation

The built hierarchy between elements and the weight definition to each alternative
route tuple defines the path preference order. [Saaty 1990] describes the correct AHP use
with decision matrix determination for every alternative relating to a criterion, defining the
criteria normalized indexes. Nonetheless, the collected dataset for analysis normalizes its
raw value indexes for each criterion, allowing the full use of the AHP method.

Saaty’s scale [Saaty 1990] defines the element importance degree to another and
allows the comparison matrix built, as shown in Equation 3. M represent the decision
matrix with all fn,n pairwise comparison. The matrix objectives are problem complexity
level reduction and driver’s profile preference definition, facilitating method application
due to elevated criteria quantity in various problems.

In the pairwise comparison, the AHP method uses a verbal judgments scale ranging
from “equal” to “extreme” (equal relevance, great relevance, greater relevance, huge
relevance, and extreme relevance), referring to a criterion comparison importance to
another for the problem solution reach. Numerical judgments represent every verbal
judgment, being “equal” equivalent to 1 and “extreme” to 9 (1, 3, 5, 7, and 9) with the
intermediate values (2, 4, 6, and 8).

M = (Fi,j)n×n =


f1,1 f1,2 . . . f1,n
f2,1 f2,2 . . . f2,n

...
... . . . ...

fn,1 fn,2 . . . fn,n

 (3)

A consistency validation for the matrix is an AHP method step for the correct



matrix built. Equation 4 shows consistency ratio (CR) and consistency index (CI) fraction
to obtain random index (RI), calculating decision-makers’ judgments consistency.

CR =
CI

RI
(4)

The maximum matrix eigenvalue (λmax) must be equal to matrix dimension n for
matrix consistency maintenance. The n− 1 value is used for logically deduced pairwise
comparison. Therefore, the fraction between these elements obtains the Consistency Index
(CI), shown in Equation 5.

CI =
λmax − n

n− 1
(5)

The maximum eigenvalue indicates the judgment consistency measure, calculated
through the judgment matrix (A) and the priority column vector (w) product, which splits
the vector mean, as seen in Equation 6.

λmax = vector mean
Aw

w
(6)

The author also defines the random index as a constant value applied to defined
decision matrices for the hierarchy analysis method. This paper uses the 1,41 random
index value for using an eight elements matrix [Saaty 1990]. The formulas calculation
obtained valid consistency index for all profiles since it is less than 10%.

We define the four user preferences for the method application: Worker, Green,
Safe, and Tourist. In this way, we define four profile matrices to achieve the relative
weights for further method application, as shown in Table 2. The result weights for Higher
criteria weights indicate a higher preference, while smaller criteria indicate the opposite.
The alternative evaluation process will use criteria weights for selection.

Table 2. Trip feature weights for different profiles
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Worker 0.046 0.063 0.021 0.021 0.260 0.227 0.328 0.034
Green 0.085 0.040 0.280 0.087 0.031 0.055 0.059 0.362
Safe 0.369 0.244 0.024 0.023 0.073 0.129 0.047 0.092
Tourist 0.164 0.101 0.117 0.394 0.058 0.018 0.011 0.044

For instance, the Worker profile has a higher weight in the Length feature, followed
by Duration and Traffic, aiming for faster trips. The Green profile feature rank is Pollution
and Nature for a bucolic and healthier trip. Safe profile seeks a securer trip, prioritizing
Crime occurrence and Accidents. At least, the Tourist profile is for travelers and visitors,
with higher weights on the Attraction feature. For the research purpose, we consider only
four profiles for demonstration; the method can work with any preference as long as the
matrix is valid for the AHP method.



3.3. Method application

In this section, we execute the method application through the AHP consistency measure
and the ranking acquire. Furthermore, we use all the acquired results to calculate the
average best option for each user profile.

Algorithm 1 computes the method application for matrix consistency calculation
and the route evaluation for each OD pairs in order. The interval line 1 - line 4
declares the consistency index, the consistency ratio, and the F value for matrix weights .
In lines 5 to 14, we applied the AHP method for attributing the preference weights.
In lines 15 to 17, we define the variables for alternative evaluation. At least, in
lines 18 to 20, we calculate the alternative route performance by multiplying every
preference tuple value with each normalized feature value, returning the result array for
further comparison, as seen in line 21.

Algorithm 1 Decision matrix consistency and route evaluation
Require: M ,C

1: incRat← 1.41
2: consistencyRatio← 0.10
3: F ← shape(M, 1)
4: weights← a list of zeros in the range of F
5: for i← 1 to length(F ) do
6: weights[i]← reduce(F (x, y) = x.y,M [i, :](1/F ))
7: end for
8: weights← weights/sum of all elements in weights
9: λMax ← mean(sum(M.weights)/weights)

10: consInd← (λMax − F )/(F − 1)
11: RC ← consInd/incRat
12: if RC > consistencyRatio then
13: return ∅
14: end if
15: routesParams← C[columns[parameters]]
16: resultsArray ← ∅
17: N ← length(routesParams)
18: for i← 1 to N do
19: resultsArray ← sum(multiply(routesParams[i], weights))
20: end for
21: return resultsArray

For computational method implementation and flexible route selection, many
programming tools achieve geolocated data filtering and route alternative order definition
goals. The method framework aims at data analysis of factors, including pollution, and
inserting each alternative tuple. Each criteria-defined value distinguishes the best route
and the alternative order for any OD pair.

