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Abstract. The peculiar characteristics of wireless sensor networks (WSNs)

make them vulnerable to physical attacks. Once a sensor node is physically

captured by an adversary, it can be modified not only to perform malicious ac-

tivities to disrupt network operation but also to propagate malicious worms to

infect other nodes. In the face of such a threatening scenario, the system ad-

ministrator needs to be aware of which nodes may have been compromised, so

that appropriate countermeasures can be taken in a timely fashion. This paper

presents the Sensor Security Status (S3), a security metric model for estimating

in an online manner the probability that a sensor node has been infected, based

on both the interaction among nodes and the alerts from the intrusion detec-

tion system (IDS). Simulation results show that S3 can accurately estimate node

security level with low performance overhead and power consumption.

1. Introduction

The situational awareness provided by security metrics is essential to help system ad-

ministrators take informed decisions regarding the security status of a network and its

components [Zonouz et al. 2015]. In wireless sensor networks (WSNs), a metric that is

able to quantify the security level of sensor nodes can be used, for example, to identify

which nodes should be trusted (to provide reliable data) or which nodes need careful at-

tention from attack response mechanisms. Ultimately, the security level of nodes can be

used to determine the security status of the entire WSN and the sensor data it provides for

users [Ramos and Filho 2015].

Although several security metrics have been proposed for traditional networks

[Pamula et al. 2006, Wang et al. 2007], the unique characteristics of sensor nodes make it

impossible to directly apply those metrics to WSNs. This requires security metrics espe-

cially designed to quantify security based on the specific attack types and vulnerabilities

of sensor networks [Ramos and Filho 2015]. In particular, the resource constraints, and

deployment in open areas make sensor nodes vulnerable to physical attacks. In this type

of attack, an adversary captures a node and retrieves secret information from its memory

in order to gain access to the network. In addition, the adversary can compromise the

captured node to make it perform several malicious activities in the WSN (e.g., routing

attacks like sinkhole, misdirection, etc) [Walters et al. 2007].
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To easily gain full control of the network, the adversary may also attempt to have

the captured node propagate malicious worms to compromise more nodes via wireless

communication. Once a node is infected by the worm, it will be able to both behave

maliciously (e.g., carry out routing attacks) and re-propagate the worm to infect other

nodes [Francillon and Castelluccia 2008, Haghighi et al. 2016]. This makes worms one

of the most devastating types of attack.

To detect misbehaving nodes, an intrusion detection system (IDS) can be deployed

in the WSN [Raza et al. 2013]. Although IDSs are usually not capable of identifying all

intrusions that occur (because the dynamic operation of WSNs may make it difficult to

distinguish normal behavior from malicious behavior), the malicious nodes that the IDS

is actually able to identify indicate that the network is under attack and, consequently, that

other nodes may also have been compromised.

Therefore, to effectively portray the current security status of nodes and provide

administrators with useful information when attacks are occurring, a security metric for

WSNs should consider two main factors: (1) benign nodes can be compromised by ma-

licious nodes (i.e., worm attacks); and (2) to avoid that some compromised nodes go

undetected, the intrusions that the IDS is able to identify can be used to predict other in-

trusions. Intuitively, the greater the number of malicious nodes the IDS detects, the higher

the chance that other nodes have also been compromised.

The few existing security metrics for WSNs ([Anand et al. 2005,

Ramos and Filho 2015]) fail to handle these aspects, because they either ignore

IDS alerts or disregard the fact that a node can be compromised by other nodes. To

address those limitations, this paper presents a security metric model called sensor

security status (S3). The S3 model uses IDS alarms received in real-time to estimate how

much the security level of each sensor node of a WSN has been affected by intrusions.

This assessment is performed using an attack propagation graph (APG). Considering

that adversaries can take advantage of the network communication pattern to propagate

worm attacks [Ho 2015], the APG captures how nodes can compromise others through

their communication behavior.

The attack propagation graph is automatically constructed during an initial config-

uration phase when sensor nodes behave normally. Then, the APG is transformed into a

Bayesian network (BN) so that inferences about the security status of nodes can be made.

More precisely, when a new alert is raised by the IDS, a belief propagation algorithm, the

Gibbs sampler [Casella and George 1992], is applied to compute the probability that each

WSN node has been affected by the intrusion and has become compromised.

