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Abstract. The article presents a novel solution addressing the limitations of
Adaptive Data Rate (ADR) mechanism in LoRaWAN networks, particularly
in scenarios characterized by fluctuating channel conditions. By employing
percentile-based statistical techniques, the proposed P-ADR optimizes Signal-
to-Noise Ratio (SNR) estimation for adjusting transmission parameters, thereby
enhancing reliability while preserving energy efficiency. Simulation results
revealed superior performance of P-ADR, exhibiting an average Packet Delivery
Ratio (PDR) advantage of approximately 5% over ADR+ and around 25% over
standard ADR in mobile scenarios. The outcome highlights P-ADR potential as
a viable and efficient alternative, improving reliability in LPWAN applications.

1. Introduction
The Internet of Things (IoT) has emerged as a communication paradigm aimed

at interconnecting devices to the Internet, enabling real-time data collection and
processing. This large-scale interconnection promotes the creation of an intelligent
ecosystem where devices can be monitored, controlled, and integrated into complex
systems [Sadhu et al. 2022]. The versatility of IoT allows the development of applications
in various sectors such as smart agriculture, environmental monitoring, smart cities, smart
meters for energy and water consumption, and smart health. For instance, sensors can
gather data on soil moisture and climate, enabling precision agriculture with efficient
resource utilization [Jouhari et al. 2023].

In this context, Low-Power Wide-Area Network (LPWAN) technologies arise as
a promising solution for IoT applications. This network category is designed to meet
the specific requirements of IoT devices, offering extended range, minimized energy
consumption, and the capacity to support numerous connected devices. By adopting more
specific technologies like LoRaWAN, Sigfox, and NB-IoT [Kadusic et al. 2022], LPWAN
networks provide a robust and efficient infrastructure for communication across wide
geographical areas.

Among LPWAN technologies, LoRaWAN has gained prominence due to its open-
source standard and low deployment costs. Its architecture incorporates Long Range
(LoRa) radio technology in the physical layer, enabling an extended signal range and
deployment capability in both urban and rural areas. Thus, adopting the LoRaWAN
specification offers several advantages, such as prolonged device battery life and extensive
geographical coverage [Bonilla et al. 2023].



Furthermore, LoRaWAN networks must meet specific Quality of Service (QoS)
requirements, which depends, among other factors, on the appropriate adjustment of
specific transmission parameters, namely: Spreading Factor (SF), Transmission Power
(TP), Bandwidth (BW), Coding Rate (CR), and Carrier Frequency (CF). This adjustment
can be dynamically performed by a mechanism known as Adaptive Data Rate (ADR),
which controls the transmission parameters of end devices to maximize network throughput
and minimize energy consumption [Kufakunesu et al. 2020]. However, the efficacy of
ADR is affected by a high configuration convergence period due to its conservative
approach, gradually adapting transmission parameters values. This strategy is suitable for a
static node environment but becomes unfeasible when there are variations in channel
conditions [Farhad and Pyun 2022], resulting in degraded performance in scenarios
involving mobile nodes, for instance.

Addressing this issue, alternative mechanisms to standard ADR have
been proposed applying algebraic and statistical techniques, such as mean
value [Slabicki et al. 2018], Gaussian filter [Farhad et al. 2020], and spatio-temporal
correlation [Jiang et al. 2023], aiming to explore heuristics for handling frequent variations
in channel conditions. Thus, this study proposes an alternative to standard ADR
mechanism. The scheme named Percentile based ADR (P-ADR) employs percentile
concepts [Amarnath Nandy and Ghosh 2022] to adjust appropriate signal-to-noise ratio
(SNR) estimation values used in the ADR algorithm, effectively adapting to frequent
changes in channel conditions and obtaining favorable Packet Delivery Ratio (PDR) values,
a metric indicating the proportion of successfully transmitted packets relative to the total
sent packets [Alahmadi et al. 2021].

