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Abstract. Even after nearly two decades of the creation of the first botnet, the

detection and mitigation of their attacks remain one of the biggest challenges

faced by researchers and cyber-security professionals. Although there are nu-

merous studies related to botnet detection, estimating how much one method is

better than another is still an open problem, mainly because of the difficulty

in comparing and reproducing such methods. This work proposes an architec-

ture, implemented with Spark as a high-performance data processing solution,

together with VisTrails as a workflow management and data provenance solu-

tion, to address this comparability and reproducibility problem in a large-scale

environment, as well as a tool, ProvTracker, to analyze and compare the meth-

ods results. Another contribution is on the way to couple these two technolo-

gies so that intermediary data is maintained available during several partial

(re)executions of the experiments involved in each method, minimizing the im-

pact on the analysis of the large amount of data involved.

1. Introduction

In the past, the malware was limited to cause local impacts, but with the creation of the

internet, a new opportunity raised for those malicious software, which spread to millions

of computers around the world. At the same time, the ”hijacking” of computers started,

when computers are controlled remotely by a new family of malware called bot. This

network of compromised machines, botnet, is then controlled by one or more people,

botmasters [Hogben et al. 2015].

There are several methods and techniques to detect botnets [Silva et al. 2013,

Garcia et al. 2014b]. Among them, we can highlight the methods based on passive net-

work monitoring, where the most prevalent is the detection based on machine learning

techniques, e.g. Decision Tree and Random Forest [Biglar Beigi et al. 2014]. In this

technique, a set of features contained in the network flows [Hofstede et al. 2014] is han-

dled by the learning algorithm to determine which flow can be considered malicious, i.e.,

results from the communication between the botmaster and bots.

Currently, experiments for evaluating botnet detection methods are done in an ad-

hoc way, making it difficult to register valuable information of all the steps involved in

the experiment, such as dataset, programs and algorithms used, as well as which parame-

ters’ values were tested, which features of the network flows were used, results achieved,

metrics, etc.

Even though most of the activities involved in machine learning technique are

commonly used in several approaches, as far as we investigated, there is no tool or envi-
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ronment able to support the entire life cycle of the botnet detection experiment, allowing

the researchers to create, execute, and analyze their experiment.

This gap makes it almost impossible to reproduce and compare these experiments’

results and, consequently, makes it difficult to select a detection method to deploy in a real

production environment. This keeps the solutions restricted to the study environment of

their creators, offering no real alternative to the botnets dismantling. In addition, a botnet

experiment involves the processing of high volume of data.

There are generic approaches already proposed, which can be useful to support

botnet detection experiments. For instance, there are initiatives on managing work-

flows [Shi Meilin et al. 1998] and provenance capture [Freire et al. 2008]. In addition,

there are also initiatives on using high performance platform for provenance capture

[Korolev and Joshi 2014, Akoush et al. 2013], which we will highlight in the following

sections. However, they are not properly tailored to address the problems mentioned be-

fore.

This work specifies and implements an architecture to address botnet detection

experiments. The main paper contribution is on the innovative way it combines the

functionality of workflow management systems (WfMS), provenance capture and high

performance solutions. Specifically, it provides an infrastructure to support the botnet

experiments requirements: creation, execution and analysis. It is implemented using Vis-

Trails WfMS and Spark, together with our tool, ProvTracker. Above all, researchers are

able to share their experiments, allowing others to reproduce and compare results. After

concluding the experiments, the best approach may be used in a production environment.

The remainder of this paper is structured as follows. Next section presents the

related works. Section 3 introduces some concepts for better understanding the proposed

architecture, which is presented in Section 4. Section 5 describes the architecture imple-

mentation and the technologies involved. Sections 6 and 7 present, respectively, some

experiments’ results and a conclusion pointing to future work.

2. Related Work

In [Aviv and Haeberlen 2011], the authors explore the challenges to carry out the evalu-

ation of botnet detection systems. Many of the challenges are related to the difficulty in

obtaining and sharing a real and diverse network traffic dataset. This is justified by the

privacy of the data on the traffic, but ends up impacting directly on the inability to perform

qualitative comparisons and repeat third party experiments. They also emphasize the lack

of methodology to drive botnet detection experiments.

In [Garcia et al. 2014a], the authors present an empirical comparison of three dif-

ferent botnet detection methods. They point out that the results achieved by botnet detec-

tion experiments usually do not compare to other methods. Among the existing factors

that prevent them to perform the comparison, they highlight the difficulty of obtaining or

sharing datasets, lack of an appropriate description of the experiments, lack of compari-

son methods and error metric. They propose a new metric errors and conclude that a joint

effort to create an execution and comparison platform to botnet detection methods can

dramatically improve the results achieved in the area.

