
Remote Routing Approach to Restricted Devices in MANETs

Rodrigo Melo1, Rafael R. Aschoff2, Djamel Sadok1, Eduardo Feitosa3

1Center for Informatics – Federal University of Pernambuco (UFPE)

Pernambuco – Brazil

2Pernambuco Federal Institute of Education, Science, and Technology (IFPE)

Palmares, Brazil.

3Federal University of Amazonas

Manaus – Brazil

{rodrigodma,jamel}@gprt.ufpe.br, rafael.roque@palmares.ifpe.edu.br,

efeitosa@icomp.ufam.edu.br

Abstract. Emergency rescue communication systems are designed to provide

ubiquitous collaboration among mobile devices without the need for a fixed in-

frastructure by using mobile ad hoc networks (MANETs). In emergency and

rescue operations, MANETs are naturally formed by devices with different pro-

cessing and communication capabilities. In this scenario, low power devices

may become overwhelmed with the control overhead and resulting additional

processing required to provide reliable communications among these heteroge-

neous parties. In this paper we propose a strategy where resource constrained

devices can offload part of the routing process to more capable devices partici-

pating in the network. Our proposal have been tested and validated in different

scenarios. The results show how the proposed approach can successfully re-

duce the network overhead without significantly reducing the routing process

efficiency.

1. Introduction

The increasing interest in using mobile devices to establish ad-hoc communication sys-

tems (MANET) has enabled the development of a broad range of applications, particularly

with the advent of new wireless access technologies for connectivity, such as 3/4G, LTE,

and WiMax. However, these new applications typically assume that MANETs are a set

of homogeneous devices, where each node has the same capabilities, which is usually

unrealistic.

MANETs support several types of mobile devices and this is one of its success

factors. This heterogeneity allows great flexibility, however, when devices with limitation

in battery or processing power join the network new problems arise. In this paper, we

concentrate on the routing process issues for restricted devices. For such devices, par-

ticipating in large networks may not be possible due to the routing process that can be

very resource consuming. For example, during the routing process, topology informa-

tion must reach the whole network, which generates a great amount of overhead that can

compromise the performance of these special devices.

The most popular strategy to address this problem is to reduce the routing pro-

tocol overhead, particularly, control packets that consume network bandwidth and other

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

resources. Works like [Pei et al. 2000] and [Younis et al. 2002] have been proposed with

solutions focusing in performance improvements. However, these solutions aim at the

overall network performance, while our concern is on allowing restricted devices in the

networks. We focus on techniques to save the resources of restricted devices during the

routing decision process so they can participate in the network.

This paper proposes the Distributed Remote Routing (DRR), a strategy to offload

part of the routing decision process of restricted devices to more capable devices. De-

veloped to work on networks running the HTR protocol [Souto et al. 2012], we introduce

a new categorization of HTR nodes: the HTR-Lite (HTR-L) nodes, which indicates the

restricted devices and the HTR-Outsourcing Router (HTR-OR), the more capable devices

that will be responsible for helping the HTR-L nodes in the routing process.

2. HTR Overview

HTR is a routing protocol for MANETs that utilizes a 2.5 cross layer scheme

[Souto et al. 2012]. It abstracts multiple and heterogeneous interfaces and constructs a

self-organized heterogeneous communicating ad hoc network. An HTR node may have

many interfaces, with similar or different technologies such as Wi-Fi, Bluetooth, WiMAX

and LTE, but it has only one IP address.

HTR is based on the OLSR protocol [Clausen and Jacquet 2003] and similarly

includes HELLO and Topology Control (TC) as control messages and defines a special

node, the multi-point relay or MPR, for the control of traffic flooding. From a HELLO

message, a mobile node receives information about its immediate, 2-hop neighbors and

selects MPRs accordingly. A TC message originates at an MPR node announcing who

has selected it as an MPR. In contrast to OLSR, HTR uses additional metric based on

link quality information and node device capabilities to choose MPR nodes. Called

HTRScore, the HTR cost metric is defined considering factors such as the awareness

of link conditions and power efficiency in order to perform path computation.

The HTRScore formula can be seen at (1).