The AHP method application, jointly with the route evaluation algorithm, as shown
in the Algorithm 1, presents a time complexity, in the worst case, as O(n*m), where m
is the number of features to be evaluated in the profile, and n represents the number of



alternative routes within an OD pair. We consider the presented complexity efficient due to
its asymptotic value being limited by a polynomial.

4. Evaluation
In this section, we describe the dataset and introduce the mechanism of pollution level
attribution for paths near air quality sensors. Furthermore, we define the statistical tool for
profile comparison to establish our personalized approach efficiency.

4.1. Methodology
The London routes were designed for selection methods evaluation, containing different
factors besides the standard time, length, and traffic. The criminality, accidents, nature,
and attractions metrics consideration imply more pleasant and safe trips through the city.
To consider the drivers’ health and well-being, we introduce the air quality attribution to
routes through sensor readings and add the pollution value to the dataset.

In this way, we consider the London public pollution data, which allows air quality
level attribution for each alternative route with collected readings timestamp in the same
dataset date. London Air Quality Network (LAQN) API provides pollution sensor readings,
with sensors installed in and around London. Integrated sensors network has a real-time
data collection of main pollution-related gaseous substances: ozone (O3), nitrogen dioxide
(NO2), and inhalable particles with a diameter smaller than 10 and 2,5 micrometers. The
API request retrieves the 2020 readings information, with a significant presence of NO2.
Pollution feature considers NO2 level, with normalization for route selection method
application.

We assume a set of routes in the dataset as a latitude-longitude pair path set
R = {1, ..., n}, R ∈ Rn×2. The methodology considers C = {R|R ∈ Rn×2} a path set
with standard departure and arrival OD pair, and then it is considered Ri ∈ Ck e Rj ∈ Ck

if and only if for the same arrival and destination paths. With S = {1, ...,m}, S ∈ Rm×2

the available London sensor set for determined pollution agent, so for each point ri ∈ R
the pollution record for sensors s ∈ S, as shown in Algorithm 2.

The London Sensor Network API used for pollution factor attribution does not
attend routes far from sensors tolerance in the built dataset. Similarly, other routes can
contain readings from more than one sensor and consider an incoherent pollution level.
For such cases, the proposed method excludes invalid routes for correct attribution and
considers a tolerance t = 300 m.

Algorithm 2 assigns pollution levels to alternative route points for the given OD
pair. The pollution record to each latitude-longitude pair attribute the pollution value,
calculated from pollution(sj). After declaring C as the path set and S as the available
sensor set, line 1 defines an empty set for pollution associated with the determined path,
filled with the pollution value from the nearest sensor. lines 2 and l3 receive path
length and starts sensor distance as 0. In lines 4 to 6, the algorithm starts the for-loop
iterating routePollution to every routesPollution (path alternatives). In lines 7 to
10, a second for-loop inside the first one is initiated, iterating associated points near the
path. lines 11 to 15 begin the third loop iterating existing pollution sensor data for
pointPollution. All loops finish attributing the values in lines 16 to 21. Finally, in
line 22, the algorithm returns the pollution value for each route alternative in the given



set ID. The algorithm returns 142 OD pairs with pollution-normalized values attributed,
allowing the correct method application.

Algorithm 2 Routes pollution attribution and exclusion
Require: C ̸= ∅, S ̸= ∅, t = 300

1: routesPollution = ∅
2: N ← length(C)
3: distance← 0
4: for k ← 1 to N do
5: routePollution = ∅
6: minorDistanceRoute←∞
7: M ← length(Ck)
8: for i← 1 to M do
9: P ← length(S)

10: pointPollution← 0
11: minorDistancePoint←∞
12: for j ← 1 to P do
13: distance← haversine(rj, sj)
14: if distance < minorDistancePoint then
15: minorDistancePoint← distance
16: pointPollution← pollution(sj)
17: end if
18: end for
19: routePollution← pointPollution
20: if minorDistancePoint < minorDistanceRoute then
21: minorDistanceRoute← minorDistancePoint
22: end if
23: end for
24: if minorDistanceRoute > t then
25: return ∅
26: end if
27: routesPollution← routePollution
28: end for
29: return routesPollution

The Haversine function, shown in Equation 7 and line 13, calculates the distance
between a tracepoint and a sensor considering the earth curvature. State-of-art solutions use
geographic coordinates handling with this equation for the appropriate distance obtaining,
represented by OD pair.