Based on these premises, the main contributions of this paper are:

• Introduction of a viable alternative to standard ADR, showcasing satisfactory
reliability performance, especially in scenarios involving mobile applications;

• Investigation of a statistical technique designed to alleviate the impact of SNR
variability resulting from continuous changes in channel conditions;

• Provision of an easily implementable method for adjusting transmission parameters
within LoRaWAN networks, necessitating minimal modifications on the network
server side of ADR algorithm.

The remainder of this paper is organized as follows. Section 2 presents the
theoretical background of this paper. Section 3 discusses the related works. Section 4
describes the proposed approach. The results obtained are detailed and discussed in
Section 5. Finally, Section 6 concludes the paper with final remarks and directions for
future work.

2. Theoretical Background
This section introduces LoRa and LoRaWAN technologies, emphasizing their key

features and discussing the pertinent transmission parameters in LoRaWAN networks, as
well as how the ADR mechanism operates to adjust them appropriately.

2.1. LoRa

The proprietary LoRa specification, developed by Semtech, addresses specific
IoT requirements for LPWAN, focusing on long-range communication and low energy



consumption. This standard was designed to operate in unlicensed sub-GHz ISM
(Industrial, Scientific, and Medical) bands, allocated according to the operating
region [Ertürk et al. 2019].

Aiming to fulfill these requirements, LoRa implements Chirp Spread Spectrum
(CSS) modulation, enabling devices to transmit at low data rates with long range,
approximately 2 to 5 km in urban areas and 10 to 15 km in rural areas [Singh et al. 2023].
However, it is important to note that these distances can vary significantly depending on
environmental conditions and interferences.

Moreover, LoRa transmission incorporates the Forward Error Correction (FEC)
technique, enabling the use of redundant bits to aid in error detection and correction
within frames. These combined features provide robust communication, more resilient
to interference, making LoRa an attractive and cost-effective choice for LPWAN IoT
communication applications [Kufakunesu et al. 2020].

2.2. LoRaWAN

The LoRaWAN specification, standardized by the LoRa Alliance, implements
an open-source MAC protocol operating above the LoRa physical layer. This protocol
facilitates data transmission from multiple devices while ensuring security and energy
efficiency [Sadhu et al. 2022].

A typical LoRaWAN network adopts a star-of-stars topology, comprising End
Devices (EDs), one or more Gateways (GWs), a Network Server (NS), and an Application
Server (AS), as depicted in Figure 1. The EDs are responsible for collecting data or
operating within a defined environment, sending and receiving packets. The GWs receive
data packets from the EDs and forwards them to the NS using another communication
technology, typically IP-based. Finally, the NS processes the received data and directs it to
a specific AS for further processing and analysis [Kufakunesu et al. 2020].

Figure 1. LoRaWAN network architecture.



Furthermore, LoRaWAN uses ALOHA as channel access protocol, which, although
efficient in terms of simplicity, can lead to collisions when multiple EDs attempt
simultaneous transmissions on the same channel [Picard et al. 2021]. One approach to
mitigate these issues is by adjusting the transmission parameters within the LoRaWAN
network. This adjustment allows devices, for instance, to communicate on different
frequency spectrums, thereby reducing the likelihood of collisions.

2.3. Transmission Parameters

The communication between ED and GW involves several parameters that
define fundamental settings for the operation of a LoRaWAN network. Some of these
parameters are fine-tuned by the ADR mechanism, others can be adjusted under certain
network conditions, and some are dependent on external factors, such as duty cycle
limitations [Finnegan et al. 2020].

Spreading Factor represents the number of bits used in LoRa CSS modulation,
more precisely determining the duration of a chirp, ranging between 27 (SF7) and 212

(SF12) [Jouhari et al. 2023]. SF levels influence several transmission factors that bring
trade-offs among them. For instance, lower SF values enhance the bit rate but reduce the
communication range. To overcome this effect, higher SF values are used, enhancing SNR,
allowing for extended-range communication. However, higher SF levels result in a longer
Time on Air (ToA), the period during which the device is active for transmission, leading to
a reduction in battery life due to prolonged radio transceiver activity [Moraes et al. 2022].
Furthermore, this parameter exhibit orthogonality, implying that modulated signals with
different SF values, transmitted simultaneously on the same frequency channel, do not
interfere with each other [Caillouet et al. 2019].

