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29075-910 – Vitória – ES – Brazil

2Instituto Federal do Espı́rito Santo (IFES), 29173-087 – Serra – ES – Brazil

3Universidade Federal da Fronteira Sul (UFFS), 89814-470 – Chapecó – SC – Brazil
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Abstract. In an optical network, given a pair of source and destination nodes,
some algorithm can be used to find shortest pairs of edge-disjoint paths to be
used as working and backup paths. The Suurballe and Tarjan’s algorithm is a
solution, but it can found different shortest pairs of pathways interconnecting
the same pair of source and destination nodes. In this paper, two versions of
the Suurballe and Tarjan’s algorithm is proposed to deal with that diversity.
For each node pair of a given network topology, these versions find the most
balanced shortest pair of working and backup paths and the least balanced
one. Both algorithms are tested and analyzed in a set of 40 2-edge-connected
topologies of real-world optical telecommunication networks. A difference of up
to 29% was found between the two strategies.

1. Introduction
In telecommunication networks, even a single node or link failure may significantly im-
pair the data traffic. As a result, it causes communication problems in several pairs of
source and destination nodes. Therefore, the topological design must guarantee that the
network survives, i.e., that it remains connected in failure scenarios.

For instance, a necessary and sufficient condition for a network to survive any
single link failure is that each pair of source and destination nodes is interconnected by
at least two paths that do not share links. Noticing, a network that satisfies this condition
is called 2-edge-connected. Analogously, 2-node-connected networks survive any single
node failure since each pair of source and destination nodes is interconnected by at least
two paths that do not share nodes [Whitney 1932].

Thus, it is possible to define two edge-disjoint or node-disjoint working and
backup paths for each pair of source and destination nodes of a survivable network. Nev-
ertheless, these paths can be used in different ways by different protection schemes. Usu-
ally, the working path carries the traffic load whereas the backup path carries the traffic
in the case of a failure [Ramaswami et al. 2009]. However, in some protection schemes,
both pathways are used simultaneously.

In protection schemes, working and backup paths must be defined previously to
ensure instant recovery of any single link or node failure. The most straightforward pro-
tection scheme uses a shortest path as working path. Then, a second shortest path that
does not share any node or link with the first one is sought to be the backup path.



The issue of this approach is that, in some network topologies, when fixing the
shortest path as the working path, no disjoint path can be found for the backup path,
even when they are 2-node-connected. Figure 1 presents a 2-connected network that
exemplifies this situation, where for a pair of source node S and destination node D, the
shortest path is found, but a disjoint backup path will not be possible without sharing a
link. Techniques where the backup path is found only in case of failure also exist, but
they fit into restoration techniques rather than protection.

Figure 1. A 2-node-connected network for which, if the shortest path between
nodes S and D (the 3-hop path in dashed line) is chosen as working path, there
is no disjoint path to be used when failures occur.

Therefore, to guarantee that two disjoint paths can be found, it is used an algorithm
to find the shortest pair of node or link-disjoint paths for each pair of nodes. For instance,
the Suurballe and Tarjan’s (ST ) algorithm [Suurballe and Tarjan 1984] can be used for
that purpose. Usually, in that approach, the shortest path of the pair is used as working
path and the other one as the backup path.

It happens that, in some network topologies, there may exist different shortest
pairs of paths interconnecting the same pair of source and destination nodes. For instance,
Figure 2 illustrates this case for the pair of source node S and destination node D of
“Arnes” network. In that network, the shortest pair of paths from S to D of length 16, can
correspond to (i) a working path length 3 and a backup path length 13 or (ii) working and
backup paths length 8 each.

Figure 2. Two different shortest pairs of edge-disjoint paths interconnecting the
source node S to the destination node D of “Arnes” network. In dotted and
dashed lines: working path length 3 in black color and backup path length 13
in gray color; in dashed lines: working and backup paths length 8 each.