HTRScore(i, j) =
eαi,j

(1− ρi,j)β
∗

Ei
γ

RΘ
i

(1)

Where i is the source node; j is the destination neighbor; ei,j is the transmission

energy required for node i to transmit an information unit to its neighbor j; ρi,j is the

probability to lose a packet sent from i to j; Ri is the residual energy of node i; and Ei is

the initial battery energy of node i.

The symbols α, β, γ and θ represent non-negative weighting factors for each de-

scribed parameter. Note that if all weights are equal to zero, then the lowest-cost path is

the shortest path, and if only γ, and θ are equal to zero, then the lowest cost path is the one

that will require the least energy consumption, considering retransmission or not, regard-

ing the value of β. If γ is equal to θ then normalized residual energy is used, while if only

θ is equal to zero then the absolute residual energy is used. In case all three parameters α,

γ and θ are equal to zero, then only the paths with best link stability are emphasized.

Two main modules compose the HTR framework: the bootstrap module and the

routing module. The bootstrap module is responsible for the start-up and configuration of

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

� ! "# $ %
& ' (&) (& * (# $ %

$ %
$ % � ! "# $ %

$ % # $ % � ! "# $ %
$ %

$ %
$ %

$ % � ! "# $ %+ %# $ %
$ %
$ %& , (

Figure 1. HTR Lite steps of the remote routing solution

a node (i.e. assignment of IP address and link layer adaptive configuration). The routing

module manages the routing table and packet forwarding. It uses the Dijkstra Algorithm

to perform path computation, however, the edges of the network graph have a weight

equals to the HTRScore described above. Specific details regarding these modules can be

found in [Souto et al. 2012].

3. Distributed Remote Routing

On a HTR-running network, each node is responsible for building its own routing table

based on information received via the control messages. Each node knows its neighbors

and is capable of deciding the best path to reach a destination. As introduced above, this

may constitute a restricting factor for some devices.

The Distributed Remote Routing (DRR) is our approach to relax this restriction. It

was developed to save resource from these nodes by offloading routing decisions (routing

table calculation) to other devices within the network.

There are three fundamental roles in the DRR process as described below.

• HTR nodes: nodes that run native HTR protocol. They send and receive HTR

control messages (HELLO and TC) and build their own routing table.

• HTR-Lite nodes: restricted devices. HTR-lite nodes do not send HELLO nor

TC messages and do not act as routers. In other words, HTR-Lite nodes will not

appear as a valid entry on the forwarding table of the network nodes. HTR-lite

nodes mount their routing table by sending a table request to HTR-OR nodes.

• HTR-OR nodes: HTR-Outsourcing Router nodes are responsible to provide the

routing table information requested by HTR-Lite nodes. There is no limit regard-

ing the number of HTR-OR nodes participating in the network.

We embedded the DDR in the HTR framework but, as expected, DDR has its own

set of messages and control states. Figure 1 illustrates the protocol operation.

As shown in the figure, the HTR-Lite initiates the operation as soon as it joins

the network (managed by the bootstrap module). The node sends a broadcast request

(discovery message) in search for a HTR-OR (a). When a HTR-OR node receives a

discovery message (b), it replies with its HTRScore directly to the requesting node (HTR-

Lite).

After having received replies from one or more HTR-OR nodes, the HTR-lite

node uses the informed HTRScores as criteria to choose the node that will act as its HTR-

OR. Having selected the HTR-OR the HTR-Lite node sends a Route Request message

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

to it (c). Finally, upon receiving a route request message, the HTR-OR node sends the

Routing Table Reply message to the requesting node (d).

It is important to emphasize that there is no significant increase of resource con-

sumption by the HTR node that becomes HTR-OR. This is because it will only send its

already calculated routing table to the requesting HTR-lite node.

Since the HTR-OR only sends its own routing table, the HTR-Lite needs to per-

form minor adjustments to such table to adapt it to the point-of-view of the HTR-Lite

itself. The algorithm to make this adjustments was designed to consider the cost of ma-

nipulating the route data without incurring in too much resource consumption. Firstly,

during the second step of the remote routing process (see Figure 1), not just the elected

HTR-OR but all nodes that replied to the Discovery Message are added to the neighbor

table. Then, after receiving the routing table from a HTR-OR, the insert route table al-

gorithm is started. The procedure is described in Algorithm 1. Simply put, the algorithm

verifies the received routing table (line 4) and for every advertised entry (line 6) that has

not already been added (line 7), it changes the next-hop field to the selected HTR-OR

(line 8).