The remainder of this paper is organized as follows. Section 2 presents system

models and assumptions. Section 3 describes the proposed S3 model. Section 4 provides

an evaluation of S3. The past related work is reviewed in Section 5. Finally, Section 6

concludes this paper.

2. System Model and Assumptions
This section presents network, attack, and security models, as well as other assumptions

considered.

2.1. Network Model

The base station (BS) is assumed to be a central command node with no resource con-

straint problem and it cannot be compromised by attacks. it is also assumed that the WSN
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is comprised of static nodes that periodically send sensor readings to the base station by

means of a multi-path routing protocol such as the standardized Routing Protocol for Low

Power and Lossy Networks (RPL) [Winter et al. 2012]. In RPL, a destination-oriented

directed acyclic graph (DODAG) is created to enable message forwarding from sensor

nodes to the DODAG root (i.e., the base station). Each node knows its RPL-parents but

has no information regarding its children. Every node periodically chooses a preferred

PRL-parent to forward its messages, as shown in the left hand side of Fig. 1. The pre-

ferred RPL-parent of each node is chosen from the parent set and is periodically updated

according to some predefined routing metrics (e.g., remaining energy, link quality).

In the physical and link layers, sensor nodes are assumed to implement the IEEE

802.15.4 protocol which is the de facto standard for low power and lossy wireless net-

works such as WSNs.

2.2. Attack Model

WSNs can be target of several types of attack [Walters et al. 2007]. S3 assumes that

attacks can be initiated from node capture. A node that is physically captured by

an adversary can perform malicious activities to disrupt network operation. Those

activities include attacks such as selective forwarding, sinkhole, and data alteration

[Raza et al. 2013]. In addition, a compromised node can transfer data packets with mali-

cious code to compromise its neighbors (worm attack) [Francillon and Castelluccia 2008,

Haghighi et al. 2016]. This worm propagation process can repeat itself and lead to the

compromise of the whole network if countermeasures are not taken [Ho 2015]. Therefore,

an adversary can compromise an entire WSN with a single node capture. It is important

to note that researchers have developed practical worm attacks on both Harvard architec-

ture (e.g., Mica motes) [Francillon and Castelluccia 2008] and Von Neumann architecture

(e.g., TelosB) sensor devices [Giannetsos et al. 2009].

To attain their objective of maximizing the amount of compromised nodes, worms

can apply different propagation strategies. Although broadcasting a worm to all neighbors

may seem to be the best strategy, it can result in severe congestion of network traffic and

hence decrease, or even stop, the propagation rate [Khayam and Radha 2005]. Therefore,

we assume an intelligent worm, which seeks to maximize the number of infected nodes by

using the normal communication pattern of the network to propagate itself, as discussed

in [Ho 2015]. In a RPL-based WSN, this could be accomplished by making compromised

nodes transmit the worm only to the current preferred RPL-parent. This strategy is also

useful to avoid the worm propagation from being easily identified by any worm detection

mechanism that could eventually be present in the network [Ho 2015].

2.3. Security Model

The S3 model assumes the existence of an IDS on the WSN. IDSs such as SVELTE

[Raza et al. 2013], for example, can detect compromised nodes that perform malicious

activities (e.g., sinkhole, data alteration, etc.). A worm detection mechanism, such as the

scheme proposed in [Ho 2015], may be present in the network as well. S3 also assumes

the existence of response mechanisms that may attempt to recover malicious nodes de-

tected by the IDS. Node recovery might be achieved in various different ways. A simple

recovery approach would be to reload the node’s program [De et al. 2009].
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3. Sensor Security Status Metric

The goal of S3 is to automatically evaluate the security level of each sensor node in an

online manner so as to provide awareness of how secure the network is. The intuition

leveraged by S3 is that when a malicious node is identified by the IDS, it is possible that

this node has been infected by a worm that have already managed to infect other nodes.

Therefore, by using IDS alerts as evidence that an attacker is present in the WSN, S3

attempts to predict future attacks or attacks that may have already occurred but have not

been detected by the IDS (yet).

To do so, S3 uses an attack propagation graph to assess how a worm could take

advantage of the communication pattern of nodes to spread itself through the network.

