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Abstract. Cloud Computing is an efficient model for processing and storing

large amounts of data. The cloud is composed by heterogeneous resources and

has a variable workload. Cloud object storage systems arise as an efficient

manager for data using heterogeneous devices, regarding storage capacity and

performance. In the cloud, since workload changes dynamically, the dynamic

reconfiguration is needed to improve resource utilization. Thus, load balanc-

ing techniques are crucial to redistribute workload among the processing nodes

to avoid underloading or overloading. Conventional load balancing strategies

are only aware of storage devices’ capacity, resulting in system performance

degradation. To address these limitations, this paper presents a non-intrusive

approach to load balancing in the cloud which considers storage devices with

heterogeneous performance. Experimental results confirm that our approach

improves performance in terms of response time and throughput when compared

to the strategy employed by Openstack Swift object storage.

1. Introduction

Cloud computing is a paradigm of remarkable success for service-oriented computing.

Modern data-driven applications in the cloud demand large computing resources. In

this scenario, distributed data storages are crucial components on the software stack.

For this purpose, cloud object storage has emerged to support such high requirements

[Mesnier et al. 2003]. Cloud object storage systems have scalable architecture and are

composed by distributed nodes responsible for storing and retrieving data distributed

among several servers and their storage devices. The communication among those nodes

is typically through a high performance network. These object storage systems pro-

vide a high level interface to abstract low level layers of storage devices such as lo-

cal file system. This high level layer is commonly used to read and write unstructured

data as objects, often being multimedia data like documents, images, videos, audio etc.

[Mesnier et al. 2003]

Commodity storage devices are used on cloud object storage systems to store data.

Therefore, it is possible to extend the total storage space capacity with reduced cost. Most

of commodity storage devices are not reliable, but data durability is achieved using repli-

cation mechanisms that can be provided by a cloud object storage. However, those devices

may be a bottleneck because of their poor performance. [Gunawi et al. 2005] In order to

improve system’s throughput and latency in storage layer, providers offer storage services
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with high performance storage devices as Solid State Drive (SSD) and Serial Attached

SCSI (SAS) hard drives. In general, high performance storage devices are composed by

costly components or are difficult to be produced, for this reason, their storage capacity

is reduced and they are expensive. Consequently, it is infeasible to maintain a storage

system where most of the storage devices are high performance and it is interesting to not

overload them, avoiding frequent replacements.

Commercial object storage systems as Ceph [Weil et al. 2006], OpenStack Swift

[OpenStack 2017], and GlusterFS [GlusterFS 2017] are mainly designed to store large

amounts of data on a pool of storage devices based only on the device capacity while not

focusing on the device performance aspect. So, they fail in leveraging performance of

these devices, especially for devices with distinct (heterogeneous) performance.

In cloud environment, load imbalance happens when a cloud object store

dynamically handle different types of operations like read, write and delete from

several clients. Eventually, some system components can not manage requests

due to lack of resources in that moment, hence compromising system performance

[Deshmukh and Deshmukh 2015]. It is a non-trivial problem because is hard to know

future system load to adjust the current system resource utilization, especially in a hetero-

geneous system containing some device components faster then others. Works in state-of-

art such as [Tan et al. 2013] and [Hsiao et al. 2013] try to solve this problem rebalancing

current storage system load through a data migration scheme between system compo-

nents to readjust underloaded and overloaded resources. In this scenario, load balancing

policies arise as an effective strategy to tackle the performance aspect of object storage

systems and improving utilization of heterogeneous devices.

In this paper, we address the load balancing problem to cloud object storage. The

term balance and rebalance are interchangeable in this paper. We introduce BACOS: a

dynamic load BAlancing strategy to Cloud Object Storage. BACOS uses previous knowl-

edge about the workload behavior and handle distinct storage device performance to im-

prove system’s overall performance. Specifically, we can highlight the following contri-

butions:

• Non-intrusive model that handle storage devices with heterogeneous performance

for distributed object storage systems.

• A strategy to adapt to workload changes.