Algorithm 1 Insert Route Table Algorithm

1: procedure INSERTTABLE(routeOR, addrOR)

2: size← routeOR.size()
3: index := 0
4: table← getRouteTable()
5: while index < size do

6: route← routeOR.get(index)
7: if table.hasNoEntry(route) then

8: route.updateNextHop(addrOR)
9: table.insert(route)

10: end if

11: index := index+ 1
12: end while

13: end procedure

In order to comply with the unpredictable nature of the mobile environment, the

received routing table is set to expire after a period and the whole process starts again.

Figure 2 shows the state machine of the lite node in this proposed DRR protocol.

As shown in the figure, there are four states in the lite node: Start, Wait Reply,

Wait Route Table, and Route Table Received. The Start state represents the initial phase,

where the lite node wishes to initiate the remote routing process. After sending a Request

Message, the lite node goes into the Wait Reply state. If the lite node receives no reply,

it will constantly attempt to send another request after a timeout interval. If a reply is

received, the node sends a Select Route message and goes into the Wait Route Table state.

Similarly, at this state the lite node will attempt to retry to send the Select Route message

after a timeout occurs, but only for a limited amount of time. If the route table is received,

the node ends its configurations process; otherwise, it goes into the Wait Reply state to

start the process again. Important to say that this state machine is always running when

entry in network or when the table received expires.

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

- . / 0 1 2 3 4 56 7 8 9 7: ; < = > 7 ? @ 8 > 7< A B 7 ? ; 8 C D ?< ? E D F < ? G ? > H ? IJ 6 ? K I 6 ? D ? G 7 < A B 7 ?L . M 4 2< ? G ? > H ? I J
N O L / P 2 Q R 0 S O 3 / T 2 UJ 6 ? K I < ? V B ? W 7 < A B 7 ?L . M 4 2< ? G ? > H ? I

; > X ? A B 7 Y Z E > 9 ? I J6 ? K I < ? V B ? W 7 L / P 2 Q R 0 S O 3 / T 2 U [6 ? K I 6 ? D ? G 7
6 ? K I < ? V B ? W 7 J

Figure 2. State Machine of the remote routing protocol for the Lite node

The server side works as a stateless process, as describe in Algorithm 2. The server

continually listen to received messages (lines 2-3). When the server receives a Discovery

Message (line 5), it sends back a Reply Message (line 6). If the server receives a Request

Message, it sends a Route Reply Message.

Algorithm 2 Server side remote routing process routine

1: procedure RECEIVEMESSAGE

2: while true do

3: message, srcAddress← receiveMessage()
4: type← message.getType()
5: if type = DISCOV ERY then

6: sendScore(srcAddress)
7: else if type = REQUEST then

8: sendReply(srcAddress)
9: end if

10: end while

11: end procedure

4. Evaluation Methodology

In order to evaluate the performance of the proposed protocol, we have used different

scenarios and metrics. This section describes the methodology we used to perform the

evaluation the proposed protocol.

4.1. Metrics

Given that the proposed routing protocol does not change the network behavior, apart

from the process to obtain the routing table, only a few network metrics would have a

possible change on their measurable values comparing to the standard approach. We

chose to evaluate the routing delay, and message overhead, which are better described

below.

Routing Delay. The amount of time a HTR-lite node takes to obtain the routing

table shared by one HTR-OR, after the complete remote routing process was performed.

More specifically, it constitutes the time between the discovery message and the routing

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � \

table reply message. As illustrated by Figure2, the process includes intermediate steps,

such as the select and reply messages as well as possible timeouts and reattempts.

Message Overhead. The message overhead is a metric to measure the amount

of network bandwidth save while using the proposed remote routing protocol. Nodes

running the remote routing do not participate in the forwarding of messages nor send

HELLO or TC messages, which saves resources. This metric compares the amount of

traffic generated by networks with and without the remote routing protocol.

These metrics were evaluated using different scenarios, as described in the next

subsection.

