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Abstract. In asynchronous distributed systems it is very hard to assess if one of

the processes taking part in a computation is operating correctly or has failed.

To overcome this problem, distributed algorithms are created using unreliable

failure detectors that capture in an abstract way timing assumptions necessary

to assess the operating status of a process. One particular type of failure de-

tector is a leader election, that indicates a single process that has not failed.

The unreliability of these failure detectors means that they can make mistakes,

however if they are to be used in practice there must be limits to the eventual

behavior of these detectors. These limits are defined as the quality of service

(QoS) provided by the detector. Many works have tackled the problem of creat-

ing failure detectors with predictable QoS, but only for crash-stop processes and

synchronous systems. This paper presents and analyzes the behavior of a new

leader election algorithm named NFD-L for the asynchronous crash-recovery

failure model that is efficient in terms of its use of stable memory and message

exchanges.

1. Introduction

Fault-tolerant distributed systems are created by the aggregation of many non fault-tolerant

computer systems in clusters, coordinated by fault-tolerant software. These commodity

clusters are modeled as asynchronous systems where there are no bounds to the mes-

sage transmission delays and processing time. As a consequence, it is very hard to as-

sess if one of the processes taking part of a computation is operating correctly or has

failed. To overcome this limitation, many distributed algorithms assume the stronger

computational model of asynchronous processes augmented with unreliable failure de-

tectors [Chandra and Toueg 1996]. More than just flagging failed processes, unreliable

failures detectors capture in an abstract way timing assumptions necessary to the correct

operation of many distributed algorithms [Lamport 1998, Chandra and Toueg 1996]. The

unreliability of these detectors is key to this abstraction: errors can be made and failures

are detected eventually, in a way that reflects the timing uncertainties intrinsic to asyn-

chronous distributed systems.

Unreliable as they are, failure detectors are enough to design correct distributed

algorithms [Chandra et al. 1996]. However, if they are to be used in practice there must

be limits to the eventual behavior of these detectors. These limits are properties of the

distributed system (processes and network links), of the failure detector algorithm used

and of its operational parameters, defining the quality of service (QoS) provided by the

detector [Chen et al. 2002]. The QoS of a failure detector can have a direct impact on
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the performance of a distributed algorithm. For example, the Paxos algorithm [Lamport

1998] uses a single coordinator process as the sequencer that orders and distributes a set of

totally-ordered messages among a group of processes. The selection of the coordinator is

made by a failure detector and the progress of the algorithm is halted while the coordinator

is failed. If this coordinator is wrongly assumed to be failed by the failure detector, Paxos

throughput is affected, even if the mistake is eventually corrected. The more mistakes the

failure detector makes, the worse Paxos real world performance will be. Thus, QoS of

failure detectors is an important parameter to be considered.

Many works have tackled the problem of creating failure detectors with predictable

QoS. The seminal work of Chen et al. [Chen et al. 2002] defined a set of QoS metrics,

created a new failure detector with a precise model of its QoS and used this model to con-

figure its parameters to match a desired QoS. Other works have experimentally studied

the QoS of failure detectors [Falai and Bondavalli 2005, Nunes and Jansch-Porto 2004],

created more robust QoS models [Sotoma et al. 2006] and proposed application-specific

QoS for a system-wide failure detector service [Hayashibara et al. 2004]. All these algo-

rithms and QoS models were created assuming the crash-stop process abstraction, where

processes can only fail by crashing and once crashed they never return to the computation.

The only exception is the work of Ma et. al. [Ma et al. 2010] that tackles the problem of

analyzing the QoS of Chen’s algorithm in the crash-recovery process abstraction, where

processes fail by crashing but later recover preserving their stable memory.

The works regarding QoS of failure detectors also share another, rather ironical,

property: many assume a synchronous system where there is a (possibly unknown) bound

to the message transmission delays and processing times. In this model it is easier to

create models of QoS, usually based on the existence of synchronized clocks. Despite

being a reasonable assumption in current systems, take for example the use of NTP in

clusters, these algorithms are burdening the system designer with a more stringent syn-

chrony model than the one required by the algorithm itself. One exception is one of the

algorithms proposed by Chen et. al. [Chen et al. 2002], which in its turn has weaker QoS

model based on the accuracy of a predictor. For asynchronous systems, the ability of the

failure detector to ascertain the state of a process based on the history of its past com-

munications is very important for its QoS, as shown by [Nunes and Jansch-Porto 2004]

and explored by [Hayashibara et al. 2004]. Thus, there is no robust QoS model for asyn-

chronous systems beyond the model originally proposed by Chen et al..