The APG, which is automatically built during an initial configuration phase, captures

the communication dependencies among neighboring sensor nodes. After this phase,

the APG is then turned into a Bayesian network that is combined with real-time IDS

alerts by means of a node compromise dissemination analysis procedure to estimate the

probabilities that sensor nodes have been affected by an attacker.

More specifically, the security measure provided by S3 for each node indicates

the probability that the node has been compromised by a malicious worm given that one

or more compromised nodes have been detected by the IDS. Accordingly, the security

measure provided by S3 is a real value lying between 0 and 1 (inclusive). A larger S3

value indicates less security. Every time the current system state changes, i.e., when a

new alert is raised by the IDS or a malicious node is recovered, then the node security

measures provided by S3 are updated. In the following, the formalism and mathematical

models used to compute S3 are presented.

3.1. Attack Propagation Graph

The APG is a directed acyclic graph which captures all possible paths that sensor nodes

can use to forward messages to the base station. Each vertex in the APG represents a

sensor node and a direct communication dependency between two nodes exists if data

packets (messages) flow from one node to the other, in the direction of the base station.

This relationship is represented in the APG by an arrow (directed edge) between the two

nodes. For example, if node nj receives sensor data from node ni, it is said that node

nj is dependent on ni, which is represented as ni → nj . Each arrow is labeled with

a probability value Pr(ni → nj) that indicates the fraction of times node ni forwards

messages to the base station through nj .

The APG of a sample RPL-based WSN is shown in the right hand side of Fig. 1.

The probabilities on arrows represent Pr(ni → nj) values. For example, node E forwards

sensor data to the base station through nodes A and B with probabilities 0.85 and 0.1,

respectively. In other words, A was the preferred RPL-parent of E 85% of the time, while

10% of the time B was the preferred RPL-parent.

Notice that the APG only represents the fraction of messages successfully deliv-

ered to next-hop neighbors. This means that, due to packet loss, the Pr(n→ .) values of

a given node n may not sum up to 1. For example, while 0.95 of E’s messages have been

successfully delivered to nodes A and B, 0.05 have been lost (i.e., 1− (0.85+ 0.1)). This

allows the APG to capture the lossy behavior of WSN’s communication links.

Generation of the APG: To obtain the information required to build the APG, an

information collection agent (ICA) is installed in each sensor node. During the initial
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configuration phase, this agent maintains a variable that counts the number of messages

the node has successfully delivered to each of its parents. To do so, the agent periodically

sends dummy messages to the current preferred RPL-parent of the underlying node. Since

RPL periodically chooses a new preferred parent from the parent set of each node, when

the configuration phase terminates, the counters stored by the agent will correspond to the

number of times each parent was chosen as the preferred parent.

Figure 1. RPL DODAG and corresponding APG of sample WSN.

The number of messages lost is also stored. To accomplish this, ICA interacts with

the link layer protocol. Since the IEEE 802.15.4 is an acknowledgment-based protocol,

ICA knows that the node’s messages have been successfully delivered to the preferred

parent if an ACK frame is received by the link layer. On the other hand, if an ACK is

not received by the sender after a predefined threshold time (and a specific number of

retransmissions), the link layer considers that the message has been lost. In this case, the

lost messages counter of the sender is incremented by ICA.

In the end of the configuration phase, each sensor node sends its counters to the

base station along with their associated node IDs. Specifically, a counter message sent to

the base station by a given node A contains the ID of A, the IDs of A’s RPL-parents and

their respective (message delivery) counters collected by ICA. The counter message also

contains the number of lost messages.

As soon as the counter messages of nodes arrive in the base station, they are parsed

in order to generate a frequency DAG, which is similar to the APG but with message coun-

ters in the edge labels, rather than probabilities. When all counter messages are received,

the resulting frequency DAG is then converted into an APG. This is accomplished by con-

verting the frequency labels into probabilities, which is done by dividing each frequency

label by the total number of messages sent by the source node (i.e., the total successfully

delivered messages + the number of lost messages).

