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Abstract. Hadoop Distributed File System (HDFS) is known for its specialized
strategies and policies tailored to enhance replica placement. This capability is
critical for ensuring efficient and reliable access to data replicas, particularly as
HDEFS operates best when data are evenly distributed within the cluster. In this
study, we conduct a thorough analysis of the replica balancing process in HDFS,
focusing on two critical performance metrics: stability and efficiency. We eval-
uated these balancing aspects by contrasting them with conventional HDFS so-
lutions and employing a novel dynamic architecture for data replica balancing.
On top of that, we delve into the optimizations in data locality brought about by
effective replica balancing and their benefits for data-intensive applications.

1. Introduction

In an era marked by an increasing capacity to generate valuable data, there is a high de-
mand for computing systems capable of handling and processing vast volumes of data.
Distributed file systems, which manage data storage and access across multiple net-
worked servers, are essential to contemporary computing environments, particularly in
cloud computing, big data analytics, and businesses that require scalable, reliable, and ac-
cessible data storage solutions. A notable example in this area is the Hadoop Distributed
File System (HDFS) [Foundation 2023]]. The HDFS plays a crucial role in supporting
applications dealing with large datasets and seamlessly integrates with several parallel
processing technologies [White 2015]]. These include Apache Spark, Storm, and Kafka.

HDFS ensures high reliability and availability primarily through data replication
[Foundation 2023]]. Replication not only is HDFS’s main fault tolerance mechanism pro-
viding data resilience, but it also enhances the file system’s performance by leveraging
data locality [White 2015]]. In that sense, the distribution of replicas across the cluster’s
nodes is a key factor for maintaining a healthy and balanced data environment in the
cluster [Fazul and Barcelos 2022b], ensuring an optimized use of computing resources.

Over time, replicated data distribution may become unbalanced [White 2015]].
This imbalance arises from various factors such as uneven data growth, differential node
capacities, or varied workload distributions across the cluster. As data accumulates, some



nodes may store disproportionately large amounts of data, while others remain underuti-
lized [Foundation 2023|]. This situation can lead to inefficiencies, such as increased load
on certain nodes, slower data retrieval times, and a higher risk of data loss in case of node
failures. Thus, maintaining an HDFS cluster balanced, given the potential trade-offs, is a
preferred choice for handling large-scale data processing tasks.

The HDFS Balancer [Shvachko et al. 2010] is a native tool that analyzes data
placement within the cluster and facilitates data balancing through replica rearrangement.
However, this process relies on manual intervention [Cloudera, Inc. 2021]] and requires
knowledge of the current system usage to make proper decisions about when and how
to balance the data. By recognizing these limitations, previous research has focused on
improving the replica balancing process in distributed file systems. Prior work includes
the development of a customized balancing policy — the Prioritized Replica Balancing
Policy (PRBP) [Fazul and Barcelos 2023]] — and an automated structure for configuring
and triggering the HDFS Balancer [Fazul and Barcelos 2021]. These solutions laid the
groundwork for the creation of the Dynamic Architecture for Data Replica Balancing
(DARB) [Fazul and Barcelos 2022al, a sophisticated solution for data balance on HDFS.

Although DARB improves replica balancing in HDFS, further investigation of
its performance is still necessary. In particular, we want to understand how stable and
efficient the balanced state obtained by rebalancing events is. This paper assesses the ef-
fectiveness of replica balancing by evaluating the benefits and drawbacks of the operation,
considering the frequency of subsequent rebalancing actions needed to maintain cluster
balance. We devised scenarios to compare the impacts of multiple balancing operations
performed by DARB against the standard HDFS behavior, with and without using the
HDEFS Balancer. Our analysis encompasses multi-phase experiments, considering vari-
ables such as data loads, background applications, node failures, and the addition of new
nodes. This comprehensive approach provides deeper insights into the trade-offs between
the benefits and the cost of redistributing replicas and the gains in reliability, availability,
and performance achieved through balancing. The experimental analysis was conducted
in a real, distributed, and multi-rack environment running HDFS. To the best of our knowl-
edge, no work in the literature has compared and evaluated the facets of replica balancing
and data locality in HDFS regarding balance stability and efficiency.

The rest of the paper is organized as follows. Section [2| highlights the importance
of data locality and balancing in HDFS. Section [3]presents related work involving possible
approaches for data balancing. Section [ formalizes DARB as a proactive and reactive
architecture for replica balancing. Section [5] describes the experimental evaluation, and
Section [6] presents the concluding remarks and outlines directions for future work.