Moreover, no previous work has analyzed the QoS of a leader election algorithm.

A leader election is a type of failure detector that instead of indicating if a single process

has failed, it indicates a single process that has not failed, with the identity of this process

agreed by all correct processes. In some senses, this type of failure detector consumes less

system resources because it monitors only a single process [Larrea et al. 2000] and it is the

weaker form of failure detector required to solve consensus [Chandra et al. 1996]. Paxos,

a consensus algorithm, requires a leader election for asynchronous systems composed by

crash-recovery processes. There are suitable leader election algorithms that support crash-

recovery processes [Martín et al. 2009], but unfortunately there are no known algorithms

with these properties that have a suitable model for their QoS.

This paper presents a new leader election for the asynchronous crash-recovery fail-

ure model that is efficient in terms of its use of stable memory and message exchanges.
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Our algorithm named NFD-L is an extension of Chen’s algorithm and retains its QoS

properties in the absence of failures. We analyze the QoS of this algorithm and present

experimental data as a first step to providing a complete QoS model for this failure detec-

tor in the presence of failures and recoveries.

2. Preliminaries

In this section we will describe the basic concepts of distributed systems and the relation-

ship between its abstractions. We then use those abstractions to present more sophisticated

concepts, such as failure models and failure detectors.

2.1. Synchrony and Failure Models

Asynchronous distributed systems have no bounds for (i) how much time it takes for a

message to be delivered and (ii) how much time it takes for a process to do some compu-

tation. Synchronous distributed systems can rely on hard bounds for message delay and

computing time. Partially synchronous distributed system are systems where processes

and links behaves most of the time asynchronously, but there is an unknow time in the

future after which it behaves synchronously [Cachin et al. 2011].

Another property that defines a distributed system is process failure models. The

crash-stop model considers correct a process that never crashes. Once crashed, a process

is considered faulty and it never recovers. The crash-recovery failure model considers

correct a process that never crashes or crashes and recovers a finite number of times.

Thus, in the crash-recovery model a faulty process is a process that crashes and never

recovers or a process that crashes and recovers infinitely [Cachin et al. 2011].

In this paper we consider asynchronous processes augmented with unreliable fail-

ure detectors. This is a type of partially synchronous distributed system where the timing

assumptions are confined to the failure detector. We also assume crash-recovery processes

that communicate with each other by exchanging messages through links. The links may

drop or delay messages, but only deliver a message previously sent by some process.

2.2. Failure Detection and Leader Election

Given a distributed system composed by processes and links, a failure detector is a com-

ponent that outputs not necessarily correct information about which processes are correct

or faulty. It works as a local component, queried by processes in order to know about

which processes are still correct. When a process q queries its local failure detector about

the state of process p, the only two possible responses it can receive are either trust, if

the failure detector trusts process p is correct or suspect, if the failure detector suspects p
is faulty. Failure detectors are usually implemented by exchanging messages through its

links [Chen et al. 2002]: a process p sends a heartbeat message to another process q every

η time units, if q receives no messages from p after a timeout plus a safety margin α, the

failure detector in q will start suspecting p may be crashed.

An important result is that it is possible to build reliable distributed systems on top

of an unreliable failure detector [Chandra and Toueg 1996]. It means a failure detector is

not supposed to be correct while the system behaves asynchronously [Fischer et al. 1985],

it may make mistakes by suspecting correct processes or trusting faulty ones. However,

assuming a partially synchronous system, eventually the processes and links will behave
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synchronously and then the failure detector will stop making mistakes. Based on these

assumptions, reliable distributed systems are designed to be safe when the system behaves

asynchronously and only progress when it behaves synchronously [Guerraoui 2000]. De-

spite the mistakes it can make, a failure detector is a powerful abstraction as it encapsu-

lates unpredictable system behavior.