The existence of more than one shortest pair of paths associated with the same
pair of source and destination nodes allows us to explore different strategies for choosing
the working and backup paths. For example, in the case of latency-sensitive service, the



working and backup paths should ideally have the same length, or at least their lengths
should be as close as possible. In this case, one must adopt the strategy of seeking what is
termed as the pair of most balanced paths. In other scenarios, the working path is ideally
as short as possible since the signal is only released on it and the backup path is activated
only if necessary. In this case, the most appropriate strategy would be to seek what is
called a least balanced pair of paths. Both protection strategies are observed in practical
cases such as in optical transport networks [Manchester et al. 1999].

It is important to notice that, when running the standard ST algorithm no as-
surance can be given concerning which shortest pair of paths will be found. Thus, the
considerable path length difference found in the above example cannot be used for the
benefit of any desired protection scheme.

From this observation and to explore different strategies for the choice of working
and backup paths, we propose two versions of the ST algorithm, as detailed in Section 4,
to be used in the context of optical networks under protection schemes. These versions
find, for a given topology, the most balanced and the least balanced shortest pairs of
working and backup paths for each pair of nodes and are called: Suurballe and Tarjan
Most Balanced (STMB) and Suurballe and Tarjan Least Balanced (STLB) algorithms.

We tested and analyzed how both STMB and STLB algorithms perform in a
set of 40 real-world optical telecommunication networks. The impact of these algo-
rithms is investigated through (i) the number of transponders required to route a uni-
form traffic demand and (ii) the protection coefficient, i.e., the fractional amount of addi-
tional capacity required to implement dedicated-path protection scheme [Korotky 2004,
Labourdette et al. 2005].

This paper is organized as follows. Section 2 comments briefly on protection
schemes focusing on dedicated-path protection. Section 3 describes the Suurballe and
Tarjan’s algorithm, and the most balanced and least balanced algorithms are described in
Section 4. The results are presented in Section 5 whereas Section 6 concludes this paper
and points out future research directions.

2. Dedicated-Path Protection
Protection schemes are a type of fault-recovery mechanism for optical networks, usually
classified as dedicated protection and shared protection. Each category can also be divided
into link protection and path protection. Protection techniques can be found in more
details in [Grover 2003, Zang 2012], whereas [Shen et al. 2016] presents a recent survey
for elastic optical networks.

Dedicated protection schemes usually require more resource but present shorter
recovery time than shared protection ones. On the other hand, path protection usually
requires fewer resources and presents lower end-to-end propagation delay compared to
link protection [Zang 2012]. This work focus on dedicated-path protection schemes.

In dedicated-path protection schemes, a working and backup edge-disjoint paths
are defined for each node pair of the network and the resources (e.g., transponders) cannot
be shared with other pairs. Dedicated protection can be implemented in two different
ways, known as 1:1 and 1+1 [Zang 2012, Lang et al. 2007, Berger et al. 2007].

In 1:1 protection, resources for the backup path are reserved only to ensure re-



covery when a failure occurs. During normal network operation conditions, traffic is
transmitted through the working path only and the backup resources can be used to trans-
port low-priority traffic. Whenever a failure is detected on the working path, that extra
traffic is discarded, and the traffic affected by the fault is switched to the backup path.

In 1+1 protection, the resources reserved for the backup path are used all the time
since the traffic is transmitted through the working and backup paths simultaneously. Con-
sequently, the destination node can select the best signal received, keeping the connection
alive even in case of a single failure.

To implement dedicated-path protection in optical networks operating in opaque
transport mode, every optical channel spanning a link requires a pair of transponders.
Therefore, the average number of optical transponders per link for the working paths is
given by [Pavan et al. 2015]:

〈tw〉 = 2
〈d〉〈hw〉
〈δ〉

, (1)

where 〈d〉 is the average number of traffic demands, 〈hw〉 is the average number of hops
considering only the working paths, and 〈δ〉 is the average nodal degree of the network.
Similarly, the average number of optical transponders per link for the backup paths is
given by:

〈tb〉 = 2
〈d〉〈hb〉
〈δ〉

, (2)

where 〈hb〉 is the average number of hops considering only the backup paths.