It should be highlighted that ICA only runs on sensor nodes during the initial

configuration phase. Moreover, all other steps performed by S3 are performed in the base

station, namely, frequency DAG generation, APG generation, BN generation, and BN

inference. Furthermore, the number of dummy messages sent by ICA can be decreased
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since ICA can take advantage of the sensor readings that are periodically sent by the nodes

to the base station (as discussed in Section 2). Depending on the frequency those sensor

readings are sent, ICA can maintain its counters updated even if no dummy messages are

sent. Therefore, the overhead added by ICA to the WSN is as low as possible.

3.2. Bayesian Network

To model how worms can propagate by taking advantage of the communication pattern

of sensor nodes, the APG is translated into a Bayesian network (BN) that captures the

probabilities that each node can be compromised by other nodes. More precisely, each

APG vertex is modeled as a Bernoulli random variable representing the security state

of a node, i.e., 1 (True) if the node is compromised, or 0 (False) otherwise. Since it is

assumed that worms propagate according to the network communication behavior, each

arrow will represent a cause-consequence relationship between two nodes, meaning that

one node can be compromised by the other. Each arrow probability Pr(ni → nj) will

then correspond to the probability that node nj gets compromised by a worm sent by

ni (in the case that ni has been directly or indirectly compromised by an attacker). For

example, if ni is a compromised node and Pr(ni → nj) = 0.85, then nj has 0.85 chance

of being compromised by ni since this number represents the probability that nj receives

a message (containing worms) from ni (i.e., , the probability that nj is the preferred RPL-

parent of ni).

Since each node in the BN is directly compromised by its parent nodes (source of

incoming arrows1), a conditional probability table (CPT) is created (with the aid of arrow

probability values) and associated with each node. The CPT in a given node n stores the

probability that this node gets compromised (or not) given different combination of states

of its BN-parent nodes Pa[n]. In other words, the CPT corresponds to the conditional

probability distribution Pr(n|Pa[n]). Formally, let Pr(n) = 1 − Pr(n). For pin ∈
Pa[n], let ai be the communication arrow pin → n. Considering that a node cannot be

compromised by a worm if none of its BN-parents is compromised, then Pr(n|Pa[n]) is

defined as follows:

Pr(n|Pa[n]) =



















0, ∀pin ∈ Pa[n], pin = 0,

P r

(

⋃

pin=1

ai

)

, otherwise.
(1)

Considering that a node can become compromised by any of the BN-parents that

is already compromised, then the probability Pr
(
⋃

pin=1
ai
)

is derived as follows:

Pr

(

⋃

pin=1

ai

)

= 1−
∏

pin=1

[1− Pr(ai)] (2)

Fig. 2 illustrates how a CPT is generated for a sample BN. For example,

node B cannot become compromised if none of its BN-parents is compromised,

i.e., Pr(B|A,C) = 0. If only the node A is compromised, B gets compromised only

1Notice that a RPL-parent node is the opposite of a BN-parent node. For example, for an edge ni → nj ,

node nj is the RPL parent of ni, while ni is the BN-parent of nj .
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when messages are received from A, i.e., Pr(B|A,C) = 0.6. If both BN-parents are

compromised, B will become compromised when messages are received by either of its

BN-parents, i.e., Pr(B|A,C) = 1− (1− 0.6)× (1− 0.9) = 0.96.

Note that since node A has no parents, its prior probability is set to a value very

close to zero (i.e., 0.0001). Alternatively, to account for other uncertainties (e.g., node

capture), the administrator could choose a prior probability value that represents his/her

subjective belief on the likelihood that node A can be directly compromised by an adver-

sary (rather than a parent node). This uncertainty could be extended to other nodes by

changing the zero probability value in Eq. 1.

Figure 2. Bayesian network illustration.

3.3. Node Security Level Computation

When the initial configuration phase is concluded, the information collection agents are

deactivated and the Bayesian network is generated from the APG in order to estimate the

security level of sensor nodes in an online manner. Every time the current system con-

dition changes (i.e., when intrusions are observed by the IDS or compromised nodes are

recovered), the state of each vertex in the BN is set accordingly. Then, Bayesian inference

techniques of forward and backward propagation are used to update the probability that

each sensor node is directly or indirectly affected by the compromised nodes.

Formally, let N = {n1, ..., nq} be the set of vertices in the BN and E =
{n′

1
, ..., n′

r} ⊂ N be the set of compromised nodes detected by the IDS (observed at-

tack evidences). Notice that the state of each node in E is true, i.e., ∀n′
i ∈ E, n′

i = 1.