A failure detector is specified in terms of two properties: completeness and accu-

racy [Chandra and Toueg 1996]. Completeness is the property that describes how well a

failure detector will perceive real failures, while accuracy is the property that describes

how well it will avoid mistakes [Reynal 2005], e.g., false detections. Failures detectors

will behave differently and support other failures models by simply strengthening or loos-

ening completeness and accuracy [Guerraoui 2000].

Of special interest for this work is the Ω failure detector, originally presented

in [Chandra et al. 1996]. The Ω failure detector is a leader election, a failure detector

that outputs a single trusted process. Formally, the Ω failure detector is specified by the

following properties [Guerraoui 2000]:

• Eventual Accuracy: There is a time after which every correct process trusts some

correct process.

• Eventual Agreement: There is a time after which no two correct processes trust

different processes.

This pair of properties ensures every correct process will eventually trust the same

correct process. The eventual behavior means it is necessary a long enough period of

synchrony in order for the properties to be achieved. The Ω failure detector is used as a

building block to solve more complex problems such as consensus [Lamport 1998] and

atomic broadcast [Chandra et al. 1996].

It is rather easy to create a leader election using regular failure detection. Let each

process in a distributed system use a failure detector to monitor every other process and

create a set C of processes it believes to be correct. Eventually the set C will be the

same in all correct processes and the leader can be chosen as the process in C with the

smallest pid. However, this reduction is very costly in terms of heartbeat messages, as it

requires N2 −N heartbeat messages for each η, one for each unidirectional communica-

tion link. Moreover, this reduction doesn’t provide a very useful property: leader stability.

Leader stability is the ability of the failure detector to never remove the leadership from

a correct process because another process (with a lower pid, for instance) begins to be

trusted [Malkhi et al. 2005]. Leader stability is very useful for Paxos, for example, be-

cause a leadership change in this algorithm can be a costly operation [Vieira et al. 2014].

2.3. QoS of Failure Detection with Crash-Stop Failures

A set of failure detectors with a model for quality of service was first proposed by Chen

et al. [Chen et al. 2002]. In that work, the authors presented the concept of QoS for

failure detectors, alongside quantitative metrics to measure it. They also presented a set

of failure detectors that were designed to have a precise model of the behavior of these

metrics. Roughly speaking, quality of service means the failure detector is configured to

meet strict application requirements and work accordingly to the network probabilistic

behavior.
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The failure detector proposed by Chen et al. has two main components: an esti-

mator and a configurator. The estimator is responsible for analyzing the network prob-

abilistic behavior in terms of message losses and message delays. The configurator is

responsible for generating a suitable failure detector based on the behavior observed by

the estimator and on the QoS requirements provided by the application developer. The

application developer must specify the application requirements in terms of three metrics:

• Detection time (TD): This measures how much time elapses from the occurrence

of a crash and it being detected by the failure detector;

• Mistake recurrence time (TMR): This measures the time between two consecutives

mistakes made by the failure detector;

• Mistake duration (TM ): This measures how much time the failure detector takes

to correct itself once it has made a mistake.

The result is a customized failure detector in which both heartbeat inter-sending

interval η and the safety margin α are shaped to meet the given constraints, when it is fea-

sible. Once configured, a failure detector is ready to work as usual: a monitored process

p sends every η time units a heartbeat message to a monitor process q, which will wait for

those messages for a specific time, plus a safety margin α.

In this paper we will discuss only one of the failure detectors proposed by Chen et

al., namely the New Failure Detector with Expected Arrival Time Calculation (NFD-E).

The NFD-E algorithm is the most suitable for partially synchronous distributed systems as

it assumes no clock synchrony among the processes and estimates the arrival time of fu-

ture heartbeats. This algorithm is particularly interesting because its QoS model is based

only on the variance of the message propagation delays and not on the unknown delays

themselves. However there is some limitations about the required assumptions needed to

this algorithm work properly. It assumes a crash-stop failure model and, although there

is no assumption about synchrony among processes, it is necessary that each process has

access to a local clock. Furthermore, it is assumed there is no clock drift between any two

local clocks.