4.2. Scenarios

We decided to use two circular topology scenario to evaluate our work. The choice of

such a simple scenario is motivated by the fact that our focus is on the performance of the

HTR-Lite itself, since the approach has a negligible impact on the other components of

the network.

For the first scenario, we configured one HTR-lite surrounded by a group of HTR-

OR. We then vary the number of HTR-OR surrounding the HTR-lite (Figure 3). The

objective of this scenario is to illustrate the viability of using the DRR protocol regarding

the number of nodes available to share routing tables.

] ^ _ `a b c] ^ _ `a b c] ^ _ `a b c
a b c

a b c
a b c

a b c] ^ _ `a b c
a b c
a b c

a b c a b ca b c a b c
a b c

Figure 3. Topology of the first scenario

The second scenario is the inverse of the first one. In other words, the second

scenario is configured with a HTR-OR surrounded by a group of HTR-Lite (Scenario 2).

This scenario is important to detect the impact and scalability of the solution by detecting

the number of HTR-lite nodes that overloads or decrease significantly the efficiency of

the HTR-OR node. This scenario is illustrated in the Figure 4.

For both scenarios, in addition to varying the number of surrounding nodes, the

mobility mode of the nodes (static or mobile) of the edge can be configured. These sce-

narios and metrics were implemented in NS-3 simulator which made it possible to arrange

a circular topology to run the experiments a hundred times, for each scenarios. These re-

sults of the experiments executed with the presented scenarios are analyzed and discussed

in the next section.

5. Results and Discussion

As described in Section 4, we decided to evaluate our proposal against different network

topologies and performance metrics. This section presents our finds and discusses the

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

a b c] ^ _ ` a b c] ^ _ ` a b c] ^ _ `
] ^ _ `

] ^ _ `
] ^ _ `

] ^ _ ` a b c] ^ _ `
] ^ _ `
] ^ _ `

] ^ _ `] ^ _ `] ^ _ `] ^ _ `
] ^ _ `

Figure 4. Topology of the second scenario

applicability of the approach giving the results.

We first present the results of the two metrics (Routing Delay and Message Over-

head) for the scenario with one HTR-lite surrounded by a group of HTR-OR (Scenario

1). Next, and similarly, we present the results in the case where a HTR-OR is surrounded

by a group of HTR-Lite (Scenario 2).

In order to present the results of the Message Overhead metric, we used a marked

line chart with two data series. The data series represents the static and dynamic topolo-

gies. The x-axis presents the number of surrounding nodes (HTR-OR in case of Scenario

1 and HTR-Lite in case of Scenario 2). The y-axis shows the Message Overhead Reduc-

tion (MOR), which represents the percentage of reduction in the overhead when using the

DRR protocol. More specifically, we have MOR = 1 − Oddr

Ohtr

, where Oddr is the global

routing control messages overhead when using the DDR and Ohtr is the global routing

control messages overhead when using only the HTR.

On the other hand, to show the results of Routing Delay metric it was necessary

to use two kind of graphs. The first one is a dispersion chart, which represents a grouping

routing delay values of each scenario during one simulation timeline. This chart helps

to visualize the behavior of the metric during the lifetime of a Lite node in the network.

The second chart used to illustrate the routing delay results was a boxplot chart, which

shows the minimum, maximum and average value of routing delay metric in each sce-

nario. This representation goes to show the most limiting values achieved by this metric

in each simulated scenario.

5.1. Scenario 1

Figure 5 illustrate the results for the Message Overhead metric of Scenario 1 when varying

the number of surrounding nodes (HOT-OR) from one to 64.

As shown in Figure 5, the scenario with just two nodes in the network (one HTR-

Lite and one HTR-OR) the Message Overhead Reduction was close to 30% for the static

mobility model and slightly above that when the HTR-OR can freely move. The band-

width save or reduction in the number of control messages can be observed with up to four

or 16 HTR-OR nodes for the static and mobile configuration respectively. As previously

explained, the DDR does not send the Hello or TC messages, which explains the overall

reduction of the control sent in the network up to the above commented points. Since the

wireless medium is shared amongst the participant nodes, the reduced number of mes-

sages sent over the network means a potentially better overall network performance.