• Testbed for testing production-ready systems. Specifically, we tested with a com-

mercial object storage system.

Organization: The remaining of this paper is organized as follows. Section 2 sur-

veys related work. Section 3 gives a brief introduction on the architecture of an object

storage system suitable to BACOS. Section 4 explains BACOS strategy. The implemen-

tation and experimental evaluation of BACOS is presented in Section 5. Finally, Section

6 presents the conclusions and future works.

2. Related Work

The work presented in [Wang et al. 2015] proposes a lightweight framework of workload

balancing and adaptive resource management for Swift object storage. The framework

was designed to balance the workload regularizing virtual and physical nodes. To relieve
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the overloaded resources in the distributed physical nodes the framework, instead of mi-

grating data between the nodes, migrates virtual machines between physical machines

while the system is running. Additionally, the approach is not intrusive and is designed to

be used in a virtual environment through a well-known API. However, how to configure

the values of parameters based on a workload analysis is not explored. Also, the authors

didn’t include storage capabilities to their model.

The work presented in [Chung et al. 2012, Hsiao et al. 2013] proposes a fully dis-

tributed load rebalancing algorithm where each storage node is responsible for balance

its own load spontaneously, eliminating the need for a central coordinator. The approach

implements a DHT protocol to get a fast lookup and handle the load imbalance problem

by migrating data load from the heavier nodes to the lighter ones, so that after few in-

teractions all file chunks would be as uniformly distributed as possible among all storage

nodes. Additionally, the proposed algorithm aims to reduce network traffic caused by the

rebalancing process as much as possible, although it does not take advantage of perfor-

mance qualities from the storage backend since the main objective is balance the data

among storage servers in regard to their storage capacity.

The Adaptive Loading Data Migration in Distributed File System (ALDM)

[Tan et al. 2013] strategy is a dynamic algorithm to balance the load of distributed file

systems using data migration to mitigate the effect of frequent access to popular data.

This approach proposes a measure mechanism to represent the system load status by pric-

ing the system resources against their degradation along time, like network, disk I/O and

disk capacity. A central controller node is responsible to dynamically decide when to ex-

ecute the data migration, which files will be migrated, and where to migrate, to minimize

the migration costs. The experiments show that the proposed algorithm can effectively

balance the load of data servers, increasing the bandwidth after the migration process.

Furthermore, ALDM seems a good adaptability approach to various loads, although it has

been tested only in an environment with homogeneous resources.

3. Object Storage Architecture

In this work we assume a cloud object storage architecture as depicted in Figure 1. A

cloud object storage is composed of one or more proxy nodes and a set of storage nodes.

A storage node is a server that maintains at least a storage device such as a HDD or SSD,

which is able to store objects in non-volatile memory. A proxy node is responsible for

receiving requests from clients and redirect them to storage nodes.

A Distributed Hash Table (DHT) is a distributed system that provides the func-

tionality of a hash table, mapping a key k to a node n [Felber et al. 2014]. The imple-

mentation of DHT is crucial to a object storage performance since the dispersion of the

keys among nodes defines the proportion of objects in a storage device. They can improve

system performance using a variant of DHT called consistent hash. Where a consistent

hash is a hash function such that when a hash table is resized, only K/N keys need to

be remapped on average, where K is the number of keys, and N is the number of nodes.

An object storage system can also support different types of storage policy, for example,

erasure code [Li and Li 2013] or partial replication policy [Nuaimi et al. 2013]. Exam-

ples of commercial cloud objects storages are Ceph [Weil et al. 2006], OpenStack Swift

[OpenStack 2017], and GlusterFS [GlusterFS 2017].
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Figure 1. Object Storage Architecture.