The NFD-E algorithm works as follows: for all i ≥ 1, a monitored process p
sends at time i · η a heartbeat message mi to a monitor process q. Also for all i ≥ 1,

process q waits for message mi until a freshness point τi = EAi + α. If no message

with a label equals or grater than i is received by q until τi expires, i.e., no fresh message

arrives before its timeout, then q starts suspecting p. To estimate each arrival time EAi,

process q uses a predictor based on the set of n previously received messages from p.

Let m′

1, ...,m
′

n be the messages received by q, s1, ..., sn be the sequence numbers of such

messages, A′1, ..., A
′

n be their receipt time according to q’s local clock and ` the largest

sequence number among all s1, ..., sn. Then EA`+1 is estimated by [Chen et al. 2002]:

EA`+1 ≈
1

n

(

n
∑

i=1

A′i − ηsi

)

+ (`+ 1)η (1)

The predictor that calculates EAi actually estimates the average message delay for

the last n messages, shifting backward in time by η ·si each A′i. By adding α to estimation

made by the predictor, the failure detector is able to absorb some variation in message
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delay. A study made by [Nunes and Jansch-Porto 2004] observed that the predictor used

in the NFD-E algorithm is not the more accurate, but the use of a constant safety margin α
allows the failure detector to achieve a good QoS. Hence the predictor used by the NFD-

E algorithm plays a more important role in QoS achievement than the one originally

observed by its authors, being responsible for accounting for the uncertainty in message

propagation delays typical of partially synchronous system.

The full algorithm as presented by its authors in [Chen et al. 2002] is shown in

Algorithm 1.

Algorithm 1 NFD-E Algorithm

1: procedure SENDHEARTBEAT . Procedure exclusive for p, using p’s local clock.

2: for all i ≥ 1, at time i · η do send heartbeat mi to q

3:

4: procedure INITIALIZATION . Procedures exclusives for q, using q’s local clock

5: τ0 ← 0
6: `← −1

7:

8: upon event τ`+1 = now() do

9: output← Suspect

10: upon event receives message mj at time t do

11: if j > ` then

12: `← j
13: τ`+1 ← EA`+1 + α
14: if t < τ`+1 then

15: output← Trust

16:

2.4. QoS of Failure Detection with Crash-Recovery Failures

In [Ma et al. 2010] the authors analyze the QoS of the synchronous New Failure Detector

with Synchronized Clocks (NFD-S) algorithm found in [Chen et al. 2002]. This algorithm

assumes a synchronous system and Ma et al. assume some sort of time synchronization

to be present, such as the NTP protocol.

The expanded model outlined in [Ma et al. 2010] presented additional QoS met-

rics that complement those in [Chen et al. 2002] listed in Section 2.3:

• Query Accuracy Probability (PA): it measures the probability that, at any arbi-

trary time when queried, the failure detector correctly indicates the state of the

monitored process.

• Recovery Detection Time (TDR): it measures the time the failure detector per-

ceives a recovery at the monitored process.

• Detected Failure Proportion (RDF ): it measures the ratio of the detected crashes

over the actual crashes.

The configuration of the failure detector and parameter estimation for a desired

QoS are shown in [Ma et al. 2010]. While an interesting expansion of previous work,
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[Ma et al. 2010] conclude that the proposed algorithm and QoS model needs to be en-

hanced, specifically to deal with short failures that may not be detected. Additionally, the

experimental results in some tests differs substantially from the expected behavior of the

implemented failure detector (specially for the RDF QoS metric), reinforcing the need for

more research for a failure detector in this system model. Because of these limitations,

in this paper we do not use the expanded set of metrics for a crash-recovery system, but

instead we use the basic set proposed by [Chen et al. 2002].

3. Algorithm

In the previous sections, we provided the theoretical background needed to understand

key concepts such as synchrony models, failure detectors with quality of service and

leader election. In this section we present the New Failure Detector as a Leader Elec-

tion Algorithm (NFD-L) leader election algorithm, which is a derivative of NFD-E algo-

rithm [Chen et al. 2002], shown in Algorithm 2. NFD-L is an efficient leader election

with stability that only requires a single message each η. More importantly, NFD-L is

designed to work on the crash-recovery system model with no clock synchrony among

processes and requiring only a single stable memory write during process initialization.