In [Garcia et al. 2014b], the authors present a review on botnet detection methods.
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They compare and classify fourteen botnet detection methods and highlight that ten could

not be reproduced by lack of information about the experiment and twelve could not

be reproduced because the datasets were not published. They enumerate a list of desired

properties in every publication concerning the detection of botnet, where we can highlight:

reproducibility; experiment setup; metrics; and comparison of results. They also speak of

the possibility of creating a hybrid detection method, and performing various algorithms

simultaneously using a big data solution.

In works such as [Singh et al. 2014, Saad et al. 2011, Biglar Beigi et al. 2014,

Zhao et al. 2012, Zhao et al. 2013], the authors implement botnet detection methods us-

ing various machine learning techniques. They talk about the importance of continuous

training and parameters refinement of the learning algorithms to deal with the botnet mu-

table behavior in the network traffic. Something that requires a well-documented history

of the experiments. [Singh et al. 2014] also raises the need of a big data solution to handle

all the network traffic volume.

All the works presented exposed, in some way, the need for a methodology or tool

to perform botnet detection experiments so they can be reproduced and compared as well

as allow them to evolve their methods in a systematic manner, either by reconfiguration

the detection algorithms, either by the selection of new network flows features. Moreover,

some authors also mentioned that network flows are difficult to process given its real time

and big volume characteristics.

In summary, for botnet detection experiments, it is necessary to address the fol-

lowing requirements: support for creation, execution and reproduction of the experiments,

comparability and analysis of their results, and ability to deal with big volume data. How-

ever, none of those works propose a tool or approach in this direction. On the other hand,

there are generic approaches, already proposed, which can be useful, if combined with

each other. These initiatives are discussed in the next section.

3. Background

Typically, a large scale scientific experiment consists of three basic activities : capture,

curation and analysis. The capture is the acquisition of data, which appear in various

shapes and scales, from sensors, simulations, etc. The curation may involve activities

such as filtering the data and finding the correct data structure to store them. The data

analysis covers several tasks during the activities flow, such as the use of databases, the

application of data mining algorithms, modeling and visualization [Hey et al. 2009].

These kinds of experiments are usually composed by chaining a set of tasks

that handle a huge amount of data. Typically, these experiments are created man-

ually by connecting programs inputs and outputs, producing an execution flow plan

[Davidson and Freire 2008]. This plan is also known as a workflow. In addition, each plan

is configured through specific parameters and input settings. Often, after its execution, the

outputs are analyzed and, depending on its performance, this may incur on changes on the

parameter settings, aiming at better results. According to [Hey et al. 2009], the workflow

is becoming a paradigm to large scale science, through the management of data prepara-

tion (capture and curation) and their analysis.

Workflow Management Systems (WfMS), which are automated coordination en-
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gines, are used to specify, instantiate, execute, audit and develop a workflow 1. The

WfMS often provides [Taylor et al. 2007]: a visual scripting interface so that scientists

can design these workflows (plans) without programming; a way to integrate and access

computing platforms transparently; means to conduct analyzes (workflows executions)

over various sets of data in a systematic and automatic manner; a way to capture the con-

figuration of the programs involved in these executions (workflow configuration) so that

the results can be reproduced and the methods can be reviewed, validated, repeated and

adapted. Moreover, WfMS optimize the use of computing resources, allowing partial ex-

ecution of workflows, as well as rerunning tasks that have failed without the need to rerun

the entire workflow [Gil et al. 2007].

Several authors say that the artifacts (data and programs) involved in scientific

experiments should contain information about their origins. This information should in-

clude items such as who and what process produced the artifact, which sources were used,

which parameters and settings were used during the experiment, when the experiment or

part of it was performed, among others. All this information related to the artifact origins

is also known as provenance. Provenance is also important to workflows and scientific

experiments [Freire et al. 2008, Moreau et al. 2011]. It can be used as an aid to evaluate

the quality and reliability of experiments, since it allows to interpret and understand their

results, to check the sequence of steps that led to these results, to identify the entries of

these experiments and, if possible, to reproduce their results [Freire et al. 2008].

Some authors proposed approaches to handle provenance and reproducibility in

a big data environment: In [Korolev and Joshi 2014], the authors propose a tool to track

provenance and allow the reproduction of experiments involving Big Data workflows us-

ing an instrumented version of the PIG language. The proposed tool is based on Git,

Git-Annex and Git2Prov. In order to maintain the provenance of the data, the system

needs to connect to the repository and register the source through Git2Prov. Although the

system provides a high degree of reproducibility of the experiment, the author does not

mention the overhead introduced by successive synchronizations with Git. The need for

synchronization before and after each workflow step will probably make it impossible to

use this approach in systems requiring real-time execution, as in the case of botnet detec-

tion; In [Akoush et al. 2013], the authors propose a tool called HadoopProv, which was

developed to capture the provenance of record-level data. It captures provenance from

the intermediate keys and values created in the MapReduce process. The overhead added

vary from 7% to 30%, on the map and reduce respectively. For the development of the

tool it was necessary to instrument the Hadoop source code. In summary, these last two

works use an instrumentation approach, and do not count on the functionality of WfMS

for the creation and execution of workflows.