In this work, we focus on Openstack Swift, which is an open source object storage

system widely used in production by many companies, e.g. Rackspace [Rackspace 2017]

and SwiftStack [SwiftStack 2017]. Swift ensures the data is replicated across the cluster

to increase data availability and durability. The location where the data should reside in

the cluster is determined by a ring, which is responsible to map the data and its replica

from the logical locations to their physical locations. The Swift’s ring uses a consistent

hashing. During the creation of the ring, which is not an automated process, it is possible

to set up values like replication count and weight for each device in the cluster. The

weight of each device determines the proportion of keys over its partitions. Thus, it

causes a direct impact in the distribution of the data among the storage nodes. Note that

the data distribution inducts the proportion of requests toward devices.

Swift architecture is composed by different web service nodes and background

processes where each component is scalable. The web service nodes are classified in two

main categories: proxy server type and storage node type (composed by an account server,

a container server and an object server). Each proxy server node and storage node contain

a copy of the ring. The background processes are responsible for data replication, data

reconstruction, data updating and data auditing. Read and write requests from/to Swift

obey the following rules: for reading requests, only one replica node is enough to retrieve

the object and return success to the client; for writing requests, the quorum of half of total

replica nodes plus one are needed to persist the object and return success to the client.

4. The BACOS Approach

The main purpose of our strategy is to balance requests toward an object storage system

by redistributing data proportionally to the performance of the storage devices. Moreover,

it redistributes data dynamically according to the workload changes to ensure that the

storage system operates in optimal performance. BACOS is based on previous knowledge

obtained by a set of offline experiments in a test environment isolated from production

system.

Figure 2 shows BACOS’s load balancing flow. The storage device classification

step measure the performance of devices, identify devices with similar performance and

assign them to performance classes; In the system performance measurement step, sev-

eral workloads are issued to the storage system to measure system performance results
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under distinct data distributions among storage devices. In last step, the load balancing

method uses a lookup table to find the best data distribution that improves the storage

system performance while avoiding overload faster storage devices and minimizing data

migration.

1: Storage device classification

2: System performance measurement

3: Load balancing method

Figure 2. BACOS’s load balancing flow.

4.1. Storage Device Classification

To propose a storage device classification, we define a storage device as dk ∈ {d1 . . . dZ},
where Z is the total number of storage devices in storage system. Furthermore, we assume

the performance of dk as the max number of Input/Output Operations Per Seconds (IOPS).

Then, a benchmark tool is used to issue read and write operations toward the device and is

measured the resultant IOPS in order to discover the supported IOPS by a storage device.

We recommend using 50% for read and write operations and 1GB file for benchmark

parameters. This process is done only when a new storage device is attached to storage

system.

Once discovered the IOPS of each device, the devices are grouped into perfor-

mance classes Cj , for 1 ≤ j ≤ L, such that devices belonging to the same class have sim-

ilar performance. As we are dealing with heterogeneous device performance, at least two

performance classes should exist, where L is the total number of classes. These classes are

constructed by an user-defined threshold for IOPS TCj
per class, that defines which perfor-

mance class a device is assigned. Assume, without any loss, that TC1
< TC2

< · · · < TCL
.

Thus a device dk is assigned to class Cj where j is the largest j ∈ {1, 2, · · · , L} such that

the IOPS of dk is larger than TCj
. Note that by the construction of the performance

classes, devices in class Ci are faster than devices in class Cj if 1 ≤ j < i ≤ L. These

performance classes are useful for simplifying the attributes of heterogeneous devices in

the storage system and reducing the management complexity of number of devices in the

next steps of our approach.

4.2. System Performance Measurement

In this step, we execute several experiments in order to understand the behavior of the stor-

age system. These experiments are run in a test environment isolated from the production

environment. In each experiment, we vary workload parameters and system parameters.

However, it is important to highlight that BACOS uses high level interfaces from storage

system to setup the proportion of data and requests that a device should manage as a sys-

tem parameter. For this reason, we define class weight W = (w1, w2, · · · , wL), where

the weight wj specifies the proportion of data and requests that a performance class Cj

manage. Hence, wj defines the proportion of data and requests that a device manage in

a performance class. Therefore, in an experiment, we use only the class weight W as
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system parameter. The workload parameters that we employ are number of clients N and

read/write ratio RW . Thereby, we assign a list of values for each parameter, shown in

section 5.2. For each parameter combination (N,RW,W ), we execute an experiment of

5 minutes with 30 seconds of warm up and 30 seconds of cool down. Thus we collect and

record the mean response time RT , and the total number of errors Nerror that reflects bad

resource utilization or lack of resources by storage system.