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � d

e f g he i hg hi hf g hf i hj g hj i hk g hk i h

f j l m f n k j n lo pqqrspt upvw prx y px z{|} ~�� ��

� � � � � � � � � � � � �
� � � � � �� � � � � �

Figure 5. Overhead of messages of scenario 1

As the number of HTR-OR grows larger though, the DDR actually increases the

total number of control messages generated in the network. We have to keep in mind,

however, that this is observed only because we are increasing the number of HTR-OR

while maintaining a single HTR-Lite. In other words, while every new additional HTR-

OR have to deal with some additional control messages required by the DDR, there is

only one node saving resources. Moreover, this increase would only be perceived in the

neighborhood of the HTR-Lite node. Finally, this additional overhead generated in the

neighborhood for larger network stabilizes between 32 and 64 nodes.

The Figure 6 shows the results of the Routing Delay metric for the static config-

uration of our Scenario 1. More specifically, the figure illustrates the observed pattern

for a single node in different network densities where we took the sequential readings of

the routing delay for node one in a single simulation and varied the number of HTR-OR

nodes.

During our preliminary analysis we found out unexpected moments where the

delay were much larger then the usual collected data. We first thought that the mobility

of the nodes could be causing this larger delays, but in the scenario with fixed nodes we

could observe the same pattern. Next, we thought that some missing packets were causing

these high delays. We found out, however, that even when everything went smoothly with

our routing protocol, there would be instances of large delays.

As can be observed in the figure, independently of the network size, the time series

of the routing delay of the node presented cyclical peaks. It turned out that the lower com-

munication layers were causing this unexpected behavior. More precisely, the translation

process between the network layer addresses into link layer addresses performed by the

Address Resolution Protocol (ARP) was the culprit. The entries in the ARP cache con-

� � � � � � � � � � � 	 �
 � � � � �
 �
 � � � � � � � � � � 	 � � � �
 � � � � � � � � � � � � � � � 	
 � � � � � �

� � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � � � � � � � � � ¡ � � � � � � � ¢ � � � � � � �
£¤¥¦§̈©

ª « ¬ ­ ® ¯ ° « ± ² ° « ¬ ³ ´ ª µ

¶ · ¸ ¹ · ¸ º · ¸ » · ¸ ¶ ¼ · ¸ ½ ¹ · ¸ ¼ º · ¸

Figure 6. Routing delay of static scenario 1

taining the map between the IPv4 addresses and MAC addresses were expiring or absent,

thus requiring an ARP request and reply messages prior to using the IPv4 address.

Giving the specific behavior observed for the static configuration and shown in

Figure 6, we decide to verify if the pattern would remain the same when the nodes are

configured to freely move. As shown in Figure 7, the same pattern can be observed early

on the simulation, but when the nodes are farther apart, the behavior becomes a bit more

chaotic. This behavior is to be expected due to the randomness introduced by the mobility

of the nodes.

Overall, we can argue that the DDR protocol behaved quite well under the stressed

circumstances created for the Scenario 1. It reduced the network overhead in the vicinity

for low-density networks, while not greatly increasing the overhead for highly density

networks. Moreover, we have to remember that we are potentially including nodes in the

network that otherwise would not be able to participate.

5.2. Scenario 2

As previously presented, the Scenario 2 constitutes the inverse topology of the Scenario

1, with a central HTR-OR surrounded by a varying number of HTR-Lite nodes. Figure 8

illustrate the results for the Message Overhead metric of Scenario 2 when varying the

number of surrounding nodes (HOT-Lite) from one to 64.