Let nj ∈ N − E be a node whose posterior probability has to be obtained (i.e., a query

node). We are interested in computing the posterior probability of nj given E, i.e., the

conditional probability Pr(nj|E), which is given as follows:

Pr(nj|E) =
Pr(nj, E)

Pr(E)
=

Pr(nj, n
′
1
, ..., n′

r)

Pr(n′
1
, ..., n′

r)
(3)

Let H = {n′′
1
, ..., n′′

k} ⊂ N be the set of nodes in the BN which are different

from query nodes and evidence nodes (i.e., hidden nodes), thus N = {nj} ∪E ∪H . The

numerator and denominator in Eq. 3 can be expressed using the joint probability of all

BN nodes as follows:
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Pr(nj|E) =

∑

n′′

1
,...,n′′

k
∈{0,1}

Pr(nj, n
′
1
, ..., n′

r, n
′′
1
, ..., n′′

k)

∑

nj ,n
′′

1
,...,n′′

k
∈{0,1}

Pr(n′
1
, ..., n′

r, nj, n
′′
1
, ..., n′′

k)
(4)

In a BN, the joint probability of all vertices is given by the chain rule as:

Pr(n1, ..., nq) =

q
∏

j=1

Pr(nj|Pa[nj]) (5)

By combining Eqs. 4 and 5, the posterior probability Pr(nj|E) can be solved for

any node nj . For example, in Fig. 2, suppose that nodes A and B are identified by the IDS

as malicious. The posterior probability of C being compromised is calculated as follows:

Pr(C|A,B) = Pr(C,A,B)/Pr(A,B)

= 0.46 where,

Pr(C,A,B) = 0.35 · 0.0001 · 0.96

= 0.0000336,

P r(A,B) =
∑

C∈{0,1}

Pr(A,B,C)

= (0.0001 · 0.6 · 0.65)0 + (0.0001 · 0.96 · 0.35)1

= 0.0000726

Since exact inference calculation procedures like the one presented above can be-

come computationally infeasible for large BNs, s3 makes use of an approximate Monte

Carlo inference algorithm, namely, the Gibbs sampler. In summary, the Gibbs sampler

generates a sequence of samples from a joint probability distribution of a set of ran-

dom variables X = {X1, ..., Xn}. By using a large number of samples, it is possible

to approximate the right joint distribution. Specifically, to compute a joint distribution

Pr(X = X1, ..., Xn|e1, ..., em), where ei is an evidence, the Gibbs sampler initializes X
to an arbitrary value in its state space and then samples an adjacent state, with the condi-

tional probability Pr(X|e) conducting the sampling procedure. Repeating the sampling

procedure at sufficiently long intervals makes the joint distribution converge.

4. Performance Evaluation

In this section, a simulation-based evaluation of S3 is presented, in terms of its perfor-

mance and accuracy. The experiments performed allowed to determine: (a) the minimum

number of dummy messages that ICA needs to send during the configuration phase; (b)

the energy overhead generated by ICA in the WSN; (c) the amount of time required by

S3 to both build its fundamental data structures (i.e., APG and BN) and estimate the se-

curity metric value of sensor nodes; and finally, (d) the mean error of the estimated metric

values.
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4.1. Implementation and Experimental Setup

The information collection agent (ICA) is implemented in the Contiki OS

[Dunkels et al. 2004], an open source and widely used operating system for WSNs and

the Internet of things. Contiki uses extensively tested implementations of both IEEE

802.15.4 and RPL (contikiRPL). The RPL implementation is based on IPv6. Hence, uIP,

an IP stack implementation in Contiki, is used to enable IP communication in the WSN.

To implement the approximate inference in the Bayesian network, the DlibC++

[King 2002] open source library is used. This library is widely adopted in both industry

and academia.

The experiments were carried out in Cooja [Osterlind et al. 2006], the Contiki

network simulator, which has demonstrated to generate realistic results [Raza et al. 2013].

Sensor nodes in Cooja run deployable code and are emulated at the hardware level. In

the simulated WSNs, Tmote Sky [Polastre et al. 2005] nodes were used. The base station

used was a real laptop that communicated with Cooja by means of a serial socket interface.