3.1. A Failure Detector with QoS as a Leader Election

A leader election is a failure detector that outputs a single trusted process. The output of

NFD-L is the pid of the trusted leader. It is possible that each process of the distributed

system sees a different process as a leader at the same time, but when the system behaves

synchronously for a sufficient amount of time, eventually all correct processes will agree

on the same leader. To achieve this we combine the general principle of the bully algo-

rithm [Garcia-Molina 1982] with the failure detecting properties of the NFD-E algorithm,

using process uptime as a priority measure to ensure a basic level of stability.

Each process starts (or recovers) knowing nothing about the current leader. If

it receives no message from a leader process, it then assumes it is the leader and starts

sending heartbeat messages. A process loses the leadership when it receives a message

from a process with greater priority: greater uptime or greater pid in the event of a tie

on uptime. When a process recognizes another process as a leader, it stops sending

heartbeats and starts monitoring heartbeats sent by the leader, in a behavior similar to

NFD-E. Thus, at this moment, only a process acting as a leader sends periodic heartbeat

messages to all other processes that will behave as monitors. The leader election stabilizes

when each correct process receives the message of a single process with high enough

priority.

In steady state operation and assuming a broadcast communication medium the

cost of NFD-L will be equivalent to single instance of the NFD-E algorithm, compared to

the N2−N instances of the naive reduction. Furthermore, in the fail-free case after stabi-

lization the QoS of NFD-L will be equivalent to the QoS of NFD-E as it is a generalization

of this algorithm.

3.2. Dealing with Crashes and Recoveries

Each heartbeat message m sent by a monitored process p carries an incremental sequence

number i used by a monitor process q to determine if an incoming heartbeat is still fresh,
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Algorithm 2 NFD-L Algorithm

1: procedure INITIALIZATION

2: leader ← ⊥

3: self .uptime ← 0
4: retrieve(self.zerotime)
5: if self.zerotime = ⊥ then

6: self.zerotime ← now()

7: store(self.zerotime)

8: i← now()−self.zerotime

η

9: procedure SENDHEARTBEAT

10: if self.pid = leader then

11: for all i ≥ 1, at time i · η do

12: send heartbeat mi to all processes

13: self.uptime← self.uptime+ 1

14:

15: upon event receives message mj at time t do

16: if sender(mj) = leader then

17: if j > ` then

18: `← j
19: τ`+1 ← EA`+1 + α

20: else

21: if uptime(sender(mj)) > uptime(leader) then

22: `← j
23: leader ← sender(mj)
24: output← leader
25: else

26: if uptime(sender(mj)) = uptime(leader) then . Tiebreaker

27: if pid(sender(mj)) > pid(leader) then

28: `← j
29: leader ← sender(mj)
30: output← leader

31:

32: upon event τ`+1 = now() do

33: leader ← self.pid
34: output← leader
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thus trusting or suspecting p to remain as leader. After recovering from a crash, it is

important that process p starts sending correct sequence numbers to q, i.e., process p
should remember which one was the exact sequence number i it sent before it crashed. If

process p “forgets” its sequence number and starts sending i from the initial value, it will

not be trusted by process q until i reaches the value it held before process p crashed.

The naive solution to remember the correct sequence number i to be used after a

crash, is to write on persistent storage i every time process p sends a heartbeat message

mi. However, while correct, this solution isn’t efficient regarding the number of writes to

costly stable memory. We propose a cheaper solution that uses a single write operation

once a process is initialized and to a read operation per process recovery.

Our solution takes advantage of the assumption that every process has access to

a local clock and that the i-th heartbeat message should be sent at time i · η. It works

as follows: when a process starts for the very first time or it recovers from a previous

crash, it checks if it wrote on persistent storage a timestamp of a previous initialization.

If there is not a previous timestamp on persistent storage, the process then writes the

current timestamp on persistent storage. This way, this value will be read and constant

at every single recovery of that process. Using this value a process calculates what the

current message label i is supposed to be, based on a function of the elapsed time since

the first startup and η (Line 8). It ensures that every time a process starts or recovers, the

message label i will not violate the properties defined in [Chen et al. 2002], i.e., every

message label i sent by a process will be greater than the previous label i − 1. The only

requirement is that the local clock keeps increasing with no drift during crashes.