4.3. Load Balancing Method

In this step, BACOS generates a lookup table to hold the optimal W for a given workload

configuration that maximize the system performance. The optimal class weight is defined

by Wopt. The lookup table is based on the experiments done in a previous step. In pro-

duction environment, BACOS monitor the current workload and consult the table to get

the Wopt for the current moment.

We divide our load balancing method in two substeps: i) the first substep in section

4.3.1, criteria for optimal class weight, presents a score function F as main criterion to

evaluate the Wopt for each workload configuration and ii) the second substep in section

4.3.2, lookup table construction, shows how the lookup table is created and how to use it

in a production system.

4.3.1. Criteria for optimal weights

Since we aim to construct a lookup table in the next substep (section 4.3.2), we use met-

rics collected in step 2 (section 4.2) to choose an optimal class weight Wopt that improves

system performance without overloading storage systems. Then, we define a cost func-

tion F in Equation 1 which scores the performance of an experiment given its parameters

(N,RW,W ) with response time denoted by RT and the total error number denoted by

Nerror. Consider Errormean the mean number of error, RTmax the maximum mean re-

sponse time and RTmin the minimum mean response time of all experiments executed

using a specific workload configuration (N,RW ) with the set of class weights in list Lw.

F =
RT + (RTmin × P )

RTmax +RTmin

(1)

Where P is a penalty function for errors in the experiments as depicted in Equation

2. Function P penalizes experiments in which a large number errors occurred. These

errors are failed operations, which indicate unbalancing in the storage system, producing

overloaded or underloaded storage devices.

P =
Nerror

Nerror + Errormean

(2)

Note that F is normalized by RTmax to generate a final score value between 0 and

1. The smallest the value of F , the best is the performance of the experiment.
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4.3.2. Lookup Table Construction

In order to construct the lookup table T , it is necessary to find the optimal class weights

Wopt that maximize the performance of the system for each workload configuration. In

step 2 (section 4.2), for each tested workload configuration, i.e., a pair (N,RW ), we did

many experiments with a set of class weights W in list Lw. To choose the Wopt for a given

pair (N,RW ), we pick up the best experimented W ∈ Lw in terms of performance that

minimized function F . In the end of process, the lookup table mapped a pair (Ni, RWj)
to a Woptk . Once the table T is created, BACOS load balance method is ready to query T
to get Wopt even to a unknown N and RW. BACOS use the nearest neighbor interpolation

method [Lehmann et al. 1999] in T to discover the desirable Woptk from (Ni, RWj).

input : T ← {(N1, RW1) : Wopt1 , ..., (Ni, RWj) : Woptk}
Dev ← {C1 : [d1, ..., dZ ], ..., CL : [d1, ..., dZ ]}
α

output: 0: no need for load balancing

1: load balancing success

1 N t ← collectCurrentNumberOfClients();
2 RW t ← collectCurrentReadWriteRatio();
3 W t ← collectCurrentClassWeight();
4 Wopt ← T [(N t, RW t)];
5 W t ←W t + α× (W t −Wopt);

6 if dataMigration() or W t ≈Wopt then

7 return 0;

8 else

9 whileW t 6= Wopt do

10 for l← 1 to L do

11 deviceList← Dev[Cl];
12 foreach dev in deviceList do

13 wdev ← getDeviceWeight(W t, len(deviceList));
14 apply wdev to dev;

15 end

16 end

17 W t ←W t + α× (W t −Wopt);

18 end

19 return 1

20 end

Algorithm 1: BACOS load Balance Algorithm.