The efficiency of protection schemes can be measured by the ratio between
the total amount of resources reserved for backup paths and the total amount of re-
sources reserved for working paths [Korotky 2004, Labourdette et al. 2005]. This ratio
is referred to as protection coefficient [Pavan et al. 2015] or as spare capacity redun-
dancy [Shen et al. 2016].

The dedicated-path protection coefficient is calculated as [Pavan et al. 2015]:

〈kp〉 =
〈hb〉
〈hw〉

. (3)

Notice that, since 〈hb〉 is always greater than or equal to 〈hw〉, 〈kp〉 is always
greater than or equal to one. Therefore, the higher the 〈kp〉, the higher the cost to protect
the network from failure.

As shown in Eqs. (1), (2), and (3), both the number of transponders and the protec-
tion coefficient directly depend on the working and backup path lengths. Thus, different
dedicated-path protection schemes can benefit from different ways to define these paths.

3. Suurballe and Tarjan’s algorithm
This section describes the Suurballe and Tarjan’s (ST ) algo-
rithm [Suurballe and Tarjan 1984].



LetG = (V,E) be a 2-edge-connected graph of orderN where V = {vi, vj, ...vN}
is the set of vertices andE is the set of edges of unit weights. For each pair of source node,
vs, and destination node, vd, of a 2-edge-connected network topology, the ST algorithm
finds the shortest pair of edge-disjoint paths to be used as working and backup paths.
According to Whitney’s version of the Menger’s Theorem [Whitney 1932], it is possible
to find the two paths whenever the network is 2-edge-connected. Also, the running time
complexity of the ST algorithm is O(|E| + |V | log |V |)). The ST algorithm works
according to the following steps [Oliveira 2010]:

1. Run Dijkstra’s algorithm and finds the shortest path P1 connecting the source
node, vs, and the destination node, vd;

2. Change the weights of P1 edges. This Step is known as “cost transformation” and
occurs as follows:

cij =


N , if (vi, vj) ∈ P1

cij + ci − cj , if (vi, vj) 6∈ P1

and (vj, vi) 6∈ P1

0 , if (vj, vi) ∈ P1,

where ci is the cost of path of node vs to node vi and cij is the cost of the edge vi,
vj;

3. Run Dijkstra’s algorithm once again with the weights of the edges of P1 modified
and finds the second shortest path P2;

4. Check if P1 and P2 share any edge. If they do, P1 and P2 are redefined to P ′1 and
P ′2 where the path P1 will be formed by the initial edges of P1 that precede the
shared edge, followed by the end of the edges of P2 that follow the shared edge.
The common edge is not added to any of the new paths. For P2 the method is the
same, beginning with P2 and ending with the edges of P1. This procedure will be
repeated if there is more than one common edge in the paths. If there is no shared
edge in P1 and P2, then they remain.

The resulting pair of paths, which can be P1 and P2 or P ′1 and P ′2 is used to define
working and backup paths.

To exemplify this procedure, consider the network shown in Figure 3 [a] where
vs = v1 and vd = v8 and the edges have unitary weight. The shortest path P1 obtained is
v1 ↔ v5 ↔ v4 ↔ v8, with three hops. The weights of all the edges of P1 are changed;
thus, it is found a second shortest path P2, v1 ↔ v2 ↔ v3 ↔ v4 ↔ v5 ↔ v6 ↔ v7 ↔ v8.
Next, it is verified if P1 and P2 share edges, in this example, v4 ↔ v5. Therefore, P1 and
P2 are redefined as P ′1 and P ′2, respectively. Illustrated in Figure 3 [b] both end paths: the
four-hops P ′1 is given by v1 ↔ v5 ↔ v6 ↔ v7 ↔ v8 and also the four-hops, P ′2 is given
by v1 ↔ v2 ↔ v3 ↔ v4 ↔ v8.