2. Data Replication and Replica Placement in HDFS

HDES is a distributed file system designed for high reliability and availability. It pro-
vides fault tolerance even in clusters running over commodity hardware. Within an HDFS
cluster, the architecture follows a server-worker model, composed of two types of nodes
[Foundation 2023|]: the NameNode (NN) and the DataNode (DN). The NN is the master
server, managing the system’s namespace and metadata, maintaining the directory tree,
and controlling file access and distribution. The DNs are responsible for data storage and
retrieval, allowing the data files to be distributed across network-connected machines.



HDFS was designed for storing data on the petabyte scale [White 2015]]. And, to
help with that, it adopts a block-based storage strategy, where files are automatically seg-
mented into fixed-size (128MB by default) data blocks and stored independently. Hadoop
clusters may contain thousands of nodes responsible for both computing and data stor-
age. As HDFS may operate on low-cost equipment, the chances of DN failures are high
[Foundation 2023]]. So, the system must maintain its consistency and be able to restore
compromised blocks, ensuring high availability and reliability.

To increase data reliability and availability in distributed environments, HDFS
replicates the file blocks, maintaining data redundancy in the system through replication
[Shvachko et al. 2010]. With replication, multiple copies of blocks are maintained on dif-
ferent DN of the cluster, ensuring that, in case of failures, at least one copy of the data
remains accessible. The Replication Factor (RF) determines the number of replicas of
each block, and it is configurable per file, with a standard value of three replicas per block
[White 2015]]. The NN continuously monitors the number of replicas of each block to en-
sure compliance with the established RF. To this end, the DNs periodically communicate
with the NN through heartbeats messages. If the NN does not receive messages from a
DN, it marks the DN as inactive and initiates the re-replication of under-replicated blocks,
selecting a source DN that contains an existing replica of the block and a destination DN
for the new copy. Re-replication may occur due to multiple reasons [Foundation 2023]],
such as replica corruption, failures in one or more storage disks of DN, an increase in the
RF of a file, or DN unavailability, whether due to network partition causing some subset
of DN to lose connectivity with the NN or due to crash failures in their nodes.

Replication in HDFS, therefore, is a dynamic and continuous process. To dis-
tribute the data in an HDFS cluster, the replication and re-replication strategies follow a
Replica Placement Policy (RPP) [White 2015]]. This approach is fundamental in optimiz-
ing data availability and reliability, reducing bandwidth consumption in write operations,
and improving read performance. The standard RPP is an initial effort in this regard, and
part of Hadoop’s objectives [Foundation 2023 is to validate and improve this policy in
real systems, encouraging research and testing of more advanced placement policies.

The current RPP uses rack awareness to enhance fault tolerance and performance.
With a standard RF of three, it ensures that replicas are distributed across three dis-
tinct DNs, keeping one of the replicas on the local DN if the client is running on it
[Shvachko et al. 2010]. Additionally, it ensures that, at most, two-thirds of the replicated
blocks are on the same rack. If the RF is greater than three, additional DNs are randomly
selected, although efforts are made to avoid concentrating too many block replicas on
the same rack. It addresses fault tolerance by preventing data loss even if a complete
rack fails. Performance is optimized by maximizing aggregate read bandwidth as DNs
from different racks are available for I/O requests. In this sense, HDFS prioritizes reading
replicas close to the client, preferring local data over remote [Foundation 2023]].

2.1. Data Locality and Replica Balancing

HDFS was conceived with the idea that the most efficient data processing strategy for
files follows the write-once-read-many (WORM) model [Foundation 2023]]. Generally,
applications in an HDFS cluster deal with large volumes of data and require continuous
(streaming) access to their datasets. Therefore, the time required to process a complete
dataset is more critical than the latency to read the first record.



One of the fundamental principles of Hadoop is to maximize throughput by co-
locating data with the compute nodes. This principle follows the premise that moving
computation is cheaper than moving data [Foundation 2023]] and it is known as data lo-
cality optimization [White 2015]]. It improves performance in processing large datasets
by reducing the overall bandwidth consumption, network congestion, and read latency.
Replication increases the likelihood that a computational task can process most data
blocks locally.Yet, cluster imbalances, marked by notable differences in the volume of
data stored across the cluster’s nodes, are expected over time.

The RPP prevents replicas of the same block from being stored on the same DN.
Nonetheless, this approach does not ensure a fully balanced distribution. By allocating
two-thirds of a block’s replicas to a single rack, the RPP inadvertently contributes to inter-
rack imbalances [Fazul and Barcelos 2022b]. The current policy lacks native mechanisms
to address this problem, such as using node utilization to determine where new replicas
should be placed within the file system [Shvachko et al. 2010].