Contrary to what was observed in Figure 5, the Message Overhead Reduction

increases as the network topology becomes denser. If in the previous scenario the ratio

between HTR-Lite and HTR-OR decreases as the network becomes denser, causing a

decrease in the Message Overhead Reduction; the reverse is observed for Scenario 2. In

other words, the number of HTR-Lite nodes are increasing relatively to the single HTR-

¾ ¿ À Á Â Ã Ä Å Å Å Æ Ç Á È É Ê Â Á Ä Ë Ì À Â Á Í Î Á Ì Ä Ã Î Ï Î Ã Î Â Ã Î Ð Ä È É Ñ Ò À Ã Ä Ì Î Â Î Ç Á Â Ò Î È À Â Ó Á Â Ò Ì Á Ô Ñ Õ Ã Ä Â Ö Ç Ë Ï Ð × Ø Ù Ú

Û Ü Ý

Þ ß Þ Þ à á Þ Þâ ß Þ Þ à ã Þ äå ß Þ Þ à ã Þ æç è é ê ë ì ê íæ ß Þ Þ à ã Þ ææ ß â Þ à ã Þ æä ß Þ Þ à ã Þ æä ß â Þ à ã Þ æ

Þ ß Þ Þ à á Þ Þ å ß Þ Þ à á Þ æ æ ß Þ Þ à á Þ æ ä ß Þ Þ à á Þ æ î ß Þ Þ à á Þ æ â ß Þ Þ à á Þ æ ï ß Þ Þ à á Þ æ ð ß Þ Þ à á Þ æ
ñòóôõö÷

ø ù ú û ü ý þ ù ÿ � þ ù ú ë � ø �

å � Þ æ � Þ î � Þ � � Þ å ï � Þ ä æ � Þ ï î � Þ

Figure 7. Routing delay of mobile scenario 1

OR and, thus, since the HTR-Lite does not send Hello or TC messages, it was to be

expected the reduction of the number of control messages in the overall.

For the second scenario, we were also interested in investigating the unusual pat-

tern (pikes) identified during our experiments. Once more, Figure 9 illustrates a behavior

of a single node in different network densities where we took the sequential readings of

the routing delay for such node. As shown in the figure, the same pattern can be observed,

but it is clearer. The reason for this more deterministic behavior can be explained due to

the fact that the HTR-Lite sends messages in a more expected and cyclic behavior.

In the same setup but with mobile nodes (Figure 10) the results are similar to what

we found in Scenario 1. Once more, it is to be expected, since the the nodes may become

out of reach and latter join again in the same cell, thus presenting a more random behavior.

Our results in both Scenario 1 and Scenario 2 show that our approach does note

incur in significant impact on the network. It may be important to note that in all sce-

narios and configurations, the routing delay did not go above three milliseconds. Such

value may not be practical in real environment, giving the additional time required by

software and hardware related routines, but comparing with the values collected by the

standard approach in the same simulated environment it proves to be satisfactory. Both

Routing Delay and Network Overhead are maintained in moderate levels throughout the

experiments, while we are able to ensure that a new class of restricted nodes become part

of the network.

6. Background

Offloading is the ability to delegate the obligation over some task from one entity to an-

other. It is usually employed to either free one processor that is already fully loaded or to

¾ ¿ À Á Â Ã Ä Å Å Å Æ Ç Á È É Ê Â Á Ä Ë Ì À Â Á Í Î Á Ì Ä Ã Î Ï Î Ã Î Â Ã Î Ð Ä È É Ñ Ò À Ã Ä Ì Î Â Î Ç Á Â Ò Î È À Â Ó Á Â Ò Ì Á Ô Ñ Õ Ã Ä Â Ö Ç Ë Ï Ð × Ø Ù Ú

Û Ü �

� �� � �	 � �
 � �� � �� � �
 � �� � �

� 	 � � � �
 	 � ��� ������ ���� ��� � �� � !" #$% &'

() * + , - . / (. 0 , 1
2 3 4 3 5 67 8 9 5 : ;

Figure 8. Overhead of messages of scenario 2

export some task from less capable devices to more powerful ones. It is possible to offload

data traffic, applications, processing (among others) to any device or service available to

handle such tasks. In this paper, we propose the offloading of routing decisions in ad hoc

networks of mobile phones and tablets to servers.

Since with the increasing of the Internet infrastructure routing has become a costly

solution for routers, several solutions have been proposed for wired networks. The Path

Computation Element (PCE) [Farrel et al. 2006] was proposed in 2006, a solution that

provides centralized constraint-based path computation for large, multi-domain networks.