4. QoS Analysis

In this section we present the QoS analysis of the NFD-L algorithm. The QoS anal-

ysis is made using the three metrics proposed in [Chen et al. 2002], TD, TMR and TM

(Section 2.3), with the addition of the TDR metric proposed in [Ma et al. 2010] for the

crash-recovery failure model (Section 2.4). These metrics will be grouped in failure de-

tector accuracy metrics (TMR, TM ) and failure detector speed metrics (TD, TDR). The

experiments have the objective of assessing if the QoS of the proposed failure detector is

within the bounds achieved by Chen’s algorithm.

4.1. Enviroment and configuration of the leader election

These experiments ran at the Maritaca computational cluster, located at Universidade Fed-

eral de São Carlos, Sorocaba, São Paulo. We used 5 identical nodes, each one equipped

with an 8 cores/16 threads processor and 16 GB of volatile memory. Each node used a

hard disk as its persistent storage and all nodes were interconnected by a Gigabit Ethernet

link.

The NFD-L algorithm by design selects a node as the leader and the other four

nodes behave as monitor processes, receiving heartbeats sent by the leader. We monitored

the leader election output of each monitor process to assess the QoS metrics. To generate

a constant load on the network and on the system, we used the leader election as a service

provider for the Treplica replication framework [Vieira and Buzato 2008]. The replication

rate was set to the saturation point of the application with this setup, which was 2700

operations per second on average.
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To generate the parameters η and α for the leader election, we used the configu-

rator described by [Chen et al. 2002] during a period when the network was under high

load due to the test application. We then measured the network probabilistic behavior for 1

hour, repeating it 3 times in total in different hours of the day. The observed message loss

probability pL = 0.0175917 and the observed message delay variance V (D) = 25.3356
were then used with the following QoS metrics TD = 1000 ms, TMR = 3600000 ms and

TM = 1000 ms to obtain η = 330 ms and α = 670 ms.

We made two set of experiments in order to respectively observe the accuracy and

the speed of the failure detector. The accuracy was measured by counting the average

mistake rate (TMR) and the mistake duration (TM ) for each monitor process during 6 runs

of 1 hour each. During the experiment the leader process did not fail, thus all suspicions

were mistakes that were eventually corrected. Let tm0, ..., tmn be the timestamps of the

mistakes made by a process and tr0, ..., trn be the timestamps of the correction of those

mistakes, then we computed the mistake rate of that process as:

1

TMR

=
1

1
n
(
∑n

i=1 (tmi − tmi−1))

The average mistake duration of a process was computed as the average time taken

to correct a mistake:

TM =
1

n

(

n
∑

i=0

(tri − tmi)

)

The speed of the leader election algorithm was measured by the crash detection

time (TD) and by the recovery detection time (TDR). To be able to measure TDR, we have

randomly selected a node as a high priority leader, breaking the specification of NFD-L

in such way that this leader would be immediately reelected after a recovery. We then

injected a single crash in the leader process and then we recovered it, measuring the time

elapsed for each process to detect the crash and, afterwards, the time elapsed for each

process detect the leader recovery. This experiment consisted of 10 repetitions of a crash-

recovery cycle, with 60 seconds between a crash and the following recovery. Let tc be the

time of a leader crash and td the time of detection of that crash by a monitor process, the

detection time TD was obtained by calculating the difference of times:

TD = td − tc

In a very similar way, the recovery detection time was calculated considering the

recovery time tr and the detection time of that recovery tdr by a process:

TDR = tdr − tr

For this experiment we used the NTP protocol at the local network to synchronize

the clocks of the nodes of the cluster. This procedure is not necessary for the algorithm

to work properly, but it made easier to calculate time differences between the nodes. By

using the NTP protocol we also observed that the average message delay between the

nodes were a thousand of times smaller than the message intersending interval η intended

to be used in our experiments, so we considered the message delay negligible.
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4.2. Analysis

We plotted the QoS metrics observed in the experimental runs in boxplots. For each run

the data points represent the metric as measured by each one of the four monitor process

with respect to the current state of the actual leader. This amounts to a total of 24 points

for the experiments assessing the accuracy of the failure detector and 40 points for the

experiments assessing the speed of the failure detector. The expected value of the QoS

metric used to configure the NFD-L algorithm is shown by the traced line in all plots.