The Algorithm 1 presents a pseudo code of BACOS in production system. The

first input is the lookup table T containing pairs (Ni, RWj) as access key and Woptk as

result value. The second input Dev is a dictionary containing a set of storage devices per

performance class derived from first step of our strategy (section 4.1). The last input α is

the transfer migration factor that represents the proportion of the whole data intended to be

migrated per interaction, where 0 ≤ α ≤ 1. This parameter is intended to avoid a system

collapse during the migration process while new requests continue to arrive. To choose

the α value, a trade-off between fast convergence regarding the number of interactions

and system performance during object migration process must be considered. The α
parameter should be computed based on utilized storage system capacity to mitigate the

problem of transferring a huge volume of data through the network and overload storage
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system resources. Parameter estimation is out of scope of this work. On lines 1 to 3,

current workload and system parameters in time t are collected. On lines 4 to 5, Wopt

from T is acquired and the new class weight W t from α are estimated to reach Wopt. On

lines 6 and 7, it is verified if there are any data migrations in execution or if W t is very

close to the expected Wopt at the current moment. In both cases, there is no need to do load

balancing. On lines 9 to 19, the object migration between storage devices is done, starting

from current W t to Wopt. When Wt is close enough to Wopt, the load balance process

converge and is finished with success. On lines 13 and 14 the individual proportion of

data that each storage device should manage is computed, denoted by weight wdev, and

the data proportion of a performance class is spread across all devices in the class.

5. Performance Evaluation

In this section, we describe the experiments used to evaluate the performance of our

strategy. The main goal is to show that our strategy can improve storage system perfor-

mance in a environment with storage devices with heterogeneous performance. We mea-

sure performance in terms of three metrics: response time, throughput, and success rate.

These experiments are conducted in a private cloud using Openstack Swift Object Stor-

age [OpenStack 2017]. We compare our approach to a baseline strategy recommended in

Swift documentation where is suggested to set static weights proportionally to the storage

device capacity. For instance, two devices with storage capacity of 1 TB and 2 TB would

have weights set as 1000 and 2000, respectively.

The chosen evaluation method was the confidence interval of the mean of the dif-

ference between two performance distributions [Jain 1991]. To assess this confidence

interval, the samples from the two distributions (BACOS and Swift default strategy) are

paired, as they are collected under the same conditions, and their difference results in an-

other distribution. If the confidence interval includes zero, the performance distributions

are not significantly different. Otherwise, by analyzing the values of the resulting distri-

bution, it is possible to know how much one strategy has improved the other. To build

the confidence interval, we consider a Student’s t-distribution with 95% confidence level.

This procedure was applied to read and write operations in response time and throughput.

5.1. Environment

To measure the performance of our approach, we used Cloud Object Storage Benchmark

(COSBench) tool version 0.4.2 rc2 [Zheng et al. 2013]. COSBench has supported many

cloud object storage solutions on the market like Swift, Amazon S3, and Ceph thus mak-

ing easier any future comparison among those cloud object storage solutions.

We deployed and tested a BACOS prototype in a private cloud on Openstack en-

vironment configuring the ring DHT with 2 object replicas. All virtual machines in our

experiments were provided by Openstack Nova and storage devices by Openstack Cinder.

The virtual machine hosting COSBench was a 4 vCPUs, 8 GB main memory and 80 GB

storage capacity. The proxy node configuration had a VM instance with 16 vCPUs, 16
GB main memory and 160 GB storage capacity. We deployed 2 storage nodes, sn1 and

sn2, each one provided with 3 storage devices and with 4 vCPUs, 8 GB main memory

and 80 GB storage capacity. The storage node sn1 had heterogeneous devices, one with

10 GB and 100 IOPS, another device with 20 GB and 500 IOPS and the last one with 40
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GB and 1000 IOPS. The storage node sn2 was provided with homogeneous devices in

terms of storage capacity and performance, where each one had a device with 40 GB and

100 IOPS.

5.2. Evaluation scenario

The evaluation scenario consists in issuing a workload from COSBench to object storage

Swift and collecting metrics like response time, throughput and success ratio to further

analysis. We created 32 containers with 5000 objects per container resulting a total of

160000 objects in our experiments, where 2500 objects per container were reserved to

read operations and another 2500 objects to write operations. We inserted half of the total

number of objects in Swift to simulate an object storage system already in production and

required to start concurrent read and write operations. The objects are selected following

a uniform distribution. From now on, we will refer to the approach suggested by Swift’s

documentation, which consists of statically configuring the weights of storage devices

proportionally to the device storage capacity [OpenStack 2017] as the baseline approach.