4. Proposed versions of Suurballe and Tarjan’s algorithm
As observed in Section 1, the Suurballe and Tarjan’s algorithm can found different short-
est pairs of paths interconnecting the same pair of source and destination nodes. This
section describes the two proposed versions of this algorithm called: Suurballe and Tar-
jan Most Balanced (STMB), and Suurballe and Tarjan Least Balanced (STLB).



[a] [b]

Figure 3. From vs = v1 to vd = v8, [a] shortest path (in dashed gray line) and sec-
ond shortest path (in black line with dot and dash), obtained with the Dijkstra’s
algorithm. [b] Working and backup disjoint paths obtained with the ST algorithm.

4.1. Suurballe and Tarjan Most Balanced (STMB)

The aim of STMB algorithm is to find the shortest pair of edge-disjoint paths for each
pair of source and destination nodes, keeping the lengths of the working and backup
paths as equal as possible. Hereafter, we refer to these lengths as W+ (“Length of the
Most Balanced Working Path”) and B+ (“Length of the Most Balanced Backup Path”).
Also, we refer to the sum of these lengths as C.

The flowchart of the algorithm is shown in Figure 4 and follows this way:

1. Run the standard ST algorithm for a 2-edge-connected network. For each pair of
source and destination nodes, two edge-disjoint paths are found. Then C is stored;

2. Define R and S variables for each pair, based on C. The R will define the new
length of the W+ and its value will be the rounded down of half of C. The S will
define the new length of theB+ and its value will be the result of C minusR. This
Step will always be possible because C is a positive integer measured in number
of hops;

3. Create a list to store all paths length R for a given pair of source and destination
nodes, using Yen’s algorithm [Yen 1970], which determines K-shortest paths. For
this Step, the paths in ascending order are presented and, when the first path length
R appears, the list will no longer be empty and will store the path. The next paths
length R will be added as well. When the Yen’s algorithm returns the first path
length greater than R, or all possible paths are over, this Step is ended. Because it
is an exhaustive algorithm, the Yen’s algorithm will always be feasible;

4. Check if the R list is empty. If it is, no path length R has been found and then the
R will be decremented and return to Step 3. If it is not, follow to the next Step;

5. Find one and only one path length S, also using the Yen’s algorithm;
6. Check for a path length S. If it does not exist, R is decremented and returns to

Item 3. If it exists, compare the path length S with the first path from the list of
paths length R. At this point, it is checked if there is any shared edge between
them. If there is not a shared edge, the values of R and S are assigned to W+ and
B+, respectively. If there is a shared edge in these paths, the next path length R
in the list is tested. If no path length R is disjoint to path length S, then returns to
Step 5 to test another path length S, if it exists. If all paths length S are tested, and
no path disjoint R is found, then R is decremented, and the algorithm returns to
Step 3. This procedure will be performed until two edge-disjoint paths are found.



Figure 4. Flowchart of the Suurballe and Tarjan Most Balanced algorithm
(STMB).

If there are two edge-disjoint paths in the topology for each pair of source and
destination nodes, the ST algorithm will be successful, and consequently, the STMB
will also be.



4.2. Suurballe and Tarjan Least Balanced (STLB)
Different from STMB, the least balanced version of the ST algorithm, STLB, maxi-
mizes the differences between W− (“Length of the Least Balanced Working Path”) and
B− (“Length of the Least Balanced Backup Path”).

The STLB algorithm acts similarly to STMB but with two differences: i) to
obtain the shortest working path possible, R starts with the shortest path length found by
Dijkstra’s algorithm; and ii) when two edge-disjoint paths length R and S are not found,
R is incremented. As in STMB, if there are two edge-disjoint paths in the topology
for each pair of source and destination nodes, the ST algorithm will be successful, and
consequently, the STLB will also be.