Transmission Power refers to the signal intensity emitted by a LoRa device,
determining its reach and ability to penetrate obstacles or overcome interference
conditions. Augmenting the TP can expand the signal range but escalates energy
consumption. In its turn, Bandwidth is a parameter related to the amount of the spectrum
portion used for transmission. Increasing the BW, for instance, from 125 kHz to 250
kHz [Kufakunesu et al. 2020], enables simultaneous transmission of a larger byte volume
but it also makes the channel more susceptible to noise.

Another parameter is the Coding Rate, which is attached to FEC technique
aforementioned and related to the redundancy of transmitted data, affecting resistance to
interference and communication errors. Higher CR levels increase fault tolerance but also
raise ToA and energy consumption [Ertürk et al. 2019]. Finally, the Carrier Frequency
determines the central frequency of the communication channel. The selection of this
parameter is attached to the operating region of the network, which adheres to regulations
dictating the permissible ISM bands for usage.

In general, all these parameters have a direct impact on the QoS of LoRaWAN
networks. The value of these factors can be determined statically by the network operator
or dynamically by enabling the ADR mechanism on the network server. An important point
to highlight is that the optimized adjustment of these parameters, when feasible, is essential
to ensure transmission efficiency in LoRaWAN networks, finding the ideal balance between
communication range, energy consumption, and reliability [Farhad and Pyun 2022].



2.4. Adaptive Data Rate

Considered as a key mechanism in LoRaWAN networks, Adaptive Data Rate
enables the NS to control data rate, transmission power, channels used, and the number of
retransmissions made by each ED in the network when sending packets. Using the SNR
values from messages originating from an ED, the NS determines the proximity of that
device to the nearest GW. This allows the NS to select the most suitable settings for each
ED. The benefits of ADR are noteworthy, as it contributes to preserving the battery life of
an ED and reducing communication interference [Jouhari et al. 2023].

ADR operates in two distinct parts: at the ED and at the NS. The NS implementation
covers the more complex part, leaving the ED with the simpler task [Anwar et al. 2021].
The objective of the portion executed at the ED is simply to decrease the data rate to
increase radio coverage if the uplink transmission does not reach the gateway (meaning
loss of connection).

On the other hand, the portion executed in the NS facilitates the adjustment
of TP and the increment of data rate for uplinks by decreasing SF. To achieve
this, SNR values from received packets are collected by the server after ADR
mechanism activation. Subsequently, based on Equations 1 and 2, the NS estimates
the new SF and TP values for future transmissions until the subsequent ADR
activation [Farhad et al. 2020]. According to Equation 1, when adjusted using the standard
ADR, SNRm stores the maximum SNR value based on the last M = 20 received
packets. SNRreq stores the SNR value corresponding to the most recent packet, while
devicemargin represents a signal tolerance constant, commonly set to 10 dBm in various
implementations [Slabicki et al. 2018][Ivoghlian et al. 2022]. In Equation 2, the value
of Nsteps determines the adjustment step for SF and TP values, communicated to the
ED through LinkADRReq, a MAC command responsible for requesting changes to the
values of the EDs configuration parameters. This iterative process enables the ADR to
continuously optimize communication settings, dynamically adapting them for enhanced
performance within the LoRaWAN network.

SNRmargin = SNRm − SNRreq − devicemargin (1)

Nsteps = floor(SNRmargin/3) (2)

However, as previously mentioned, this SNR-based adjustment process is suitable
for applications where nodes remain static, as ADR struggles to accommodate changes in
channel conditions. For mobile EDs, Semtech recommends employing the Blind-ADR
mechanism1. This method disregards channel conditions, opting instead for a temporal
alternation among three spreading factor values (SF7, SF10, and SF12) to prioritize
optimal communication coverage and energy efficiency, albeit potentially compromising
PDR [Soy 2023].