The workload and system parameter values for system performance measure-

ment step (section 4.2) of our approach are: The number of clients N or workers to

COSBench tool takes values in [10, 50, 100, 150, 200, 250]; we fixed the read/write ra-

tio at 80/20 and 4KB object size; we define empirically the parameter α = 1 for our

environment; W = (W1,W2,W3) as a three-sized tuple for weights of 3 performance

classes containing integers W1,W2,W3, where we vary Wi from 0 to 1000 with step 50,

W1 +W2 +W3 = 1000 and W1 ≤ W2 ≤ W3. We used similar parameters from perfor-

mance measurement step to evaluation, however, the difference when N assumes values

in [1, 10, 25, 50, 100, 125, 150, 175, 200, 225, 250] to compare BACOS and baseline are in

different scales. The resulting performance metrics (response time and throughput) are

collected every second during 300s of observation time for a given N, only discarding 30s

from the start and 30s from the end to avoid noises. The collected performance metric

values for a given N were aggregated in a mean and the set of mean values of each N

represents a distribution of a performance metric.

5.2.1. Response Time

Regarding the response time for read and write operations, BACOS provided low response

time values compared to the baseline as depicted in Figure 3. We computed 95% of

confidence interval for the mean of difference of response time distributions between the

baseline and BACOS for read and write operations as depicted in Figure 4. Thus, we

can conclude that our approach was better than the baseline since the zero value was

not included in the interval and positive sign of mean denoted that the baseline response

times were higher than ours. The Figures 3(a) and 4(a) show the comparison of the

response time for read operations between our approach and the baseline. The response

time differences between the two approaches increases as the number of workers increases

too, since few read operations underutilize storage device resources. Although there is a

clear difference between performance distributions of both strategies for read response

time, this difference could be greater because of the default replication choice approach

adopted by Openstack Swift and considered for both strategies in evaluation. The replica

choice approach chooses a replica with same probability between storage nodes and its
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decision is not aware of storage device performance. Even so, since in our strategy the

largest proportion of replicas are stored in the faster storage devices, choosing a replica

from these devices makes the read operation faster than the baseline, where the proportion

of replicas are based in the storage capacity and not in the performance.

The same behavior of read response times happens with write response times de-

picted in Figures 3(b) and 4(b) when the number of workers increases. However, the large

difference in response time values between our strategy and baseline in write operations

was due to the quorum decision of Openstack Swift. As we worked with two replicas per

object, just one replica is necessary to confirm the successful operation. Consequently,

there is a high probability that the first replica of an object has confirmed by a fast storage

device.
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Figure 3. Response time distributions.
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Figure 4. Result of 95% of confidence interval for the mean of difference of re-

sponse time distributions between baseline and BACOS for read and write oper-

ations.

5.2.2. Throughput

To compare the throughput for read and write operations in Figure 5, we computed 95%

of confidence interval for the mean of difference of throughput distributions between BA-

COS and baseline for read and write operations as shown in Figure 6. We can conclude

that in both types of operations, our approach was better than the baseline since the zero

value was not included in the interval and the sign of the mean was positive, indicating

that the BACOS throughput rates are better than baseline. Also, Figures 5 and 6 show
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that read and write operations have a similar behavior. As the proportion of number of

operation has been set up with 80% to read and 20% to write, it was expected that the

results show a throughput much bigger in read operations than in write ones. The best

throughput rates of read and write operations were reached by BACOS when the storage

handled 200 workers, however the system could not keep providing similar values since it

had to deal with a high demand and lack of storage device resources. On the other hand,

with same system resources, the baseline strategy wasn’t able to reach similar throughput

rates because of its inefficiency to manage storage device performance.