4.3. STMB’s and STLB’s proof
Given a pair of source and destination nodes, the STMB and STLB algorithms will not
necessarily fetch all possible pairs of paths length C. Once the disjoint paths lengths R
and S are found, even if they are modified by increasing or decreasing, the algorithm
stops. These paths can be the same as defined by ST or not.

The number of pairs of paths length C influences the stopping criterion of the
algorithm. When there are not many pairs of paths length C, the algorithm will execute
quickly, since there are fewer options for checking. This is the best case. On the other
hand, if there are many paths and R and S are incremented or decremented several times,
finding the new W+ or W− and B+ or B− in the last possible path length options, then
the algorithm can take a long time in operations. So, this is the worst case.

The problem of finding a path of a given length without affecting edges would
solve the Hamiltonian Path Problem by requiring a path length N − 1. Since the Hamil-
tonian Path Problem is NP-Complete [Schrijver 2003], the problem in question will also
be. Efficient algorithms known for this problem have an exponential cost such as the
Yen [Yen 1970] algorithm used in Steps 3 and 5 of the STMB and STLB algorithms, for
which the running time complexity is O(KV (E + V log V )).

For finding simple paths length k in a graph, the best known asymptotic com-
plexity is currently O(2k) time [Williams 2009]. This problem has been proved to be
NP-Complete [Nykänen and Ukkonen 2002].

5. Results
To test the algorithms, we used a set of 40 real-world telecommunications networks avail-
able in [Routray et al. 2013, Pinto 2014]. These networks are 2-edge-connected, contain-
ing between 9 and 100 nodes and 12 to 171 links each. The proposed algorithms were im-
plemented using C + + language and the ElasticO++ framework [Tessinari et al. 2016].
The total processing time to compute the paths using STMB algorithm in all 40 networks
was approximately one hour, from which the biggest network (USA with 100 nodes) took
about 57 minutes. The processing time obtained using STLB was higher, approximately
seven hours for the USA topology and three minutes in total for the other 39 networks. In
our tests, we used a PC desktop equipped with an Intel Core i5-6600K CPU @3.50GHz
and 8GB of RAM.

In both STMB and STLB, the lengths of the working and backup paths were ob-
tained for each pair of source and destination nodes of each network topology. Hereafter,



those lengths are referred to as W+ and B+ for STMB algorithm and W− and B− for
the STLB algorithm. First, we explore in each network the differences between working
and backup paths of STMB and STLB for each pair of source and destination nodes.
Subsequently, we consider the sum of those differences and compare the results obtained
for the 40 networks.

It should be noticed that for any given pair of nodes, W− will always be smaller
than or equal to W+, and B− will always be greater than or equal to B+. Also, since both
STMB and STLB define pairs of paths of same total length C, we have:

W+ +B+ = W− +B− = C. (4)

The difference between the two strategies can be measured by the variation in
the lengths of workings paths (or backup paths). Therefore, for each pair of source and
destination nodes (s, d):

∆s,d = W+ −W− = B− −B+. (5)

In each algorithm, the difference between the working path and the backup path
for each pair of nodes (s, d) is given by:

Θ+
s,d = B+ −W+;

Θ−s,d = B− −W−.
(6)

This difference between the working path and the backup path is related to the difference
between the two strategies. This relationship is given by:

∆s,d =
Θ−s,d −Θ+

s,d

2
. (7)

Therefore, the higher the difference between Θ−s,d and Θ+
s,d, the more significant the dif-

ference between the two algorithms.

From the networks tested, the one presenting the largest difference between the
two strategies is the “Arnes” network (17 nodes and 20 edges) shown in Fig. 5 (this figure
is repeated here for convenience).

One of the pairs of nodes reaching the largest difference between the STMB and
the STLB is the pair (S,D) highlighted in Fig. 5, for which C = 16 edges. In STMB,
both working and backup paths obtained have 8 hops, that is, W+ = B+ = 8. In STLB,
the working path obtained has 3 hops, i.e.,W− = 3, whereas the backup path has 13 hops,
i.e., B− = 13. Therefore, Θ+

S,D = 0 and Θ−S,D = 10 for this pair. Also, as the working
path of the STMB has 5 hops more than the working path of the STLB (consequently,
the backup path of the STLB has 5 hops more than the backup path of STMB), then
∆S,D = 5.