D = 2arcsin

[√
sin2(

r1 − s1
2

) + cos(r1)cos(s1)sin2(
r2 − s2

2
)

]
(7)

We compare the results from the four user profiles proposed to each greedy profile.
The eight greedy profiles choose the alternative tuple with maximum value for only one



criterion of all, as a common method in commercial navigation systems considers only
Length, Traffic, and Duration when choosing a car trip. We measure the relation between
every profile and the maximum value for a route choice with a mathematical method.

We use the Percent Deviation From a Known Standard (PDFKS) [Solé et al. 2022]
for comparing the profiles to greedy profiles. The Equation 8 calculates the PDFKS value,
where p[f ] is the average value from feature f for each profile p, and std[f ] is the best
average value for feature f among all profiles results from the dataset values.

Mpf =
p[f ]− std[f ]

std[f ]
× 100% (8)

4.2. Results
Figure 3 shows the PDFKS matrix, where the M matrix rows represent the selection profiles
(p), i.e., four user profiles and eight greedy profiles, and the columns represent the trip
features (f ) for evaluation. The PDFKS metric value represents the best average value for
each profile to the known standard (std[f ]). For example, the first Safe profile cell shows a
3.6% increase to the best average value for crime, validating the Safe profile route selection
with less crime than the other profiles after the onlyCrimes profile. Also, Safe presented a
39.5% deviation from the best average for accident feature, representing its second priority
for route choice. This value does not represent the more significant performance for the
accident due to the higher priority for crime feature and the data arrangement. In a feature
less related to the main priority, the Safe profile scored a -46% deviation for the attraction
feature, which its weight has less impact on selection.

In contrast, Nature, Attraction, and Traffic ratio have negative percentage PDFKS
values in the matrix because the method searches for the higher nature and attraction
occurrence and a higher traffic ratio that indicates a less congested road, implying on a
raw value less than the known standard, resulting negative percentage. A lower raw value
indicates the best route selection for all other features containing positive PDFKS values;
the better selection method is with features closest to 0%.

We apply the absolute sum method for all 12 profiles, validating the user profiles,
summing all elements without considering negative values. The lowest absolute sum of
PDFKS for each profile represents the better selection method, considering all routes, as
shown in Figure 4. We can note that greedy preferences have the known standard value
(0%), indicating the best routes for a single feature, but tend to deviate more from all other
features. Each proposed profile (Worker, Green, Safe, and Tourist) correlate to more than
one feature, where we differentiate with colors the relationships and compare the resulting
performance for all cases.

The Green profile has the closest value for the pollution standard and outranks
the onlyPollution in other features and has the second best deviation from nature feature
(-14.2%), resulting in a greener experience route. The Safe profiles outrank onlyCrimes
(3.6%) and onlyTraffic (-1.7%), when the Crime feature is its higher priority, and higher
traffic indicates slower paths and more dangerous routes, with the best deviation from
crime. The worker profile overcomes its higher weighted features: onlyLength (6.4%),
onlyDuration (1.9%), and onlyTraffic (-1.8%), surpassing the standard navigation systems
in selection. The Tourist profile has better route selection than onlyAttraction, deviating
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Figure 3. Methodology overview for route selection

from the standard attraction value with the best performance (-10.3%) and from nature
feature (-12,6), with better performance for tourist users.

We note that all greedy profiles have the best performance for its features priorities
but have a higher deviation in other features. The onlyAccidents have the lower absolute
sum representing the best profile for selection in the evaluated environment. Otherwise,
we note that the existence of an AHP profile with balanced weights for each criterion
obtains better performance than single-criterion profiles, explaining the onlyAccidents
higher performance. In other words, for diverse environments datasets, a specific profile
with distributed weights, a priority for a few features, can outrank a greedy option.

In summary, our proposed user profile obtained a higher performance than its greedy
opponents or was close to surpassing them. Tourist profile obtained the second (116,9%)
best absolute sum and outranked the onlyAttractions greedy opponent by 13,4%, using the
difference percentage. The Worker is the third (130,9%) best performance compared to
greedy options, outranking them by 23,53% in the average difference percentage. Also,
Safe and Green profiles surpassed their greedy opponents by 23,8% and 46,4%, respectively.
This result indicates excellent usability for our method for considering all contextual data
for selection than prioritizing only one criterion.

5. Conclusion
We propose a route selection method using multi-criteria decision-making and personalized
routes for urban trip path choice considering all eight features. By comparing the greedy
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profile for each feature, we observe a result closest to the best value from all features’ best
average value. This approach shows that traditional navigation systems can offer faster or
healthier routes but can lead to dangerous or unpleasant paths. With the pollution factor
addition, our method can prevent and alert the drivers and authorities to the polluted air
threats, raising the quality of life. Furthermore, we developed the approach with simple
mathematical methods for easy applicability in navigation systems.

In future works, a routing system can be built integrating various features and
a multi-modal approach for intelligent public transportation. The system can consider
IoT-enable feature prediction for real-time route selection, integrating user devices into a
more extensive urban computing solution.
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