Analyzing read throughput in Figure 5(a) and write throughput in Figure 5(b) side

by side, the experiments have shown that our strategy was not able to keep providing high

throughput rates when the number of workers was between 50 and 150. This behavior was

expected, since our approach made the decision to change weight of performance classes,

hence it had to execute migration of a large number of object to ensure further perfor-

mance. While this process is running, it uses more system resources to inner management

than to handle the users requests, therefore the system performance decreases not only

in number of operations but also in response time as shown in Figure 3. Although the

throughput behavior of our strategy was not so smooth compared with the baseline, the

experiments still have shown good results regarding to difference of throughput rates for

all number of workers as depicted in Figures 6(a) and 6(b).
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Figure 5. Throughput distributions.
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Figure 6. Result of 95% of confidence interval for the mean of difference of

throughput distributions between BACOS and baseline for read and write op-

erations.
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5.2.3. Success Ratio

To compare success ratio in Figure 7 with respect to read and write operations, our strategy

was much better than the baseline strategy because in the worst case (workload configured

with 250 workers) it kept the success ratio above 94% against 74% from the baseline.

From analysis only of the success ratio of read operations in Figure 7(a), when the number

of workers was between 50 and 125, we see that the baseline strategy was better than

BACOS since it kept 100% of success ratio, although our strategy got very close to reach

100% of success ratio while objects were migrating between storage devices. Once the

number of workers rises, the baseline strategy was not able to keep the same success ratio.

Even on high demand, BACOS still provide a reasonable success ratio, but the success

ratio of baseline decreases drastically since the system could not conclude read operations

for more than 175 workers.

A similar behavior happens to the write operations in Figure 7(b), although the

success ratio decreases earlier compared to read operations. The precocious decline of

success ratio of write operations in the baseline is justified by the fact that the baseline

algorithm considers only capacity, so the strategy will decide to write in storage devices

with high available space but not necessarily with best performance. Thus, writing repli-

cas delays new write operations that will be waiting long time in request list of object

storage system.
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Figure 7. Success ratio comparison.

Note that Figure 7(a) and Figure 7(b) show that as the number of workers in-

creases, it becomes more difficult to maintain the success ratio due to the lack of resources

or the bad resource utilization for both strategies. Figure 7(c) show the total number of

errors and complements the results of success ratio for read and write operations. The

number of errors represents failed operations and express unpredictable and undesirable

behaviors. The total number of errors for BACOS was much smaller than baseline strat-
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egy once our strategy takes it into consideration.

6. Conclusion and Future Work

This paper presented BACOS, an approach to load balancing in cloud data storage sys-

tems that uses previous knowledge of workload behaviour and improves the system per-

formance taking advantage of heterogeneous storage devices. BACOS designates a rea-

sonable amount of requests to faster storage devices without overloading its performance

resource. Also, BACOS is a non-intrusive approach that consumes high level interfaces

from the storage system to change storage device demand according to a dynamic varia-

tion in workload.

In order to evaluate BACOS, experiments that measured response time, through-

put and success ratio were conducted in Openstack Swift, a popular commercial object

storage. BACOS improved response time and throughput to read/write operations com-

pared to the strategy recommended in official Swift documentation. Additionally, BACOS

could provide high success rates even in high demands. Although the experiment evalu-

ated our strategy in a small cluster, our strategy is not limited by the number of the storage

nodes. Results corroborate that BACOS improves performance to object storage systems

in cloud environments.

There is a number of research opportunities that derive from this work, including:

execute experiments with large objects and different ratio of read and write; add sup-

port for workload prediction; and incorporate forecast models. Additionally, BACOS can

be combined with our previous work about replica selection [Almeida et al. 2016] to im-

prove storage overall system performance. Finally, we intend to conduct a study changing

of the number of replicas and consistency issues.
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