The “Arnes” network has 136 pair of source and destination nodes. Of these, 60%
obtained Θ+

s,d = Θ−s,d and ∆s,d = 0, that is, the working and backup paths defined in
STMB have the same length as the working and backup paths defined in STLB.



Figure 5. Working and backup paths defined by the STMB and STLB algorithms
in the “Arnes” network for the node pair of source node S and destination node
D.

Figure 6 shows the results of Θ+
s,d and Θ−s,d for the other 40% of pair of source

and destination nodes of “Arnes” network. These results are normalized according to
C, i.e., for each pair (s, d), 100% corresponds to the sum of the respective working and
backup path lengths. For instance, the Θ−S,D = 10 mentioned earlier corresponds to 63%
relatively to C = 16. Large differences between working and backup path lengths lead
to large values of those variables. On the other hand, those variables are minimized when
the working and backup paths have the same length. Also, Θ−s,d ≥ Θ+

s,d, as expected.
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Figure 6. Difference between working and backup path lengths of STLB (Θ−
s,d)

and STMB (Θ+
s,d) of the “Arnes” network. The horizontal axis represents pairs

of source and destination nodes for which there is a difference in path lengths
between the two strategies. The pair is shown in Figure 5 is circled. The pairs
are organized according to Θ−

s,d in ascending order.

The sum of all working path lengths of the STMB and the STLB for “Arnes”
network give

∑
W+ = 530 and

∑
W− = 412, respectively. It results in a total variation∑

∆s,d = 118, i.e., the two algorithms differ by 29% relatively to the total working path
length. Relatively to

∑
C for all node pairs, that difference reaches 9% (see Fig. 7).

To compare differences between working and backup paths of STMB and STLB
among the 40 networks, first it was computed for each network:

∑
W+,

∑
W−,

∑
B+,∑

B−. Then,
∑

Θ+
s,d and

∑
Θ−s,d were obtained. The result is shown in Figure 7 where,

for each network, 100% corresponds to
∑
C for all node pairs. Notice that

∑
Θ−s,d ≥∑

Θ+
s,d, as expected.
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Figure 7. Difference between the sum of working path lengths and the sum of
backup path lengths in STLB (

∑
Θ−

s,d) and STMB (
∑

Θ+
s,d). The horizontal axis

represents 40 analyzed networks. The networks are organized by their number
of nodes in ascending order.

In 12 networks, the working and backup paths defined for the STLB were the
same as for the STMB for each pair of source and destination nodes. These networks
have

∑
Θ+

s,d =
∑

Θ−s,d. Therefore, there is no difference when using STMB and STLB
for 30% of the analyzed networks.

Among networks for which
∑

Θ+
s,d 6=

∑
Θ−s,d, the “Loni” network has the greatest

difference in the lengths of working and backup paths in both algorithms, with
∑

Θ−s,d =

40% and
∑

Θ+
s,d = 36%, percentages relative to

∑
C. The smallest difference in STLB

and in STMB was from the “USA” network,
∑

Θ−s,d = 13% and
∑

Θ+
s,d = 8% relative

to
∑
C, meaning that this network has pairs with the least difference in length of working

and backup paths.

The difference between the algorithms was obtained through the difference of
working and backup paths of the STMB with the differences of working and backup
paths of the STLB. Then, the percentages shown in Fig. 7 are twice the difference
between the two strategies, that is, 2∆. The “Arnes” and “Cernet” networks obtained the
greatest difference with

∑
Θ−s,d −

∑
Θ+

s,d = 18%, that is, ∆ = 9%. On average for all
networks the difference was 5%.