1Blind-ADR. Retrieved January 02, 2024, from https://lora-developers.semtech.com/documentation/tech-
papers-and-guides/blind-adr/



3. Related Work
This section outlines alternative solutions to the standard ADR mechanism in

LoRaWAN networks. For a comprehensive overview, Table 1 provides a summary of the
analysis of related works, focusing on the ability of the proposed methods to: i) adapt
to scenarios involving mobile EDs, ii) mitigate the effects of SNR variability, and iii) be
easily deployed with minimal modifications on both the ED and NS sides of the ADR
mechanism.

Table 1. Comparing key aspects of P-ADR and related work.

Method ED Mobility SNR variability Deployment
[Slabicki et al. 2018] ADR+ ✓ ✓
[Farhad et al. 2020] G-ADR ✓ ✓
[Farhad et al. 2020] EMA-ADR ✓ ✓
[Jiang et al. 2023] K-ADR ✓ ✓
This work P-ADR ✓ ✓ ✓

[Slabicki et al. 2018] modified the signal quality indication method by adopting the
average SNR instead of the maximum SNR applied in the standard ADR. In a simulation
considering urban and suburban scenarios, ADR+ presented by the mentioned study
showed improvements in network reliability and energy efficiency compared to the standard
ADR. However, despite ADR+ also applying statistical techniques to estimate the link
quality indicator, the use of the average is not recommended in situations where data is
skewed or contains outliers [Amarnath Nandy and Ghosh 2022], as is the case with SNR
values obtained in LoRaWAN networks.

The limited responsiveness of ADR to fluctuating channel conditions and its
prolonged configuration convergence time led [Farhad et al. 2020] to propose two solutions
employing low-pass filters: Gaussian filter-based ADR (G-ADR) and Exponential
Moving Average ADR (EMA-ADR). These methods aim to address rapid changes
in the SNR of received packets at the NS, showcasing promising results in PDR
and energy efficiency. Additionally, they showcase a reduction in the convergence
time required for ADR adjustments, applicable to both stationary and mobile nodes.
Nevertheless, G-ADR and EMA-ADR adjust SF and TP only when an ADRACKReq
MAC command with the ACK bit enabled is received, requiring ED to have ADR Backoff
implementation [Finnegan et al. 2020], a feature available only in newer versions of the
LoRaWAN specification.

In a recent development, [Jiang et al. 2023] introduced the K-ADR algorithm based
on an Ordinary Kriging function, leveraging the spatiotemporal correlation of SNR to
predict communication trends and anticipating the expected conditions for subsequent
instances. Thus, K-ADR demonstrated PDR and energy consumption comparable to ADR+.
However, the adopted simulation time is considered insufficient for a comprehensive
analysis of the proposal, as it disregards the high configuration convergence time required
by the ADR mechanism.

4. Proposed Approach
In scenarios characterized by frequent changes in channel conditions, the SNR

values collected by the ADR scheme exhibit variations that interfere with the estimation



of new transmission parameter values. Under these conditions, adopting the maximum
SNR value in the variable SNRm, expressed in Equation 1, as an estimation factor
for channel quality leads to slow adjustment convergence, resulting in a higher packet
loss [Slabicki et al. 2018].

Aiming to determine the most representative value for the variable SNRm, 400 sets
of M SNR values were collected using the standard ADR mechanism, resulting in a total
of 8000 samples. The analysis of this data distribution, depicted in the histogram presented
in Figure 2(a), reveals an asymmetry, suggesting a higher concentration of data toward the
lower end of the x-axis. The highest frequency of values, exceeding 1500 occurrences,
can be noted between −19 dB and −13 dB, indicating that lower SNR values are more
common. The skewed nature of the distribution becomes more apparent when examining
20 random samples from the previously collected sets, as depicted in the boxplots shown in
Figure 2(b). The elongated tails beyond the boxes and the frequent occurrence of outliers
reinforce the high variability aspect of the data.

Figure 2. Distribution of SNR values using (a) histogram and (b) boxplots.