With respect to botnet detection experiments, the combination of a WfMS, prove-

nance capture and a high performance platform would be a great contribution. Therefore,

this work aims to combine the mentioned generic approaches in an innovative way, with

special focus on addressing botnet experiments requirements. This proposal can address

other domains, but, to the best of our knowledge, there are no initiatives reported in the

botnet area. Next section describes the proposal in details.

1http://www.wfmc.org/
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4. Architecture Overview

As in large scale scientific experiments, the botnet detection methods are characterized by

being frequently executed and are constantly evolving, analyzing a large volume of data

that is renewed constantly. The executions of these methods need to be carried out in a

systematic way, so that it is possible to handle the highest amount of network flows as

possible, minimizing the impacts of cyber-attacks. To achieve this goal, an infrastructure

is required, of both hardware and software (High Performance Infrastructure), with high

processing power, compatible with the volume of data processed, the volume of prove-

nance data and the complexity of the activities involved in the methods.

It is necessary, as it is in large-scale scientific experiments, the development, adap-

tation and combination of models and tools to give support to all steps of the experiments

involving botnet detection methods, i.e. creation, execution and analysis, allowing for

greater collaboration between researchers, through reproduction and comparison of the

experiments, and consequently increase gains in this area.

With this in mind, we created and implemented an architecture that combines and

adapts scientific workflow management solutions, provenance capture and high perfor-

mance data processing solutions to support such experiments. In this section, we present

the architecture overview.

For better understanding of our architecture, we are considering a generic machine

learning workflow to detect botnets which consists of three main steps which may involve

many tasks. Capture is the first step, where a set of tasks may be accomplished to capture

the network flow. Curation is the second, where the features are extracted from the flows,

such as total packages, total bytes exchanged and flow duration. This step can also include

tasks to clean the network flows, remove white listed domains, create indexes and store

the flows in a data structure for further analysis. The last one is the Analysis, where one or

more machine learning algorithm will be executed to identify, based on the selected flows

features, suspicious machines that may belong to a botnet.

The use of a WfMS with support to provenance capture and to create and exe-

cute workflows similar to the workflow described previously would solve some of the

problems presented in the previous section, such as: the experiment setup, through the

workflow creation and its configuration (registry of the algorithms parameter values and

input settings), the reproduction of the experiment and automation of the execution pro-

cess of the method.

Moreover, another important characteristic of WfMS is that it is possible to cre-

ate and maintain pre-built tasks for reuse or sharing, i.e., tasks that are ready to compose

users’ workflows. Therefore, in our architecture, we provide pre-built tasks that imple-

ment the most common machine leaning algorithms which are one of the most important

tasks during the botnet detection process because they are directly associated to the per-

formance in terms of time and precision of the flow classification. As we are dealing with

a huge amount of data, another feature of paramount importance of WfMS that meets our

needs is the possibility of the partial execution of a workflow. This will save time and

resources and will be highlighted again in the following section.

But just the use of WfMS is not enough. There are issues that remain open, that

WfMS alone are not able to address, such as the results of each tested workflow configura-
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tion, cross-experiment analysis, methods comparison and workflow efficiency evolution.

Problems that we address with others components of our architecture.

To solve the remaining problems, we designed the architecture shown in Figure 1.

This architecture is divided in two stages. In the first stage, Traffic Curation and Analysis,

the main actors are the workflows to detect botnets (WF1, WF2, ..., WFN ). They are

responsible for tasks like select and read a source of network flows, choose the features

to be evaluated by the machine learning algorithm and execute the training of the selected

algorithm with their parameters. Both the values of the parameters of each task and the

results found on each execution are captured and stored in the provenance database. As

the training of those algorithms is a time-consuming task, we aim to store the trained

algorithm as a provenance artifact for future reuse. Storing provenance of the workflows

executions over time will allow the researchers to monitor their experiment, and evaluate

the quality of the results of the corresponding workflow over time and to continuous refine

its methods (also known as workflow evolution), either by selecting new flows feature or

by changing the machine learning algorithm.

Figure 1. Architecture Overview
Figure 2. WfMS - VisTrails

At the second stage, Experiment Analysis, the researcher is able to analyze, com-

pare and evaluate the results of different experiments. Each experiment is based on spe-

cific workflow and its set of configurations and corresponding executions. The main idea

is to select the best learning algorithm to be used in a real botnet detection environment.

Since all important information of the experiments are stored in the provenance database,

as we will show in the next sections, we will be able to answer questions like: What is the

fastest configuration of the Workflow 1(WF1) for a given dataset? Which configuration

is the most accurate? Which algorithm was used by WF2 and with what parameter val-

ues? When the experiment was carried out and on which network flow database? A user

interface is provided to facilitate the comparison of workflow executions and detection

methods.

All the provenance captured, such as the workflows and all their configurations,

parameter values and results, can be shared by researchers and, therefore, it is possible to

repeat and compare the different methods. If sharing the dataset is not an option, it is not

possible to reproduce the exact experiment, but with our architecture, the user is able to
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save and share the trained algorithm as a provenance asset, so that others can execute the

experiment on their own datasets and still compare the results.

The implemented architecture, which is detailed in the next section, intends to

solve most of the problems presented before and contribute significantly to the develop-

ment of botnet detection methods and the experiments involving them.

5. Architecture Implementation

To implement the stage Traffic Curation and Analysis, we started by selecting the WfMS.

It should support the workflow’s creation, orchestrate the execution of the experiments

and capture the provenance of the workflow’s tasks. We decided to choose VisTrails

[Bavoil et al. 2005] because it could provide most of the functionalities of our architec-

ture. It is a WfMS with support to graphical workflow construction and provenance cap-

ture. In VisTrails, the tasks that compose a workflow are called modules, which have

input ports (parameters or dataset inputs) and output ports (results). Figure 2 shows the

VisTrails’ canvas where the workflows are created.

In addition to designing workflows and storing the provenance of their executions,

VisTrails allows the partial execution of these workflows, either by a failure in the exe-

cution of a module, or by a change in a module’s attribute value. For each execution, it

infers which modules were successfully executed and did not change any of their param-

eters and mark them as cached. Thus, they do not need to be executed again, optimizing

the workflow execution. This functionality can significantly reduce the botnet experiment

execution time when paired/coupled correctly with the execution environment, as we will

show later on.

Moreover, VisTrails allows users to extend its functionality by creating new mod-

ules for reuse. These new modules can then be shared with other researchers, allowing

the reassembly of their workflows, in order to perform new experiments.

VisTrails already offers a set of modules that implement machine learning algo-

rithms using the Scikit-learn library 2, but these modules are not geared to handle large

volumes of data. However, one of the main requirements of our architecture is to be able

to run in a high-performance environment.

One may argue that there are solutions like Weka [Witten et al. 2011] that pro-

vides an environment for tracking experiments using and enchaining machine learning

activities. But Weka’s purpose is not workflow management, and thus it can not address

important WfMS features, like provenance capture and workflow partial execution.

Therefore, we searched for a tool that, besides being able to be implemented as

a VisTrails module, could provide support for running machine learning algorithms in a

high performance environment. At the same time, it should be flexible enough to allow

scientists to implement their various and complex detection algorithms, avoiding any kind

of limitation when they are developing their methods. With that in mind, we chose Spark

[Zaharia et al. 2010], a ”fast and general engine for large-scale data processing”. Spark,

besides being a platform for running programs in clusters, provides a library for machine

learning algorithms optimized for parallel execution (ML).

2http://scikit-learn.org/
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Spark allows users to connect to its cluster through an interactive shell. This en-

ables the process of knowledge discovery to be conducted in an interactive and extremely

efficient way, because while the shell is operating, the data is kept in memory, optimizing

the execution of multiple operations on the same dataset.

To integrate Spark functionality with VisTrails, the development of several mod-

ules was necessary. The mapping of its functionality into modules allowed the creation

of workflows inside VisTrails and hence the orchestration of their execution by VisTrails

using Spark resources. These modules represent activities often undertaken in botnet de-

tection methods based on machine learning. For every Spark feature/function we wanted

to use, we implemented it as a VisTrails module. Spark will also serve as the infrastructure

to run the machine learning tasks.

The main module of our implementation is the PySparkShell. It allows us to take

advantage of one of the main feature of both tools, VisTrails partial execution and Spark

interactive shell, connecting them in an innovative way. It creates an SSH channel to the

Spark cluster and instantiate a PySpark shell. This shell is the channel through which

commands are submitted to the Spark Cluster. Each command is created and sent by the

respective module using that channel. The return of the command is also captured by

the module itself when pertinent, i.e., the MulticlassEvaluate module captures the metrics

that will be displayed later in ProvTracker. This Spark shell is kept open even after the

end of the workflow execution. Thus, Spark understands that the application continues to

run and maintains all data and hardware resources available for the application, allowing

VisTrails to reuse them. This enables and ensures proper partial execution of the workflow

optimally, executing only the necessary modules, both in case of an error in any of the

modules, as in case of a parameter change/tune. To disconnect from Spark and release the

resources allocated, it is necessary to close VisTrail.

Some other useful and reusable modules were also implemented to date are: Load-

NetworkFlows; SelectFeaturesAndLabel; Decision Tree; Random Forest; Naive Bayes;

Multilayer Perception; Logistic Regression; and MulticlassEvaluate. These modules are

detailed as follows.

The LoadNetworkFlows module is able to read the Network Flows formatted in

a CSV style. Module SelectFeaturesAndLabel allows the user to select each flow fea-

tures he wants to be analyzed. Moreover, modules that implement wrappers to Spark

provided machine learning facilities were made available, e.g., Decision Tree, Random

Forest, Naive Bayes, Multilayer Perception, and Logistic Regression. All the Spark func-

tions parameters are available as input ports on the corresponding modules.

Another important and required module is the MulticlassEvaluate module. It eval-

uates the results using the metrics precision, recall, f-measure, false positive rate and true

positive rate for each label and the whole experiment (weighted metrics). This module

also captures the results so it can be shared and analyzed.

Figure 2 shows a complete botnet detection workflow similar to the methods de-

scribed at [Singh et al. 2014, Saad et al. 2011, Biglar Beigi et al. 2014, Zhao et al. 2012,

Zhao et al. 2013], but using three machine learning algorithms simultaneously, Random

Forest, Decision Tree and Naive Bayes. Note that it initiates with the PySparkShell mod-

ule and ends with the MultiClassEvaluate module. In order to benefit from the Spark
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facilities and to capture execution provenance, it is necessary to use these two modules.

However, the user is free to compose his own workflow to address his specific needs,

varying the algorithms, network load facilities, feature selection, etc.

It is worth to mention that using the Spark interactive shell through VisTrails

(PySparkShell) it is possible to run more than one algorithm on the same dataset without

the need to reload it and select its features again. As VisTrails only runs modules once

per execution, and we do not close the connection to Spark, we ensure that all algorithms

can access the dataset loaded in the beginning of the workflow.

All the trained models from the classifiers and SelectFeaturesAndLabel can also

be captured and saved for later reuse or sharing, e.g. the trained algorithm can be used

to classify new datasets without the need to train the algorithm every time a new dataset

is available, or, as we mentioned in previous section, the trained algorithm can be shared

between researchers so they can compare their results without the need to share their

datasets.

At the next stage of the architecture shown in Figure 1, stage Experiment Anal-

ysis, subsidies are given to the scientists to analyze the experiment and results found by

their methods. VisTrails allows the workflow and their provenance to be saved in a file,

which can be shared with other scientists. It tracks each workflow modification, such as

parametrization variations and allow the user to save it as a version into the file. For each

workflow version (configuration) execution, VisTrails appends a set of provenance data to

that file, such as: execution time of each module; if a module was cached; if the execution

was successful; etc. To better visualize this data, we developed ProvTracker3, a web tool

that reads those files and show them in a friendly manner to the user.

Figure 3(a) shows the main page of ProvTracker. This page has a table with in-

formation about each experiment for which a Workflow was designed, its Configurations,

one for each different parametrization used for its execution, and some metrics of the cor-

responding configuration executions: the average accuracy of the executions results; the

average time spent to execute the complete workflow; the total number of executions; etc.

In order to view more details about each workflow configuration, such as the parametriza-

tion values, the user has to click on the corresponding line. In the example of Figure 3(a),

we can see the details of the workflow configuration DefaultValues from the Workflow

RandomForest. Here we can see, for example, that the algorithm has been trained with

maxDepth property (maximum depth of the tree) equals to 5.

ProvTracker also allows the scientist to view information about each workflow

configuration execution. In the example of Figure 3 (b), ProvTracker displays information

about the execution of the workflow configuration ReducedFeatures from the Workflow

RandomForest. It informs: the user who performed the execution, the VisTrails version

used, the start and end times of the workflow execution, if the execution was complete,

the total execution time and the accuracy metrics of the corresponding execution results,

e.g. true and false positive, precision, recall, f1, etc. It is also possible to see more details

of each executed workflow module, like execution time and if the module was cached

during the execution of the workflow.