Numeric values for the data points represented in the figures are shown in Table 1, listing

the values of the 1st, 2nd and 3rd quartiles.

Figure 1(a) shows the observed mistake rate. The majority of the processes (the

darker line at the bottom of the image) made no mistakes, successfully achieving the

required QoS of TMR = 3600000 ms. However, there were outlier processes that did

not achieve the required QoS. Among these, there is a single outlier that is not shown

on figure, with a mistake rate of 33.34 mistakes/s. These outliers consist of a couple of

mistakes in an one hour experiment, negatively affecting the average mistake recurrence

time. In fact, the way the metric is computed (as proposed in [Chen et al. 2002]) increases

the impact of each of the low number of mistakes. For example, the 33.34 mistakes/s

outlier was created by one pair of mistakes 30 ms apart. The Figure 1(b) shows the

observed mistake duration. The processes that made no mistakes were disconsidered. All

the observed processes did meet the required QoS TM = 1000 ms.
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Figure 1. (a) The mistake rate 1/TMR and (b) the mistake duration TM . The traced
line in the plots represents the upper bound QoS requirements for the leader
election.

The crash detection time is shown in Figure 2(a). All the crashes were detected

within the required QoS as the crash detection is bounded to TD = η+α. The Figure 1(b)

shows the recovery detection time TDR observed by the monitor processes. The speed

metrics had less variation than the accuracy ones. It suggests that accuracy is more sensi-

tive to process dependability than to network probabilistic behavior. As we assessed the

QoS metrics of the failure detector integrated in a loaded application, pauses in the pro-

cessing of the application created loss and delay of messages more intense than the ones
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created by network probabilistic behavior alone. In a sense, this amounts to periods of

omission faults where the processes stopped processing. We conjecture that a QoS model

for the crash-recovery process model should be able to absorb this process behavior.
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Figure 2. (a) The leader crash detection time TD and (b) the leader recovery de-

tection time TDR observed by each monitor process. The traced line represents
the upper bound QoS requirements for the leader election.

QoS Metric 1st. Quartile Median 3rd. Quartile Upper bound QoS

1/TMR (Figure 1(a)) 0 1/s 0 1/s 0 1/s 0.278 · 10−3 1/s

TM (Figure 1(b)) 20 ms 98.223 ms 146.03 ms 1000 ms

TD (Figure 2(a)) 735 ms 741.5 ms 754.25 ms 1000 ms

TDR (Figure 2(b)) 113 ms 570.5 ms 595 ms 1000 ms

Table 1. Summary of plot values

5. Conclusion

In this paper we presented the NFD-L leader election for the asynchronous crash-recovery

failure model. This algorithm is an extension of the NFD-E [Chen et al. 2002] algorithm

adapted to work as a leader election that is efficient in terms of its use of stable memory

and message exchanges. The NFD-L algorithm used two novel techniques to achieve

its efficiency: (i) instead of using a counter of crashes as usual [Martín et al. 2009], it

uses a counter of uptime to prioritize stable processes and (ii) it uses a single write in

stable memory to create a sequence of heartbeats that isn’t interrupted by crashes, but

only appears to be “paused”, reducing crash failures to message omission failures.

We analyzed the performance of the NFD-L algorithm on a real system to verify

how well it met the given QoS, configured as proposed in [Chen et al. 2002]. We were able

to achieve the desired QoS, but the accuracy QoS metrics suffers for repetitive short period

mistakes caused by the application. Our results suggest that accuracy of a failure detector

is dependent on process dependability besides the effects of network probabilistic be-

havior. In particular, application overload spikes, lock contention and other performance
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problems can severely interfere in the generation and processing of heartbeats. Thus, fur-

ther enhancements of the QoS model are needed to make the algorithm suitable to an en-

vironment where the processes dependability is a main concern. We believe these changes

must take in consideration crash-recovery parameters such as the ones found in [Ma et al.

2010] or be made more application specific as proposed in [Hayashibara et al. 2004].
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