In such circumstances, assuming that the acquired SNR values are often
subject to bias, utilizing maximum or mean values for estimating channel quality
may result in suboptimal adjustments to network transmission parameters. Based
on this premise, this study proposes an alternative approach to standard ADR by
employing a percentile-based technique to mitigate the variability effect of SNR
values [Amarnath Nandy and Ghosh 2022], as outlined in Algorithm 1. Initially, SNRlist

is created to store the SNR values of the last M = 20 received packets, as shown in lines
1-3. Subsequently, the median and third quartile values, stored in the variables lb and ub
respectively, are obtained, as indicated in lines 4-5. The average value of these variables
then determines the new value for the variable SNRm, as shown in line 6, which guides
the algorithm through identical steps as the standard ADR, as described in lines 7-20.

Thus, P-ADR employs percentiles calculated from the gathered SNR values to
estimate the variable SNRm in order to mitigate the effects of channel state fluctuations.
This method leads to an optimized adjustment of transmission parameters, enhancing
reliability, particularly in scenarios involving mobile applications.



Algorithm 1: Proposed P-ADR scheme.
Input: SF ∈ [7, 12], TP ∈ [2dBm, 14dBm],M, devicemargin

1 SNRlist← ∅
2 for i← 0 to M − 1 do
3 SNRlist[i]← getSNR(i)

4 lb← getMedian(SNRlist)
5 ub← getThirdQuartile(SNRlist)
6 SNRm ← (lb+ ub)/2
// Standard ADR Algorithm

7 SNRreq ← demodulation floor (current data rate)
8 devicemargin ← 10
9 SNRmargin ← SNRm − SNRreq − devicemargin

10 Nsteps ← int (SNRmargin/3)
11 while Nsteps > 0 and SF > SFmin do
12 SF ← SF − 1
13 Nsteps ← Nsteps − 1

14 while Nsteps > 0 and TP > TPmin do
15 TP ← TP − 2
16 Nsteps ← Nsteps − 1

17 while Nsteps < 0 and TP < TPmax do
18 TP ← TP + 2
19 Nsteps ← Nsteps + 1

20 NS sends LinkADRReq(SF, TP )

5. Results and Discussion
This section outlines the experimental setup and the primary tools employed.

Subsequently, the obtained results are presented and discussed.

5.1. Experimental Setup
In order to assess the performance of the proposed method, an experiment was

conducted using Network Simulator2 (NS-3) supplemented with the ELoRa module3, which
provides an updated implementation of the LoRaWAN specification [Aimi et al. 2023].

For a more comprehensive performance analysis, the experiment was designed
to include: standard ADR, Blind ADR, and ADR+, methods based on statistical
and algebraic techniques previously evaluated in related research [Slabicki et al. 2018]
[Farhad and Pyun 2022]. Additionally, K-ADR was included to consider a recent proposal
as an alternative to ADR [Jiang et al. 2023].

Drawing from realistic scenarios employed by [Farhad et al. 2020]
[Anwar et al. 2021], the simulation entailed the deployment of Class A EDs uniformly
distributed within a circular area of 5000 m radius, centered around a gateway, as
illustrated in Figure 3. The EDs were subjected to a log-distance path loss model with

2NS-3. Retrieved January 02, 2024, from https://www.nsnam.org/releases/ns-3-40/
3ELoRa. Retrieved January 02, 2024, from https://github.com/Orange-OpenSource/elora



shadowing effect. To ensure a comprehensive analysis, scenarios involving both static and
mobile EDs were encompassed. For the latter, a 2D random walk mobility model was
employed, with device speeds ranging from 0.5 m/s to 1.5 m/s. All results are presented
as average values based on 10 replications for each trial, utilizing distinct seeds for each
replication. Table 2 outlines the key parameters employed in the simulation.

Figure 3. Static EDs positioning.

5.2. Analysis of Results

The primary indicator used to assess the effectiveness of the proposed solution is
reliability. Figure 4 illustrates the average PDR across all evaluated methods while varying
the number of EDs from 200 to 1000, in steps of 200. In Figure 4(a), considering only static
EDs, there is no significant difference among the primary ADR methods. Remarkably,
Blind-ADR does not integrate this comparison due to its significantly lower performance
compared to the other solutions, owing to its simplistic SF assignment method disregarding
channel conditions.

Table 2. Simulation Parameters.