Following, solutions offloading routing to the virtual devices in clouds were proposed

[Wei et al. 2008][Zhu et al. 2008][Karaoglu and Yuksel 2013].Finally, with the advent of

Software Defined Networks (SDN) [Gupta et al. 2014] offloading solutions quickly be-

gan to appear taking advantage of the separation of control plane and data plane. For

example. RouteFlow, uses OpenFlow-based SDN to provide routing services through a

single controller.

The world of mobile networks is even more restricted since mobile devices are

often not capable of handling some processes, because of their limited resources such as

batteries, processing power, storage and bandwidth capacity. In order to save resources

from restricted devices, several solutions have been proposed, not only specific for rout-

ing, but to several other applications [Li et al. 2001][Chen et al. 2004]. Following the

evolution of wired networks solutions, SDN emerged in mobile scenarios with solutions

that allow control plane functions to be separated from the devices.

In 2006, a offloading technique for H.264 video encoder was proposed

[Zhao et al. 2006] because video processing applications are very resource consuming.

They modularize the H.264 video encoder and offload some modules or the whole appli-

¾ ¿ À Á Â Ã Ä Å Å Å Æ Ç Á È É Ê Â Á Ä Ë Ì À Â Á Í Î Á Ì Ä Ã Î Ï Î Ã Î Â Ã Î Ð Ä È É Ñ Ò À Ã Ä Ì Î Â Î Ç Á Â Ò Î È À Â Ó Á Â Ò Ì Á Ô Ñ Õ Ã Ä Â Ö Ç Ë Ï Ð × Ø Ù Ú

Û < Ø

= > = = ? @ = =A > = = ? B = CD > = = ? B = ED > A = ? B = EE > = = ? B = EE > A = ? B = E

= > = = ? @ = = D > = = ? @ = E E > = = ? @ = E C > = = ? @ = E F > = = ? @ = E A > = = ? @ = E G > = = ? @ = E H > = = ? @ = E
IJKLMNO

P Q R S T U V Q W X V Q R Y Z P [

D \ = E \ = F \ =] \ = D G \ = C E \ = G F \ =

Figure 9. Routing delay of static scenario 2

cation to a nearby server. Results are shown in terms of energy saving, proving that nodes

that offload video processing save energy. Later in 2009, the Stanford University released

the OpenRoads [Yap et al. 2009], an open-source platform for wireless innovations based

on OpenFlow. Specifically for offloading routing there is a solution that uses OpenFlow

in wireless mesh networks [Dely et al. 2011], this paper proposes a centralized solution to

provide routing decisions for all mesh nodes, the controller manages several networking

functions, including handling mobility (handover).

Using the concepts of Offloading we propose DRR, a distributed strategy for of-

floading routing decisions of specific restricted devices, the HTR-lite nodes, to other de-

vices. To the best of our knowledge, all the previously proposed solutions differ from

ours, since ours is focused on distributed support to routing. Others, more capable, de-

vices participating on the network assume routing decisions for the HTR-lite nodes.

7. Conclusion and Future Work

In this paper, we have presented a solution to the problem of routing table computation in

heterogeneous ad hoc networks composed of special devices with limited resources. Our

solution is based on the ability to offload the task of routing computation from restricted

devices to more powerful ones.

The solution is successful in saving the resources such as processing power and

network bandwidth. Even though we did not include a specific metric for processing

power, since the simulator used does not provide the feature, we are offloading the rout-

ing table computation, which is a very demanding task. The experiments proved the

bandwidth save at the special restricted nodes and the low routing delay resulting of the

offloading process. Overall, the results of our evaluations were positive and confirm the

¾ ¿ À Á Â Ã Ä Å Å Å Æ Ç Á È É Ê Â Á Ä Ë Ì À Â Á Í Î Á Ì Ä Ã Î Ï Î Ã Î Â Ã Î Ð Ä È É Ñ Ò À Ã Ä Ì Î Â Î Ç Á Â Ò Î È À Â Ó Á Â Ò Ì Á Ô Ñ Õ Ã Ä Â Ö Ç Ë Ï Ð × Ø Ù Ú

Û < Ù

^ _ ^ ^ ` a ^ ^b _ ^ ^ ` c ^ de _ ^ ^ ` c ^ fe _ b ^ ` c ^ ff _ ^ ^ ` c ^ ff _ b ^ ` c ^ f

^ _ ^ ^ ` a ^ ^ e _ ^ ^ ` a ^ f f _ ^ ^ ` a ^ f d _ ^ ^ ` a ^ f g _ ^ ^ ` a ^ f b _ ^ ^ ` a ^ f h _ ^ ^ ` a ^ f i _ ^ ^ ` a ^ f
jklmnop

q r s t u v w r x y w r s ` z q {

e | ^ f | ^ g | ^ } | ^ e h | ^ d f | ^ h g | ^

Figure 10. Routing delay of mobile scenario 2

potential applicability of the protocol.