It is worth to highlight that with ProvTracker, it is possible to analyze the workflow

3Available at http://ftoliveira.github.io/provtracker/
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performance across its different configurations, and to identify the best ones. In addition,

once it is possible to share the VisTrails file with the workflow configurations, other scien-

tists can also use the tool to load all the experiment data, choose a workflow configuration

and run a similar experiment on his own data. This allows scientists to compare results of

different but similar experiments. Moreover, if the original input datasets are also made

available, it is possible to other users to reproduce the whole experiment. Finally, the

monitoring of the executions of a particular workflow over time also allows the scientist

to check the effectiveness of the methodology. If its accuracy decays, he/she may review

the workflow design and evolve it, in order to gain efficiency and detect botnets. It is also

worth to mention that this implementation can be reproduced, since it uses open, free and

mature software.

6. Results

We developed four test scenarios to explore the architecture’s features and show its usabil-

ity. We used our developed modules along with the CTU-13 dataset [Garcia et al. 2014a],

a botnet traffic dataset captured in 2011 at the CTU University in the Czech Republic.

It contains data of real botnets traffic mixed with normal traffic (reliable machines) and

background traffic (untrusted machines). The CTU-13 dataset consists of thirteen cap-

tures of seven different botnet samples. Each capture was downloaded as a NetFlow file

(generated with Argus) including the labels, in a CSV like style.

Among the information contained in each capture file, we highlight nine network

flow features that we used to test our tool: Dir, State, Proto, Dur, sTos, dTos, TotPkts,

TotBytes and SrcBytes. The first three of them are categorical (discrete) and the others

contain continuous values. There is also the information about the category (label) of

each flow, botnet, normal and background.

The experiment environment is composed by five machines, each one has 80 cores

and 512GB of RAM. The amount of resources requested to the Spark Cluster is passed

through the parameters of the PySparkShell module (Fig. 3(a)).

For the first scenario, we created a workflow in VisTrails called RandomForest,

similar to the workflow shown in the Figure 2, but only with the Random Forest Classifier.

The CTU-13’s Capture 09 dataset (Neris bot) was used as input, since it has the highest

number of botnet flows of all captures. We split this capture in 80% for training and 20%

for testing. Internally, the module developed gets the correct % of each label.

Figure 3(a) shows that the RandomForest was executed with 3 different configura-

tions. The first is called DefaultValues, and uses the Spark default values for the Random

Forest Classifier (e.g. numTrees = 20, maxDepth = 5, etc.). For the MaxDepthVal-

ues and ReducedFeatures configurations, the maximum tree depth parameter value was

changed to 30 and 5, respectively. The first two configurations used all the nine features

available, while the third one used only Dur, State, Proto, TotPkts, TotBytes and SrcBytes.

Analyzing the results of the executions for the different configurations (Fig. 3(a)),

the ReducedFeatures configuration was the fastest, while the MaxDepthValues was the

slowest, but with the highest accuracy. Figure 3(b) shows information about the execu-

tion of the configuration ReducedFeatures where the modules PySparkShell and Load-

NetworkFlows were cached. It happened because this configuration was executed right
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Figure 3. ProvTracker interface. (a) Main page (b) Executions

after the configuration MaxDepthValues, and the parameters of those two modules did not

change. Therefore, they were not executed again, saving processing time. We can also

see more detailed metrics information, e.g. for the Bot label we have a Precision of 0.814.

The second scenario illustrates the sharing facility of the implemented architec-

ture. Assuming that the input dataset could not be shared, the idea was to share the

generated models. Note that the models generated by the RandomForestClassifier and

SelectFeaturesAndLabel modules were saved during the execution of the DefaultValues

configuration (save-model=true). Then, the Random Forest model was used as a classifier

in the execution of the SharedModel, which is very similar to the RandomForest. This

new workflow was configured to use two different CTU’s captures datasets as inputs,

Capture01 and Capture02, respectively, and to load previously saved models.
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Analyzing the execution results of the SharedModel (Fig. 3(a)), we can see that the

average accuracy was still high and the time spent to execute it was 2-6 times faster than

the original workflow (the one that generated the models). This is because the SelectFea-

turesAndLabel and RandomForestCassifier modules used previously saved models, and

then, since it was not necessary to create new models, they executed much faster.

For the third scenario, we tested the use of a more sophisticated workflow named

Referee, just like the one in Figure 2, which embeds three different ML algorithms. For its

configuration named MultipleAlgorithms, we used maxDepth=20 and numTrees= 10 for

the RandomForestClassifier module, maxDepth=30 for the DecisionTreeClassifier mod-

ule and the default values for the NaiveBayersClassifier module. To select the final label,

we got the modal (most common) label from the three classifiers. Despite the long train-

ing time, it showed better results with respect to the precision and recall of bots.

For the fourth scenario, we wanted to test the architecture with a bigger dataset.