Parameter Value (unit)
Gateway radius 5000 m
Simulation time 4 days
App time period 144 packets/day

Packet size 30 bytes
Carrier frequency 868 MHz

Bandwidth 125 KHz
Code rate 4/8

Path loss exponent 3.76
Mobility model 2D Random Walk

ED movement speed [0.5 , 1.5] m/s

Nevertheless, in Figure 4(b), depicting a scenario with mixed device mobility
(50% static and 50% mobile EDs), the presence of partial mobility already demonstrates



Figure 4. Average PDR for (a) static EDs, (b) mixed scenario (50% static and 50%
mobile EDs) and (c) mobile EDs.

the prominence of P-ADR compared to other methods in trials involving 400 EDs and
beyond. This is evident as there is no overlap of their respective 95% confidence intervals.
When examining the overall average PDR of each method, calculated for the trials ranging
from 200 to 1000 EDs, the difference between the proposed solution and the second-best
solution (ADR+) is approximately 2%. However, when compared to the standard ADR,
this difference amounts to approximately 12.5%.

In the case of complete mobility observed in Figure 4(c), the performance of the
proposed solution exhibits an increase compared to other methods. The overall average
difference between P-ADR and ADR+, under these conditions, is approximately 5%.
Nevertheless, when compared to standard ADR, this difference exceeds 25%.

Considering a temporal scalability perspective of the PDR, as displayed in Figure 5,
it becomes evident that all methods showcase a collective decrease in PDR levels, except
for Blind-ADR, which exhibits an earlier decline due to employing a distinct configuration
adjustment process. The overall decline observed in the other methods can be attributed
to the common configuration convergence time, approximately 20 hours, inherent in
all ADR-based solutions. This decline is associated with the impact of mobility in
EDs [Farhad et al. 2020]. Among the examined solutions, ADR+ and P-ADR show the
least susceptibility to this impact. Notably, the proposed solution demonstrates higher PDR
values, particularly after 26 hours.

One of the main characteristics of LPWAN networks is energy efficiency. Thus,
examining the results obtained regarding this aspect, Blind-ADR emerges as the most
efficient solution, as evidenced in the graphs depicted in Figure 6. Irrespective of the
mobility level, this method does not alter its average energy consumption curve. This
behavior is justified by the logic of this scheme, which applies a temporal alternation
among SF values without considering channel conditions. It is, therefore, a solution that
prioritizes energy efficiency at the expense of reliability, as observed in Figure 4.

Upon further examination of the other solutions, in the context of scenarios
involving solely static EDs, the average energy consumption values appear almost identical,
as depicted in Figure 6(a). However, upon the introduction of mobility in the simulations,
both ADR+ and P-ADR demonstrate marginally higher energy consumption compared to K-



Figure 5. Average PDR over time for 1000 mobile EDs.

ADR and standard ADR. The differences among these methods become more pronounced
in the mixed scenario. For instance, in a scenario involving 1000 EDs, the confidence
interval difference between P-ADR and K-ADR amounts to approximately 1J, as depicted
in Figure 6(b).

In contrast, when the ED mobility is total, as shown in Figure 6(c), the confidence
intervals around the mean are larger compared to the previous scenarios, resulting in overlap
for all considered methods. Thus, it is not possible to assert that there is a significant
difference in average energy consumption among the solutions occupying the upper part
of the graph. Consequently, P-ADR showcases an energy consumption level similar to
the primary analyzed methods, except in comparison to Blind-ADR, which, as mentioned
earlier, prioritizes energy efficiency over reliability.

Figure 6. Average energy consumption (in J) for (a) static EDs, (b) mixed scenario
(50% static and 50% mobile EDs) and (c) mobile EDs.

A notable observation arises upon analyzing these graphs, as shown in Figure 6: a
discernible decline in the overall maximum energy consumption is evident on the y-axes
as mobility rates increase. Since the energy consumption model used in NS-3 for Class
A LoRa EDs only takes into account their transceiver activity, including transmission,
reception windows, and idle state (i.e., sleep mode) [Finnegan et al. 2018], it does not take



into account the energy expended in device movement. Under these conditions, it can be
inferred that mobile scenarios on average demand less power. This phenomenon might
be attributed to the consistent alterations in channel conditions due to ED mobility, which
alter the mutual interference between devices and subsequently impact the adjustment of
the TP parameter within ADR methods.