To verify the impact on the number of transponders when using these algorithms,
we used Eqs. (1) and (2). Figure 8 shows the normalized difference between the num-
ber of transponders of the working paths computed by STMB and STLB for all net-
works. Among the 40 networks, the “Arnes” network uses up to 29% more transponders
in STMB than in STLB. This result confirms the expected difference of the algorithms
presented above. On average for all networks, using STMB would require 7% more
transponders.

To identify the amount of additional capacity required to protect the network,
the protection coefficient of each network was computed using Eq. (3). In Figure 9 one
can see that the “Loni” network needs up to 235% extra capacity to ensure survivability
against link failures when using STLB and 214% using STMB. This case is the max-
imum amount of extra capacity required for the set of 40 networks excluding those that
have the same lengths of working and backup paths in STMB and STLB, that is, con-
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Figure 8. Normalized difference between the number of transponders used in
working paths in STMB and STLB for all networks. The networks are organized
by the number of nodes in ascending order.

sidering 28 networks. The minimum required extra capacity is 131% in STLB and 116%
in STMB, these results are both from the “USA” network. On average for all networks,
173% is needed in STLB and 155% in STMB. The greatest difference between kp of
STLB and of kp of STMB is in the “Arnes” network, for which the STLB requires
71% extra capacity to protect the network. The kp in STLB presents results equal to or
greater than the kp in STMB, meaning that the STLB will need more extra capacity in
the network.
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Figure 9. Protection coefficient (kp) for each network using STLB and STMB
algorithms.

These results imply a significant impact on network costs. Because it is obtained
a reduction of up to 22% in transponders costs when using STLB, and a reduction of up
to 32% in extra protection capacity when using STMB.

6. Conclusion
We have identified that using the Suurballe and Tarjan’s (ST ) algorithm for a source and
destination node pair, a diversity of pairs of paths of the same cost can be found and it is
not possible to choose one of these pairs. Therefore, two versions of the ST algorithm
were proposed and analyzed. The Suurballe and Tarjan Most Balanced (STMB) version
finds the most balanced shortest pairs of working and backup paths whereas Suurballe
and Tarjan Least Balanced (STLB) finds the least balanced combination. Using STMB



and STLB, it is possible to take advantage of that diversity since allowing the choice
of working and backup paths length, making it possible to explore different protection
strategies for applications in different scenarios.

The proposed algorithms were tested in a set of 40 real-world optical telecommu-
nication networks. For each pair of source and destination nodes, the differences between
working and backup paths of STMB and STLB were explored in each network. Subse-
quently, the sum of those differences for all node pairs was considered.

Our results show that, even when restricted to the use of shortest pairs of edge-
disjoint paths, there is a considerable degree of freedom in choosing them. For instance,
the differences between working and backup path lengths for a pair of source and desti-
nation nodes of “Arnes” network reach 63% in STLB (percentage relative to the sum of
working and backup path lengths).

Differences between STMB and STLB were observed for 70% of the analyzed
networks. Considering the sum of those results for all node pairs, a difference of up to
9% is found for “Arnes” and “Cernet” networks (that percentage is relative to the sum of
working and backup path lengths for all node pairs).

This observed difference impacts the protection coefficient and the number of
transponders required by dedicated-path protection schemes. The “Arnes” network needs
up to 29% more transponders when using STMB and requires 71% more protection ca-
pacity when using STLB. The network that most needs extra capacity in both algorithms
is the “Loni” network, which needs 235% extra capacity when using STLB and 214%
using STMB.

The proposed versions can be used on different types of service. If the need is
for paths of the same length or of lengths as close as possible, the best strategy is to
use the STMB. This strategy will achieve a reduction of up to 32% in extra protection
capacity. However, it may require more transponders. If the need is for working paths as
short as possible, the most appropriate strategy is the STLB. This strategy will achieve a
reduction of up to 22% in transponders costs. Nevertheless, the extra capacity to protect
the network in case of failure may be higher.

For future work, protection schemes based on STMB and STLB will be an-
alyzed. Also, it will be investigated which topological characteristics lead to a more
significant difference between the two versions.
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