To accomplish that, we merged all thirteen datasets into a bigger one, which has ap-

proximately 20 million flows on a 3GB file. We trained a Decision Tree Algorithm with

maximum depth of 20 and named the workflow as MergedScene. The first configuration,

named TrainMerged, was used to train and save the classifier model while the second one,

TestMerged, was used to classify yet another dataset, created by concatenating this bigger

dataset four times, reaching 80 millions of rows, using the saved model from the previous

configuration and no cached module.

The idea was to evaluate the application of a saved model in a bigger dataset, to see

if the architecture could scale and handle larger volumes of data, as in real environments,

where we first train the algorithm and them use the corresponding model to classify new

flows. The training time, for the TrainMerged configuration, as we expected, took a bit

longer than the others, 12:37 minutes, 10:07 to finish the module DecisionTreeClassifier

and 1:37 to finish the module MulticlassEvaluate. However, the TestMerged configuration

execution took 4:19 minutes where 1:17 was used to evaluate the classifier and only 2:18

seconds to classify the whole dataset, almost 80 million flows!

These four scenarios showed that our architecture could address all the botnet ex-

periments requirements: creation, execution, results analysis, experiments reproducibility

and cross experiments’ results comparability. In addition, it is worth to note that it was

capable to scale up and handle a large amount of data.

7. Conclusion

Although there is a large number of techniques for botnet detection, they remain a threat

to users and institutions, requiring the development of new detection techniques. The

studies analyzed showed that the experiments performed to evaluate those techniques are

still precarious, not allowing their reproduction and comparison, limiting the studies in

this area. In this work, we raised the importance of a methodology to drive the execution

of botnet detection experiments and the great need for frameworks and tools to support

these experiments.

We specified and implemented an architecture that addresses most of the issues

raised in the literature. The tests showed that it is feasible to implement and that it will

benefit the experiments in this area, allowing scientists to create, execute, analyze, repro-

✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✫ ✫ ✬ ✭ ✧ ✮ ✯ ✰ ★ ✧ ✪ ✱ ✲ ✦ ★ ✧ ✳ ✴ ✧ ✲ ✪ ✩ ✴ ✵ ✴ ✩ ✴ ★ ✩ ✴ ✶ ✪ ✮ ✯ ✷ ✸ ✦ ✩ ✪ ✲ ✴ ★ ✴ ✭ ✧ ★ ✸ ✴ ✮ ✦ ★ ✹ ✧ ★ ✸ ✲ ✧ ✺ ✷ ✻ ✩ ✪ ★ ✼ ✭ ✱ ✵ ✶ ✽ ✾ ✿ ❀

✿ ✾ ✾ ✾



duce and compare their experiments, even if the input dataset is not shared. The imple-

mentation also addresses the big volume of data involved in the experiments.Moreover,

the implementation contributes with a new solution for integration of VisTrails WfMS

and Spark, so we can capture the provenance of the tasks involved in the experiments as

well as the results achieved.

Future works include to improve the Results Compare module so we can facilitate

the analysis of the experiment and answer questions such as: show me all workflows that

used a particular input dataset. We also aim to use the architecture to capture and clas-

sify the netflows in real-time, similar to the one proposed by [Singh et al. 2014], but with

provenance capture and all other benefits of our architecture. Because of the dynamism

of botnets, the learning algorithms need to be trained constantly so they can evolve sys-

temically. Upon detection of a new malicious flow, it needs to be validated by a specialist

and reinserted into the dataset for retraining the algorithm. This task needs to be done

systematically. As botnets flows are rare classes when compared to legitimate flows, this

is feasible to be done.

References

Akoush, S., Sohan, R., and Hopper, A. (2013). HadoopProv: Towards Provenance as a

First Class Citizen in MapReduce. In Presented as part of the 5th USENIX Workshop

on the Theory and Practice of Provenance, Berkeley, CA. USENIX.

Aviv, A. J. and Haeberlen, A. (2011). Challenges in Experimenting with Botnet Detection

Systems. In Proceedings of the 4th Conference on Cyber Security Experimentation and

Test, pages 6–6, Berkeley, CA, USA. USENIX Association.

Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. E., Silva, C. T.,

and Vo, H. T. (2005). Vistrails: Enabling interactive multiple-view visualizations. In

Visualization, 2005. VIS 05. IEEE, pages 135–142. IEEE.

Biglar Beigi, E., Hadian Jazi, H., Stakhanova, N., and Ghorbani, A. A. (2014). Towards

effective feature selection in machine learning-based botnet detection approaches.

pages 247–255. IEEE.

Davidson, S. B. and Freire, J. (2008). Provenance and Scientific Workflows: Challenges

and Opportunities. In Proceedings of the 2008 ACM SIGMOD International Confer-

ence on Management of Data, pages 1345–1350, New York, NY, USA. ACM.