Part of the energy consumption can also be justified by the SF values assigned
to the EDs by the NS. As discussed in Section 2.3, the higher the SF value, the more
ToA is required for bit transmission, resulting in higher energy consumption. Based on
this premise, a certain pattern can be observed in Table 3, where in the scenario for 1000
mobile EDs, the average values of each SF for ADR and K-ADR are very close, reflecting
the similarity of the curves of these methods shown in Figure 6(c). The average values of
ADR+ and P-ADR also exhibit a certain proximity, which is also reflected in the energy
consumption of these methods.

Among the evaluated solutions, Blind-ADR exhibits the lowest average assignment
to the higher SF levels: 14.19%, considering the sum of SF11 and SF12 levels. In contrast,
the other methods demonstrate higher values in the sum of those same levels: 25.53% for
standard ADR, 25.46% for K-ADR, 50.14% for ADR+, and 55.63% for P-ADR. These
data not only contribute to understanding energy consumption but also elucidate the average
PDR obtained as a greater variability in SF values contributes to the mitigation of inter-SF
interference [Caillouet et al. 2019], one of the factors responsible for packet loss in the
network.

Table 3. Average SF assignment percentage for 1000 mobile EDs.

Method
Spreading Factor (%)

SF7 SF8 SF9 SF10 SF11 SF12
Blind-ADR 55.64 0 0 30.17 0 14.19
ADR 64.54 4.35 3.24 2.34 1.21 24.32
K-ADR 64.39 4.59 3.36 2.20 1.15 24.31
ADR+ 17.01 8.74 12.01 12.10 16.00 34.14
P-ADR 11.05 8.93 11.36 13.03 18.46 37.17

Given the aforementioned, concerning energy consumption, P-ADR exhibited a
disadvantage only when the average values obtained in the simulation were compared
with Blind-ADR. However, the latter method demonstrates a severe PDR loss, making it
a solution that could be adopted, for instance, in scenarios with low ED density or a low
data transmission rate, particularly when device battery life constraints are more critical.

Nonetheless, P-ADR demonstrated an overall satisfactory performance concerning
reliability and maintained a similar energy consumption level when compared to most
of the considered solutions. This performance becomes more noticeable in scenarios
involving mobile applications. This superiority is attributed to its estimation of the variable
SNRm based on percentiles, which proved to adapt more effectively to changes in channel
conditions experienced in these scenarios.

6. Conclusion and Future Works
Embedded within LoRaWAN networks, the ADR mechanism dynamically adjusts

transmission parameters to enhance the battery life of EDs and minimize communication



interference. However, this mechanism converges slowly to a suitable configuration,
making it unrecommended for scenarios with signal fluctuations, such as in mobile
applications. To overcome this limitation, a mechanism called P-ADR has been proposed.
This algorithm utilizes percentiles to estimate channel quality, aiming to mitigate the effect
of SNR variability caused by continuous changes in channel conditions.

Through simulation, the performance of the proposed solution was evaluated. The
results demonstrated that P-ADR achieved a higher PDR compared to the standard ADR
and other proposed solutions, including ADR+, K-ADR, and Blind-ADR. This superior
performance was particularly evident in scenarios involving device mobility, showcasing
an approximately 5% higher average PDR than ADR+ and an improvement of over 25%
compared to the standard ADR.

Therefore, P-ADR represents a viable, easily deployable, and efficient alternative
for dynamically adapting transmission parameters in LoRaWAN networks, offering a
significant enhancement in reliability, especially in environments with mobile devices,
without compromising network energy efficiency. As part of future work, conducting
experiments with diverse network topologies and traffic scenarios, considering additional
interference sources and deploying multiple gateways, could provide valuable insights.
Additionally, further investigations can focus on implementing P-ADR in operational
environments to evaluate its performance and behavior in real-use scenarios involving
various IoT devices and applications.
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