The laptop was running Ubuntu 16.04 and had a 2.20 GHz Intel Core i5-5200U CPU and

4.0 GB of RAM. Each simulation scenario was run 10 times, and the average and the

standard deviation of the results were computed to show their precision.

4.2. Minimum Number of ICA’s Dummy Messages

Before estimating the security level of sensor nodes, S3 needs to capture the network

communication pattern in the configuration phase and translate it into an APG. To do

so, the number of messages sent by ICA should be large enough to build a model that

correctly represents the actual network behavior. At the same time, to avoid adding too

much overhead in the sensor nodes, the amount of ICA messages sent should be as small

as possible.

In this section, the number of dummy messages required for the convergence of

the APG parameters is evaluated for a typical WSN consisting of 30 nodes. In each

sensor node, the information collection agent sends a total of 3, 000 dummy messages to

the current preferred RPL-parent in order to update the counter variables. Therefore, a

total of 90, 000 one-hop dummy messages are sent in the network.

In the described scenario, the first parameter evaluated is the number of edges in

the APG. Notice that each time a RPL-parent is firstly chosen as preferred by a given

node, a new edge should be added in the APG. Fig. 3 shows the APG size vs. the number

of dummy messages transmitted. The number of edges quickly approaches 175, before

20, 000 messages are sent. Then, it starts stabilizing at approximately 30, 000 messages,

i.e., when 1, 000 messages have been transmitted per node.

The second parameter analyzed is the convergence of the probability values (la-

bels) of the APG edges. Specifically, the normalized edge probability updates (i.e., the

absolute difference between the current and the updated values) are computed. Fig. 4

shows the average behavior of those values as each node sends its 3, 000 dummy mes-

sages. As can be seen, the normalized updates quickly converge to zero at approximately

1, 000 messages. This means that on average the edge probability values begin to converge

when each node transmits 1, 000 messages.

It should be highlighted that the convergence of the APG parameters is heavily

influenced by the way RPL selects the preferred parents, which in turn depends on the
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objective functions and routing metrics configured by the network administrator. How-

ever, the experiments provided in this section have shown that when the default behavior

of contikiRPL is used, 1, 000 dummy messages sent per node seems sufficient to generate

an APG with suitable coverage.

In the simulated scenario, the time interval between two consecutive dummy mes-

sages was 35 seconds. Note that this value was used in the simulations but it is not the

requirement for ICA. However, reasonably large interval values (like 35s) allow ICA to

take advantage of sensor reading messages that nodes periodically send to the base station

(usually around one per minute). Hence, ICA can reduce the number of dummy messages

sent, which decreases the energy overhead it generates. On the other hand, large intervals

have the disadvantage of increasing the duration of the training phase. Therefore, the time

interval between dummy messages (i.e., the interval ICA updates its counters) should be

chosen taking into account that a large value extends the configuration phase but saves

energy, while a small value expends more energy but shortens the configuration phase.

For example, if each node sends one dummy message per second, then the time required

for the configuration phase would be approximately 17 minutes only.
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Figure 3. APG’s
number of edges

convergence.

) " " ' " " ) " " " ) ' " " # " " " # ' " " J " " """ K )" K #" K J" K $" K '" K %" K (" K &" K L)
M 0 1 N 4 O + P / 0 1 1 2 3 4 5 5 - 6 4 5 7 4 8 , Q 4 O M + R 49 ?>;STE U=BAB C=H >?< S<ETEV WX YB SV =

Figure 4. APG’s
edge probabilities

convergence.

Z [ \ [ ] [[[ ^ Z[ ^ \[ ^ ][ ^ _[ ^ `[ ^ a[ ^ b[ ^ c[ ^ d Z
M 0 1 N 4 O + P M + R 4 5G e=>SC=H ?f=>Y=>9 ?B =g ;hi

Figure 5. Node’s
average power
consumption.

4.3. Energy Overhead in the WSN

Considering that WSN nodes are battery powered, this section evaluates the amount of

power each information collection agent consumes to send 1, 000 dummy messages to its

RPL-parents, maintain the counter variables, as well as send the counter messages to the

base station in the end of the configuration phase.