We have also identified some limitations in our works, which are working to im-

prove for a next version of the protocol. Currently, all non-restricted HTR nodes function

as outsourced routers, which may not be the desired case. A centralized remote routing

entity helped by proxies could be a better solution in certain scenarios.

We believe that by providing a routing offloading mechanism for ad hoc networks

we may be doing a important step towards the definition of a software defined ad hoc

network.

References

Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M., and Chandramouli,

R. (2004). Studying energy trade offs in offloading computation/compilation in java-

enabled mobile devices. Parallel and Distributed Systems, IEEE Transactions on,

15(9):795–809.

Clausen, T. and Jacquet, P. (2003). Rfc 3626. Optimized link state routing protocol

(OLSR).

Dely, P., Kassler, A., and Bayer, N. (2011). Openflow for wireless mesh networks. In

Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th Inter-

national Conference on, pages 1–6. IEEE.

Farrel, A., Vasseur, J.-P., and Ash, J. (2006). A Path Computation Element (PCE)-Based

Architecture. RFC 4655 (Informational).

~ �

� � �

Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S., Schlinker, B., Feamster, N., Rexford,

J., Shenker, S., Clark, R., and Katz-Bassett, E. (2014). Sdx: A software defined internet

exchange. Proceedings of the ACM SIGCOMM 2014 conference. To Appear.

Karaoglu, H. and Yuksel, M. (2013). Offloading routing complexity to the cloud(s). In

Communications Workshops (ICC), 2013 IEEE International Conference on, pages

1367–1371.

Li, Z., Wang, C., and Xu, R. (2001). Computation offloading to save energy on handheld

devices: A partition scheme. In Proceedings of the 2001 International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’01, pages

238–246, New York, NY, USA. ACM.

Pei, G., Gerla, M., and Hong, X. (2000). Lanmar: Landmark routing for large scale wire-

less ad hoc networks with group mobility. In Proceedings of the 1st ACM International

Symposium on Mobile Ad Hoc Networking & Computing, MobiHoc ’00, pages 11–18,

Piscataway, NJ, USA. IEEE Press.

Souto, E., Aschoff, R., Lima Junior, J., Melo, R., Sadok, D., and Kelner, J. (2012). Htr:

A framework for interconnecting wireless heterogeneous devices. In Consumer Com-

munications and Networking Conference (CCNC), 2012 IEEE, pages 645–649.

Wei, Y., Wang, J., and Wang, C. (2008). Bandwidth guaranteed multi-path routing as a

service over a virtual network. In Intelligent Networks and Intelligent Systems, 2008.

ICINIS ’08. First International Conference on, pages 221–224.

Yap, K.-K., Kobayashi, M., Underhill, D., Seetharaman, S., Kazemian, P., and McKeown,

N. (2009). The Stanford OpenRoads Deployment. pages 59 – 66, Beijing, China.

Younis, M., Youssef, M., and Arisha, K. (2002). Energy-aware routing in cluster-based

sensor networks. In Modeling, Analysis and Simulation of Computer and Telecom-

munications Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International

Symposium on, pages 129–136.

Zhao, X., Tao, P., Yang, S., and Kong, F. (2006). Computation offloading for h.264 video

encoder on mobile devices. In Computational Engineering in Systems Applications,

IMACS Multiconference on, volume 2, pages 1426–1430.

Zhu, Y., Zhang-Shen, R., Rangarajan, S., and Rexford, J. (2008). Cabernet: Connectivity

architecture for better network services. In Proceedings of the 2008 ACM CoNEXT

Conference, CoNEXT ’08, pages 64:1–64:6, New York, NY, USA. ACM.

~ �

� � �

