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Abstract. The increase and improvement of meat production over the last
decade is certainly a result of the growing adoption of Information Technol-
ogy in livestock farming. Precision livestock farming represents a prominent
strategy to deliver notable quantitative and qualitative headways and enhance
animal welfare and resource management. When managing free-ranging cattle
on pasture, there is the problem of identifying, counting and monitoring cattle
effectively, despite the extent of the pasture and the dispersal of the animals.
Using swarms of Unmanned Aerial Vehicles (UAVs) as cattle data collectors
(through readings of RFID ear tags), this work proposes an identification and
counting approach to enhance UAV collaboration and routing of the collected
data for improved area coverage. The approach integrates coverage algorithms
to inventory cattle into a farm management system using some UAVs as the last-
mile communication agent. A simulated environment considering pastures of
small and medium-sized farms with varying concentrations of cattle supports
simulations with an accuracy of 89% for a 16-minute tracking mission, reaching
100% effectiveness for cattle concentration rate within the average density of
Brazilian farms.

1. Introduction
Worldwide, 44% of the world’s habitable land is utilized for agricultural and livestock
production [Ritchie and Roser 2024]. Brazil has a significant role in this sector, being
the predominant beef exporter with approximately 25% of global exports and the second
largest beef producer [USDA 2024]. As demand for meat consumption increases, there
is a growing need to enhance livestock management in this multi-billion dollar market
[Ederer et al. 2023, Aslan et al. 2022]. This involves improving breeding, nutrition, and
overall animal health to increase productivity. Livestock management has evolved from
small-scale ranching with traditional cowboys to large-scale, intensive, optimized grazing
supported by digital technologies and wireless communications.

One emerging strategy in the livestock industry is Precision Livestock Farming
(PLF). PLF integrates digital information and communication technologies with afford-
able sensors for real-time monitoring and tracking of animals [Berckmans 2017]. This
animal-centered approach enables rapid identification and management of changes in the
health or condition of the smallest production unit, as well as the environmental impact
generated by them [Berckmans 2006]. Consequently, it enables timely and accurate detec-
tion and handling of issues, even on extensive farms with numerous cattle. For instance,



Anna Creek in South Australia, which is among the largest cattle farms, manages 17,000
beef cattle in 2.4 milion hectares of grassland, necessitating the use of PLF. 1 Speed of
decision making and execution is also a key driver of farm productivity on such large
properties.

PLF has been widely adopted in intensive farming systems, but remains a rarity
in pasture-based livestock production. These farms are typically large and have complex
livestock management due to the variability and density of the feed base (pasture quality)
and the distances covered by the animals [Aquilani et al. 2022]. The implementation
of PLF technologies on these farms may prove to be advantageous - or even essential
- in promoting animal health and well-being, as well as in preserving overall pasture
conservation and facilitating decision-making processes by decreasing expenses.

Real-time animal identification and tracking is a feasible solution for enhanc-
ing livestock farm management and reducing resource and cost overheads. Various ap-
proaches have been developed for vast open areas, such as pastures, using GPS track-
ing [Bailey et al. 2018, Koch et al. 2018, Handcock et al. 2009, McIntosh et al. 2022],
accelerometers [Werner et al. 2019,Poulopoulou et al. 2019,Sprinkle et al. 2021], or Un-
manned Aerial Vehicles (UAVs) [Yu et al. 2013,Li and Xing 2019a,Li and Xing 2019b,Xu
et al. 2020, Li et al. 2020]. These approaches have been found effective in monitoring
animal locations and behaviors, as well as habitat use and forage intake.

UAVs enable the collection of data about the animals, improving the precision and
efficiency of ranching. Additionally, solutions using UAVs for identification and tracking
are both scalable and provide automatic tracking at a relatively low operational cost [Li
and Xing 2019a]. To identify, track and collect data such as the animal’s weight, image
capture and manipulation techniques associated with UAVs [Xu et al. 2020, Soares et al.
2021, Xiao et al. 2022] are used. Camera-fitted UAVs execute only the image capturing
process owing to processing constraints, whereas information manipulation is undertaken
later at a base station to obtain the desired data.

Addressing real-time solutions for pasture area coverage, this research proposes a
cattle identification and counting approach that utilizes a swarm of UAVs that collaborate
by mutually exchanging RFID data and information for their flight coordination and joint
operation of the mission. The general objective is to maximize area coverage within a
limited flight time. To validate the cattle head counting and identification using RFID,
a non-optimized approach presented in a previous work [Cavalcanti et al. 2023] was
extended by inserting decisions in the UAVs movement to change its route to identify
more oxen in the surroundings of the previous one.

The main contribution of this paper can be summarized as follows:

• We propose an identification and counting approach for livestock pasture areas
using multiple UAVs and RFID;

• We proposed and implemented an algorithm for planning and adapting UAV paths
to follow routes with a high probability of finding cattle, based on the fact that
cattle in a herd tend to move in groups with little dispersion, and isolated animals
are rare;

• We analyzed the cattle movement behavior to improve the mobility of the mobile

1https://www.largescaleagriculture.com/home/news-details/top-10-biggest-farms-worldwide/



sensors to capture a more realistic scenario.

The rest of the paper is organized as follows. The study of contemporary tech-
niques and systems is presented in section 2. Our cattle identification approach utilizes
coordinated UAVs, as detailed in Section 3. The experimental design and simulation re-
sults are presented in sections 4 and 5, respectively. The conclusions and suggestions for
future research are discussed in the final section, 6.

2. Related Work
The use of PLF techniques and technologies has become increasingly important in ani-
mal health management. Wearable sensors are being designed specifically for livestock,
enabling real-time monitoring of vital signs, such as body temperature, pH levels, behav-
ior patterns and stress detection. Early identification of diseases allows farmers to pre-
vent the untimely death of animals [Neethirajan 2017, Halachmi et al. 2019]. Biosensor
technologies focus on non-invasive methods to evaluate animal welfare, such as breath,
metabolism, and glucose analysis. By executing the analysis locally, transportation of
biological samples is also eliminated [Neethirajan et al. 2017]. Cattle behavior track-
ing [Bailey et al. 2021, di Virgilio et al. 2018] makes it possible to detect diseases,
estimate feed consumption rates, grazing intensity and, consequently, overgrazing.

The use of images captured by UAVs is considered a potential and promising alter-
native for animal identification and counting. The use of machine learning in conjunction
with object detection algorithms such as Mask R-CNN [He et al. 2017]. Xu et al. [Xu
et al. 2020] considers this approach to have revolutionary potential for livestock manage-
ment because, compared to other technologies, UAVs can: (i) complete flight trajectories
at low and ultra-low altitudes; (ii) obtain high-resolution images at any time; and (iii)
quickly acquire images over small areas and inaccessible rugged terrain. Recent studies
suggest that the use of multiple UAV systems may be beneficial in expansive agricul-
tural environments, as it has the potential to minimize flight duration, battery usage, and
cost [Erdelj et al. 2019, Mammarella et al. 2022, Aslan et al. 2022, Ju et al. 2022].

Using UAVs with external processing of the Mask R-CNN object detection algo-
rithm, Xu et al. [Xu et al. 2020] was able to realize livestock detection and counting from
the captured images, using as the essence of detection the binary classification with both
confidence and masking. The obtained results had a confidence rate ranging from 84% to
95% depending on the context (height of the UAVs, occlusion, illumination, and overlap).
However, the solution does not identify whether an animal has already been detected, re-
sulting in false positives due to duplicate counts of some cattle. Improvements to Mask
R-CNN were made by Xiao et al. [Xiao et al. 2022] by adding animal identification and
increasing the average detection accuracy to 98.67% using images captured in a barn.

Barbedo et al. [Barbedo et al. 2020] points out the problem of identifying animals
when they are in a cluster, where the boundaries of the animal’s body become blurred.
Using a similar approach of Xu et al. [Xu et al. 2020] and Xiao et al. [Xiao et al. 2022],
Barbedo et al.uses the NasNetLarge [Zoph et al. 2018] deep learning cattle detection
algorithm to train a CNN model for regions classification according to the presence or
absence of animals, which is used in more three steps - color space manipulations, mask
combination to separate clustered animals, and feature matching - to identify and count
cattle. Tests were made using images captured by UAVs flying over a pasture area during



different times of the day and of the year and weather condition. The images were also
tallied at three different levels to improve the identification and counting accuracy from
71%, when the animals are in cluster, to around 95%. The Barbedo algorithm is expected
to produce that accuracy for pasture areas until four animals per hectare.

Barbedo et al. [Barbedo et al. 2020] also discuss the challenge of identifying
animals when they are in a cluster, which can cause the boundaries of their bodies to
become blurred. Barbedo et al. [Barbedo et al. 2020] employed the NasNetLarge deep
learning cattle detection algorithm to train a CNN model for region classification based
on the presence or absence of animals, following a similar approach to Xu et al. [Xu et al.
2020]. The model was used in three steps: color space manipulations, mask combination
to separate clustered animals, and feature matching, to identify and count cattle. Tests
were conducted using images captured by UAVs flying over a pasture area at various
times of the day, year, and weather conditions. The images were tallied at three different
levels to improve identification and counting accuracy, increasing it from 71% (when the
animals are in a cluster) to approximately 95%. The Barbedo algorithm is expected to
produce this level of accuracy for pasture areas with up to four animals per hectare.

Within the context of detection-based identification, Soares et al. [Soares et al.
2021] proposed a method for detecting and counting cattle in aerial images taken by
UAVs, based on convolutional neural networks (CNNs) and graph-based optimization to
remove duplicate animals detected in overlapping images. Tests were conducted using
images captured by cameras mounted on UAVs flying at altitudes ranging from 12m to
90m over pasture areas ranging from 50ha to 90ha. This approach proved to be highly
effective for both detection and counting, even when using a smaller number of images
with little overlap between them. This allows for greater UAV autonomy and larger area
coverage, considering pastures areas with animal density varying from 1 to 18 animals
per hectare. However, it should be noted that this method does not identify individual
animals.

The Ear tagging is the oldest and simplest solution for animals identification, re-
quiring contact for identification of visual patterns. Following the same visual patterns,
the current Ear Tagging is being replaced by RFID Ear Tagging, which uses radio fre-
quency communication to send the animal’s ID. RFID provides an easy and efficient way
to control, track and monitor livestock [Ruiz-Garcia and Lunadei 2011], without the need
for human intervention.

Unlike most counting and tracking approaches, Alanezi et al. [Alanezi et al. 2022]
proposed to use the geographic coordinates of the pasture field to optimize the communi-
cation and flight patterns of the UAVs before starting the perimeter scanning. Information
such as the size of the pasture and the maximum flight time are also used to determine
the number of UAVs needed and the area coverage algorithm. Cattle identification is not
performed, but the defined algorithm ensures maximum coverage with the least amount
of resources and can be used in both image and RFID identification solutions.

Li et al. [Li et al. 2020] proposed a cloud-based grazing management system in-
tegrated with a decision-making tool based on WebGIS. The system employs both UAV
and satellite remote sensing (RS) images to identify and track individual oxen in the herd,
providing real-time positions and historical tracking information. These data are essen-



tial for monitoring animal behavior and health, as well as for grassland monitoring and
growth estimation to prevent overgrazing and grassland degradation. Systems proposed
by Li et al.consist of combined sensors that furnish farmers with adequate information on
animal behavior, health, and location. But it also has problems with a higher cost for its
implementation in the field and maintenance, especially regarding battery life and device
replacements.

Table 1. Key features of the current state of the art and the proposed approach.

Characteristic Xu Barbedo Soares Li HICA

Fe
at

ur
es

Cattle counting Yes Yes Yes Yes Yes
Oxen identification No Partially No Yes Yes
No Double counting No Yes Yes NI Yes
Real-time processing No No No Yes Yes
Counting Accuracy 90%-94% 95% 96% NI 89%-100%

Te
ch

no
lo

gy Tracker Device UAV UAV UAV UAV
and GPS UAV

Identification based
technique Image Image Image Image

and GIS RFID

Virtual fence No No No Yes Yes

Sy
st

em
In

te
gr

at
io

n Management
System No No No WebGis HMT

Decision make
support No No No Yes Yes

* : Improved Mask R-CNN

Characteristics of features (identification, counting, and real-time processing),
technology (devices and techniques), and system integration for improved cattle man-
agement were analyzed. The four main works discussed in this section, which that de-
tects and count animals in pasture areas, are presented in Table 1 and compared against
the herd identification and counting approach (HICA) proposed in this article, which en-
compasses all of these characteristics. Table 1 shows that all approaches execute oxen
detection and counting, but only Li et al. [Li et al. 2020] and HICA perform identifica-
tion. The final one also detects missing cattle since the tracker UAV possess knowledge of
the animal IDs that should be present within the grazing location, and Li also does this to
some extent. Li and Soares address possible counting errors caused by double counting.
Considering the characteristics of the technology, all solutions use drones with attached
cameras and image processing for tracking and counting, except for HICA which utilizes
drones and RFID. From Table 1, it can be observed that this approach is more similar to
Li’s in terms of features and integration into a larger management system. They differ
in their technology. Li employs images captured by drones and satellites, while HICA
uses RFID technology for tracking and identification that is not yet widely explored in
real-time capture through mobile devices such as UAVS.



3. Herd Identification from the Air

This work proposes an approach to identify mobile nodes on the ground using UAVs. The
overall idea is to provide an efficient and reliable method to scan, identify and collect
information from the mobile nodes within a predefined area using UAVs, that also com-
municate with each other. The UAVs begin the mission with a predefined path that can
be modified based on the presence of mobile nodes nearby. They exchange information
with other UAVs to obtain data that has already been collected, reducing the time spent
tracking the area. Identification is achieved through communication between the UAV
and the mobile node, using technologies such as Radio Frequency Identification (RFID),
Bluetooth Low Energy (BLE), and Long Range (LoRa).

Given the mobility of cattle and the expansive nature of pasture-based livestock
operations, monitoring the herd in pasture areas is effectively achieved through this ap-
proach. The use of land vehicles or human intervention may cause undue stress to the
herd, resulting in increased frequency and intensity of movement. UAVs flying at a safe
altitude should not disturb the cattle. This is particularly advantageous due to the vast
scale of Brazilian agricultural properties and pasture areas. Furthermore, the use of ear
tags with RFID for identification purposes allows for cost-effective system deployment,
faster area coverage, and real-time monitoring. Given this scenario, the proposed ap-
proach will be explained using cattle as mobile nodes and communication through RFID.

The identification algorithm analyzes a scenario with five primary components,
outlined in Figure 1. These elements comprise a (i)ground station, which transmits con-
figuration information to the UAVs, receives and store data collected by the UAVs and
functions as the launch site for the UAVs; (ii)reader UAV (Ri), which collect sensor data
while flying above; (iii) tracker UAV (T) which detect UAVs within a specified area de-
fined by a (iv) virtual fence; and (v) mobile sensors (RFID tags attached to each animal
in the herd).

The UAVs acquire a collection of waypoints from the ground station, which define
a virtual fence (points labeled as (V T,wk) in figure 1), a set of waypoints mapping out
their mission route, and a list of UAVs scheduled to take part in the tracking mission. If
a UAV is given identical sets of waypoints for the virtual fence and the mission route, it
is classified as a tracker UAV. Conversely, if it is given distinct sets, it becomes a reader
UAV. The UAVs for reading purposes traverse paths established at the start of the track-
ing process, but unique from one another for maximum coverage of the virtual fence’s
designated area. In Figure 1, we can see the routes taken by the reader UAVs, which are
represented by points labeled as (Ri, wj), where i is the number of the reader UAV and j
is the number of the waypoint (e.g., (R1,w4) is the fourth waypoint of the reader UAV 1).
During their journey, the reader UAVs transmit RF request signals, and upon receiving
response signals from the tags, they store them, updating their list of collected IDs. When
UAVs enter the communication range of other UAVs, whether they are readers or trackers,
they exchange their lists of collected identification codes. This results in the communica-
tion concluding with a single merged list that excludes any duplicate identification codes.
The UAV used for tracking also acts as a reader, following a predetermined route over the
waypoints that define the perimeter of the virtual fence. It identifies all relevant detections
within the designated region.



Figure 1. Scenario elements for cattle identification.

3.1. UAV Route Change Algorithm

Each Ri is assigned a unique mission consisting of a route defined by waypoints that
covers a specific region of the area, as designated by the ground station. Once initiated,
Ri moves towards the next waypoint on its route. During the mission, the UAV sends out
RF signals and waits for a response. When a response is received, including the bovine
ID, the system stores both the ID and the geographic coordinates of the location where
the message was received.

Considering that cattle are widely regarded as social animals that generally live
and travel in groups to reduce the risk of predation [Doyle and Moran 2015]. Furthermore,
living and moving together tends to have a pacifying effect on cattle, resulting in lower
stress levels. The UAVs could focus on identifying the regions where groups are rather
than realizing a complete scan of the area. Based on this, if any Ri detects a group of
cattle that has not yet been identified, it starts a timer T, stores the subsequent waypoint
of the original path and calculates a new waypoint to a nearby point where other mobile
sensors might be. To do this, Ri calculates the mean value of the geographic coordinates
of the group and adds it as the next waypoint, while continuing in the new direction until
the timer T ends. If during the time T other new cattle have been identified, Ri repeats
the calculation of the new waypoint. Otherwise, the UAV changes its route to the original
waypoint stored before the route was changed.

The presence of cattle near waypoint (R1, w2), as ilustrated in Figure 1, causes
a route change of the reader UAV (R1). Initially, the UAV starts its tracking mission by
following a predetermined path consisting of w1−w2−w3−w4−w1 waypoints. When
the w2 waypoint is reached, a group of cattle is identified, then R1 starts the procedure to
change its route. R1 starts the timer T and stores the next waypoint on the original route
w3. The mean geographic coordinates are calculated and a new waypoint w21 is added
as the next stop on the new route. R1 continuously calculates new coordinate waypoints
until it ends T and no more cattle have been identified. At this point (w2k), R moves to
the next waypoint, w3, along the original path stored before the route change and follows
it until it reaches the end point or detects another group of cattle, causing the route to be
changed.



If Ri enters the communication range of any Rj during any part of the mission,
they exchange their lists of collected identification codes. With this information, Rj up-
dates its list of ID codes and does not implement the route change if it identifies cattle
already identified by Ri or Rj .

3.2. Communication Standards

Communication between UAVs and between UAVs and the ground station can use any
radio frequency communication standard. For 98% of Brazilian farms with land areas up
to 500 hectares [IBGE 2021], Wi-Fi and LoRa (Long Range) were examined as options
for communication between UAVs and Ground Stations, as well as between UAVs. Tech-
nical abbreviations will be explained on first use throughout the text. The transmitted data
includes localized identifiers, respective locations, and data from attached sensors.

The communication between UAVs and cattle occurs via radio frequency in the
ultra high frequency (UHF) standard RFID, operating at a frequency of approximately
915MHz. The tags are defined by UHF ISO/IEC 18000-6 [ISO 2013] or EPC CLASS 1
GEN2 860-960 MHz [EPC 2005] Passive RFID Tag. The tags have a reading range limit
of 15 meters, which enables the UAVs to fly at a safe distance above the flight zone of the
cattle. The term ’flight zone’ refers to the area within 3-5 meters from the animal that can
trigger a threat response, causing the animal to move or flee [Doyle and Moran 2015].

4. Experiments Architecture
The proposed approach was implemented and simulated in GrADyS-SIM [Lamenza et al.
2022, Olivieri et al. 2021]. This simulator extends the INET++ [INET 2022] network-
ing library supported by the OMNET++ framework [OMNet++ 2022]. GrADyS-SIM
is well-suited for implementing and simulating drone swarm coordination strategies to
gather sensor data in the field. It is utilized for observing drone movement, message
exchange, and validating the communication implementation between drones-ox-ground
station-cloud and the quality of the area tracking algorithm.

Based on data from the Brazilian Institute of Geography and Statistics (IBGE),
nearly 98% of agricultural properties in Brazil are small or medium-sized, encompassing
farms up to 500 hectares [IBGE 2021]. Utilizing this information, we created simulations
in GrADyS-SIM featuring pasture areas of 100, 225, and 400 hectares. The pasture areas
were modeled as polygons, delineated by joining geographical points as shown in figure
1, in the area delimited by the virtual fence by the waypoints (VF,w1)-(VF,w2)-(VF,w3)-
(VF,w4)-(VF,w5)-(VF,w1). The dimensions were determined through empirical analysis
of small and medium-sized properties to investigate the effect of herd size and density on
the accuracy and efficiency of animal identification and counting.

For these three distinct farms size, a sequence of simulations was performed using
16, 32, 64, 100, and 200 cattle equipped with with RFID tags to assess the performance
of the algorithm in identifying low-density animal populations. This was carried out up
to the real average density of around 1 head per hectare in Brazil. The evaluations were
aimed at ascertaining whether the algorithm was effective or not. Based on the discussion
in section 3.1 regarding the movement of cattle in groups, simulations were conducted by
dividing the herd, respectively, into 2, 3, 4, 5, and 8 groups of similar size. Each group
was led by a designated leader responsible for the trajectory of the group’s movement.



Figure 2. HICA simulation in GrADyS-SIM with 4 quadicopters and 64 oxen.

The simulation scenarios took into account the previously reported property sizes
and number of oxen, and involved missions performed by four UAVs. To cover the des-
ignated areas, the UAVs were simulated as quadcopters modeled as MobileNode. The
quadcopters have a DroneMobility mobility model and utilize the HICADroneProtocol
protocol. Communication between drones occurs via UDP using Wi-Fi and between mo-
bile sensors via RF. Figure 2 presents the 3D view of a simulation conducted using four
quadcopters and sixty-four oxen in a 225-hectare pasture area, using GrADyS-SIM tech-
nology. This simulation visualizes communication information, including the packages
exchanged between quadcopters, mobile sensors, and ground stations.

The HMT (Herd Management and Tracking) application [Cavalcanti et al. 2023]
was used to model the farm before running the simulations. The HMT application is a
comprehensive cattle management platform that takes an individualized, animal-centric
approach, from simply identifying each animal to tracking veterinary and pasture data.
It monitors the information extracted from HICA and communicates with the farm sim-
ulation over the Internet through the ContextNet middleware [Endler and e Silva 2018],
which preprocesses the information. Its web interface displays system information such
as drone and herd lists, tracking information, and allows requests to read data.

The graze tracking was requested through the HMT application 2 to initiate the
simulations. Farm details, including the name, oxen, drones, and virtual fence, were in-
putted and saved. This feature sends pertinent information, such as the number of oxen,
virtual fence delimitations, and drones involved, to the ground station. At the conclusion
of the simulation, the HMT app receives a comprehensive list of oxen whereabouts and
presents it, specifying the quantity and identification of absent oxen, as well as their graz-
ing times, initially and in conclusion. Each grazing tracking’s data is stored and utilized
for creating reports exhibited on the app dashboard.

2HMT App Github Repository. https://github.com/milliandrade/hmt_sw

https://github.com/milliandrade/hmt_sw


4.1. Experiments in GrADyS-SIM
All components introduced in section 3 were implemented as nodes in GrADyS-SIM. The
nodes consist of three parts: mobility, communication protocol behavior, and the commu-
nication interface itself. The nodes were implemented as an extension of the GrADyS-
SIM modules MobileNode, MobileSensorNode, and GroundStation. The communication
protocol behavior was implemented as a new protocol called HICAProtocol. It enables the
information exchange between UAVs and other system components and also implements
the HICA approach.

The mobility behavior of the UAVs and GroundStation follows the DroneVMobil-
ity and StationaryMobility models, respectively. The cattle’s mobility involves two types
of movement: the leader moves using the LinearMobility mobility model, while the others
use AttachedMobility, which is related to their leader, to follow the leader’s movement.
All mobility models were provided by GrADyS-SIM and transfer telemetry data to the
node’s communication protocol. The protocol then defines movement commands based
on the gathered information and input from other nodes.