In order to do so, the Powertrace [Dunkels et al. 2011] application provided by

Contiki is used to measure the power consumption of different operation modes of sensors

in terms of the number of clock ticks. The four typical operation modes are: low power

mode, or LPM (MCU idle, radio off); CPU mode (MCU on, radio off); listen mode

(MCU on, radio receiving); and transmit mode (MCU on, radio transmitting). The power

consumption of a node is calculated as follows:

Power(mW ) = (transmit× 19.5 mA+ listen× 21.8 mA+ CPU × 1.8 mA
+ LPM × 0.0545 mA)× 3 V / (32768× T ime(s))

(6)

Where 32, 768 is the number of clock ticks per second of Tmote Sky nodes,

T ime(s) is the duration of the simulation (in seconds), and the current and voltage values

(in mA and in V , respectively) have been obtained from the datasheet of Tmote Sky.
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Fig. 5 shows the average power consumption per node (in mW ) for three different

sized networks, containing 10, 20, and 30 nodes, respectively. As demonstrated, the power

consumed by ICA is 0.22 mW in the 10-node WSN, while in the 30-node WSN ICA

consumes 0.48 mW . Since the power values shown in Fig. 5 are only consumed during

the configuration phase, not throughout the entire lifetime of the WSN, it can be concluded

that the energy overhead added by ICA is fairly low.

Notice that those results reflect the worst case scenario, in which all 1, 000 dummy

messages need to be sent. However, as discussed in the previous section, the time interval

ICA updates its counters can be chosen so as to reduce or even eliminate the necessity of

transmitting dummy messages.

4.4. Time required to estimate security metric values

As soon as the configuration phase is complete and the frequency DAG is generated, S3

performs three more steps (in the BS): (1) to convert the frequency DAG into an APG; (2)

to translate the APG to a Bayesian network; and (3) to run Gibbs sampler on the BN to

estimate the security level of all sensor nodes. Note that the first two steps only need to

be executed once, while the third step is executed every time new IDS alerts are raised.

In this experiment, four different sized WSNs have been evaluated. The table in

Fig. 6 shows the time required by steps (1) and (2) for each of those networks. As shown

in the table, those times are negligible (less than 50 ms), for all simulated network sizes.

Because Gibbs sampler is a Monte Carlo-based statistical algorithm, it termi-

nates when the number of sampling iterations it performs produces estimated probabil-

ities that converge according to a given error threshold. Fig. 7 shows the time require-

ments for the Gibbs sampler (GS) inference procedure (step (3)) in the four evaluated

WSNs, considering two distinct number of iterations commonly used in the literature

[Raftery and Lewis 1992], namely, 2, 000 and 10, 000. As presented in the figure, in a

small WSN comprised of 20 nodes, the security metric computation for all nodes takes

0.25 and 1.2 seconds, in the two respective number of Gibbs Sampler iterations evalu-

ated. On the other hand, in a reasonably large network of 100 nodes, the inference time

increases to 2.8 and 13.1 seconds, respectively.

In summary, the experiments have shown that for typical WSNs containing from

20 to 100 nodes, the times required to perform the steps of S3 are fairly acceptable. On the

other hand, it is also important to highlight that because of the properties of Bayesian net-

works, the inference times may increase exponentially as the network size grows. How-

ever, a number of iterations as low as 2, 000 can be used to carry out BN inferences in a

timely fashion (for larger networks), at the cost of providing slightly less accurate security

metric values (as will be shown in the next section).

4.5. Accuracy of the Estimated Security Metric

Since Gibbs sampler is an approximation algorithm, this section evaluates how incorrect

can be the security metric values estimated by S3 when compared to the actual security

status of nodes. In particular, various scenarios were carried out where a worm propagates

through the network infecting several nodes. During the experiments, the number of times

each node has been compromised by the worm is counted. Then, the fraction of times

each node is compromised is compared to the probability value provided by S3 for each

node. The results of the comparisons are shown in terms of the absolute error of the

estimated value, i.e., the absolute difference between the actual infection probability and
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a packet to be received at the destination with no error.