Freire, J., Koop, D., Santos, E., and Silva, C. (2008). Provenance for Computational

Tasks: A Survey. Computing in Science & Engineering, 10(3):11–21.

Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014a). An empirical comparison of

botnet detection methods. Computers & Security, 45:100–123.

Garcia, S., Zunino, A., and Campo, M. (2014b). Survey on network-based botnet de-

tection methods: Survey botnet detection methods. Security and Communication Net-

works, 7(5):878–903.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,

M., Moreau, L., and Myers, J. (2007). Examining the Challenges of Scientific Work-

flows. IEEE Computer, 40(12):26–34.

✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✫ ✫ ✬ ✭ ✧ ✮ ✯ ✰ ★ ✧ ✪ ✱ ✲ ✦ ★ ✧ ✳ ✴ ✧ ✲ ✪ ✩ ✴ ✵ ✴ ✩ ✴ ★ ✩ ✴ ✶ ✪ ✮ ✯ ✷ ✸ ✦ ✩ ✪ ✲ ✴ ★ ✴ ✭ ✧ ★ ✸ ✴ ✮ ✦ ★ ✹ ✧ ★ ✸ ✲ ✧ ✺ ✷ ✻ ✩ ✪ ★ ✼ ✭ ✱ ✵ ✶ ✽ ✾ ✿ ❀

✿ ✾ ✾ ✿



Hey, T., Tansley, S., and Tolle, K., editors (2009). The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Research, Redmond, Washington, 1 edition edition.

Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., and Pras, A.

(2014). Flow Monitoring Explained: From Packet Capture to Data Analysis With

NetFlow and IPFIX. IEEE Communications Surveys & Tutorials, 16(4):2037–2064.

Hogben, G., Plohmann, D., Gerhards-Padilla, E., and Leder, F. (2015). Botnets: Mea-

surement, Detection, Disinfection and Defence - ENISA.

Korolev, V. and Joshi, A. (2014). PROB: A tool for Tracking Provenance and Repro-

ducibility of Big Data Experiments. In Reproduce ’14. HPCA 2014.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,

Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., and den Bussche,

J. V. (2011). The Open Provenance Model core specification (v1.1). Future Generation

Computer Systems, 27(6):743–756.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Wei Lu, Felix, J., and Hakimian, P.

(2011). Detecting P2p botnets through network behavior analysis and machine learn-

ing. pages 174–180. IEEE.

Shi Meilin, Yang Guangxin, Xiang Yong, and Wu Shangguang (1998). Workflow man-

agement systems: a survey. volume vol.2, page 6. Publising House of Constr. Mater.

Silva, S. S., Silva, R. M., Pinto, R. C., and Salles, R. M. (2013). Botnets: A survey.

Computer Networks, 57(2):378–403.

Singh, K., Guntuku, S. C., Thakur, A., and Hota, C. (2014). Big Data Analytics frame-

work for Peer-to-Peer Botnet detection using Random Forests. Information Sciences,

278:488–497.

Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M., editors (2007). Workflows for

e-Science. Springer London, London.

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data mining: practical machine learning

tools and techniques. Morgan Kaufmann series in data management systems. Morgan

Kaufmann, Burlington, MA, 3rd ed edition. OCLC: ocn262433473.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:

Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX Confer-

ence on Hot Topics in Cloud Computing, pages 10–10, Berkeley, CA, USA. USENIX

Association.

Zhao, D., Traore, I., Ghorbani, A., Sayed, B., Saad, S., and Lu, W. (2012). Peer to Peer

Botnet Detection Based on Flow Intervals. In Gritzalis, D., Furnell, S., and Theo-

haridou, M., editors, Information Security and Privacy Research, volume 376, pages

87–102. Springer Berlin Heidelberg, Berlin, Heidelberg.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., and Garant, D. (2013).

Botnet detection based on traffic behavior analysis and flow intervals. Computers &

Security, 39, Part A(0):2 – 16.

✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✫ ✫ ✬ ✭ ✧ ✮ ✯ ✰ ★ ✧ ✪ ✱ ✲ ✦ ★ ✧ ✳ ✴ ✧ ✲ ✪ ✩ ✴ ✵ ✴ ✩ ✴ ★ ✩ ✴ ✶ ✪ ✮ ✯ ✷ ✸ ✦ ✩ ✪ ✲ ✴ ★ ✴ ✭ ✧ ★ ✸ ✴ ✮ ✦ ★ ✹ ✧ ★ ✸ ✲ ✧ ✺ ✷ ✻ ✩ ✪ ★ ✼ ✭ ✱ ✵ ✶ ✽ ✾ ✿ ❀

✿ ✾ ✾ ✽