5. Results
Small and medium sized farms were considered in all simulations, created and executed
as defined in section 4. Each of the 15 possible scenarios was executed 10 times, and an
arithmetic mean of each observed parameter was calculated. Based on these constraints,
and with an average quadcopter battery life of 30 minutes, we analyzed the correlation
between the following parameters: (a) property size, and (b) cattle concentration ratio
(CCR), determined by the average number of cattle per hectare, and (c) cattle identifica-
tion and counting accuracy. We tested for all possible associations between these parame-
ters and present our results in Figure 3. The figure shows the average cattle identification
accuracy of the configurations using 4 UAVs. Data related to configurations in areas of
100 hectares achieved 100% accuracy in all simulations, indicating that 4 drones with a
sixteen minute mission should be sufficient to identify all animals in the defined area.

Figure 3. Cattle identification and counting accuracy in pasture areas of varying
sizes (100ha, 225ha, and 400ha) when using four UAVs for different cattle
concentration rates.

Analyzing the information obtained, the approach has achieved an assertiveness
of over 92% in areas with a CCR above 0.6 and a tracking execution time of 27 min-
utes. With a concentration rate above 0.9 cattle per hectare, which is still below the



national average, the algorithm demonstrated a 100% level of assertiveness. Due to the
computational limitations of the simulation environment, concentrations of up to 2 were
tested, with 100% assertiveness maintained. Compared to the previous approach [Caval-
canti et al. 2023], HICA showed better results at lower CCR, taking into account a more
realistic animal movement behavior and improving the average requirement of a drone
from 30 to about 50 hectares to maintain an assertiveness above 92%. Unlike the previ-
ous studies [Xu et al. 2020], [Soares et al. 2021], and [Xiao et al. 2022], which used
UAV-based tracking and image processing for animal identification, the increase in CCR
is better for the HICA approach when the cattle clusters do not pose a challenge for RFID
identification, considering the maximum physical number of animals in the antenna com-
munication range. The current study also achieved similar counting accuracy rates to the
other presented works, with the difference of counting in real time at the same time that
the animal is identified.

Another relevant point to highlight is the lack of real-time data acquisition and
presentation in the presented studies of image processing. This is due to the fact that
the algorithms are not executed locally and do not have timely communication with the
external processing node. Additionally, there is a lack of duplication in herd count.

Nonetheless, this study utilizes simulation-based results, which may differ from
real-world conditions. With the aim of a practical simulation, the simulator employed as
many parameters as possible to represent a genuine environment. Another factor to con-
sider is the movement of the animals, but since measurements are taken rapidly and the
animals act as stationary sensors due to their positions remaining relatively unchanged
during the tracking period, any discrepancies between the real and simulated cattle move-
ment models are unlikely to significantly impact the results.

6. Conclusion
The increasing use of FPL, particularly in pasture-based systems, necessitates the re-
finement of rural farm and activity management. The application of IoT and sensing
technologies can optimize rural farm management, providing real-time data for decision-
making and enabling mobile device-controlled management of specific areas of the prop-
erty through the use of UAVs.

In this context, this study presented a herd identification and counting approach us-
ing coordinated UAVs. This work has yielded better results than comparable methods pre-
sented in Section 2 and from the previously non-optimized approach implemented [Cav-
alcanti et al. 2023]. It presented a 100% accuracy for areas with cattle concentration ratio
equals or superior from brazilian farms CCR, 16-minute flight, and 92% effectiveness for
cattle concentrations above 0.9 head per hectare in a 27-minute flight mission, with no
double counting of animals. This approach is noteworthy because it takes advantage of
existing infrastructure on the property, including RFID Ear Tagging in cattle, network in-
frastructure, and UAVs. In addition to its high success rate, this method is cost-effective
and has a shorter implementation time, allowing for more efficient decision-making and
response times.

Based on our results and experience implementing the solution, we expect to im-
prove or maintain excellent detection rates with fewer drones or reduced tracking time
by improving area scanning and coordination algorithms. To develop this solution in the



short and mid-term, we identified improvements with the evaluation of the proportionality
of UAVs per area. The UAV coordination algorithm can also be improved by incorporat-
ing consensus decision making, subgroup organization, and dispersion for the large area
scan, taking into account scans with and without a predefined route.
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