Number APG genera- BN genera-

of Nodes tion (ms) tion (ms)

20 0.007 2

30 0.015 4

50 0.025 8

100 0.068 45

Figure 6. Time re-

quirements of S3
steps.
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Figure 7. Time re-
quirement of S3 in-
ference technique.

k l \ [ [ [ k l Z [ [ [ [[[ ^ [ `[ ^ Z[ ^ Z `[ \̂[ ^ \ `[ ]̂[ ^ ] `[ _̂[ ^ _ `[ ^̀
m 8 P 4 O 4 8 n 4 * 4 n o 8 p q 0 4z{A DVE ;SVE ?FA >>?> \ [ u v w x y] [ u v w x y` [ u v w x yZ [ [ u v w x y

Figure 8. Error of
S3 security metric

estimation.

the infection probability estimated by S3. Fig. 8 presents those results for two distinct

amounts of Gibbs sampler iterations and four different sized networks.

As shown in the figure, the average error in the estimated value is slightly smaller

when the number of iterations is larger. Even in the worst case, the error value is fairly

small, i.e., approximately 0.05 (for GS 2, 000 and 100 nodes). This error is even smaller

(i.e., around 0.02) when 10, 000 Gibbs sampler iterations are performed.

In summary, the error values can be considered small for all network sizes and

number of Gibbs sampler iterations. Hence, in the case of very large networks, it may be

worth to decrease the number of Gibbs sampler iterations so as to improve performance

(computation overhead), while still obtaining accurate S3 estimates.

5. Related Work

Most of the existing works on security quantification are focused on traditional networks.

Those proposals are usually based attack graphs, which measure security based on the in-

terdependency of system vulnerabilities (e.g., the Weakest Adversary [Pamula et al. 2006]

and the Attack Resistance [Wang et al. 2007] metrics). However, none of those propos-

als is suitable to quantify security in sensor networks due to the specific characteristics,

vulnerabilities, and attack types of WSNs [Walters et al. 2007].

So far, only a few works have been proposed specifically for WSNs

[Anand et al. 2005, Ramos and Filho 2015]. Anand et al. [Anand et al. 2005] propose

a model that probabilistically quantify the resilience of WSN protocols against eaves-

dropping attacks. Their model is based on information such as sensor data distribution

and topologies. However, their model is designed to evaluate security statically, rather

than in an online manner.

An online security quantification scheme for WSNs has been recently proposed

by Ramos et al. [Ramos and Filho 2015]. This scheme is based on three security metrics

that respectively measure the resilience of the three main security mechanisms deployed

in WSNs (i.e., cryptography, key management, and IDS). Although this scheme addresses

several attack types and considers IDS alerts, it treats attacks as independent events and,

consequently, disregards worm attacks.

Finally, there exist some works [Haghighi et al. 2016, De et al. 2009] that use epi-

demic theory to model worm propagation in WSNs. Those proposals provide useful in-

formation that enable to understand worm attack behavior as well as to develop defensive
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strategies. However, such works are not suitable for an online security evaluation since

they are usually based on abstract input parameters (which are very difficult to obtain)

and focus on the static analysis of the WSNs, rather than on the operational analysis.

Unlike the previous existing works, the proposed S3 model is a practical approach,

which has been implemented and evaluated in a real WSN operating system. Furthermore,

by using the Bayesian networks formalism, S3 is able to capture the dependency among

the attacks that occur in different nodes in the WSN and evaluate node security level in

an online manner. It should be noted that S3 has been mostly inspired by the security

evaluation framework proposed in [Zonouz et al. 2015] for energy delivery systems.

6. Conclusion

This paper presented the Sensor Security Status (S3), a security metric model for esti-

mating the security level of sensor nodes. Since WSNs are vulnerable to worm attacks,

which can take advantage of the network communication pattern to spread throughout

the network, S3 combines IDS alerts with the communication behavior of sensor nodes

to estimate the probability that a node has been compromised given that other malicious

nodes are present in the network. The presented simulation results show that S3 accurately

represents node security level while keeping energy and performance overhead low.

Since IDSs may have false positives, an interesting future work would be to extend

S3 to deal with IDS inaccuracies. This could be done by integrating S3 with the IDS

effectiveness metric proposed in [Ramos et al. 2017]. Furthermore, considering that the

WSN topology may change over time (e.g., new nodes can be added), it would also be

interesting to develop an approach to periodically rebuild the APG to reflect the changes

in the network communication graph while still keeping node’s energy consumption low.

Another future work is to consider other worm propagation strategies.
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