Replica imbalance can lead to increased intra-rack and off-rack transfers, as
tasks assigned to a node with few local replicas need to access data from other nodes
[Fazul and Barcelos 2022bj]. This increases bandwidth consumption across the cluster
and places additional strain on DNs already under heavy data utilization [White 20135]].
As some nodes reach their maximum storage capacity and may no longer accept new
data blocks, the write and read parallelism of the cluster is reduced, which impacts the
performance of applications that heavily rely on data, I/O, and, in a reduced extent, even
CPU-bound applications [Fazul and Barcelos 2023]].

Replicated data stored in HDFS can become unbalanced for several reasons
[Cloudera, Inc. 2021]]: (i) the constraint satisfaction algorithm implemented by the RPP
for file block allocation, which, by default, does not consider the node’s usage, can lead
to uneven data distribution among the DNs and their racks because of randomness (the
problem becomes serious when the cluster is nearly full); (ii) the re-replication process,
which follows the initial policy and can also contribute to imbalance during data distribu-
tion; (ii1) the occurrence of DN failures, as inactive DNs induce the re-replication of data
blocks; (iv) the skewed behavior of the client application behavior, especially those run-
ning directly on a DN, as one of the replicas will be stored in its local storage to preserve
data locality, usually resulting in higher utilization on its storage devices; and (v) the ad-
dition of new DN to the system since existing blocks are not automatically reallocated,
and HDFS will consider these nodes as candidates for new blocks along with all other
DN in the cluster, thus some DNs will remain lightly utilized for a significant period.

3. Related Work

Data replication and replica placement are pivotal in enhancing fault tolerance, reliability,
and availability within distributed file systems. These areas have garnered attention from
researchers, especially in optimizing data locality in data-intensive systems. The study
of [Shwe and Aritsugi 2018]|] introduced a re-replication scheme to improve performance
and reliability. By dividing data blocks into priority groups and selecting the DN for stor-
age based on utilization, this method balances workloads across nodes while minimizing
the impact and duration of the re-replication process. The work of [Zhang et al. 2015]
explored the potential benefits of increasing the number of replicas of in-demand data in



HDFS. They used an adaptive replication system that elevates the RF of highly accessed
data, thereby optimizing data availability and reducing job execution times. Similarly,
[Joshi et al. 2022] conducted an experimental analysis to assess the impact of adjusting
the RF and block size settings on the performance of Apache Spark applications.

In [Yin and Deng 2022], the authors investigated methods for placing replicas in
edge-cloud environments and proposed a strategy to place them on edge nodes based on
their load and the cost-effective value. In previous research [Fazul and Barcelos 2022b],
we lead a practical investigation of the RPP variations in HDFS. This research filled a gap
in the existing literature by exploring beyond the default RPP. The evaluation considered
various stages, including file writing, re-replication post-failures, and replica rebalanc-
ing. Variations of the RPPs and their impact on replication and balancing were compared,
providing valuable insights for developing future balancing solutions.

Focusing on replica balancing in HDFS, several studies have examined and sought
to enhance this feature. Broadly, two approaches emerge: proactive and reactive. Proac-
tive methods aim to maintain data balance preemptively, while reactive approaches offer
corrective strategies for reestablishing balance after imbalances occur. As an example of
proactive approaches, the work of [Dai et al. 2017]] presented an improved RPP tailored
for heterogeneous clusters, adhering to standard requirements while promoting a balanced
data distribution. A block placement policy that considers disk latencies and other con-
straints to boost job performance appeared in [Dharanipragada et al. 2017]]. The authors
in [Liu et al. 2021] introduced a group-based RPP for large-scale and batch-processing
geospatial 3D raster data to optimize replica placement and minimize network overhead
caused by randomly storing files from adjacent regions on multiple nodes.

Since it is not always possible to prevent an unbalanced replica distribution, re-
active approaches are necessary to rebalance the data already stored in the file sys-
tem. In [Dharanipragada et al. 2017], the authors also presented a modified algorithm
that considers node utilization and disk latencies for relocating data. The strategy in
[Shah and Padole 2018]] focused on replication optimization by leveraging node process-
ing capacities and redistributing blocks based on node heterogeneity and performance.

Hadoop also provides an integrated reactive solution for replica balancing, known
as HDFS Balancer [Shvachko et al. 2010]]. This tool works iteratively, guided by a bal-
ancing threshold ranging from 0% to 100% with a default setting of 10%. Let GG+ be a
group of storage devices of type ¢ belonging to DN <. The HDFS Balancer operates by
assessing the utilization of each of the groups (U; ;) against the average utilization of all
storage devices of type ¢ in the cluster (U, ), redistributing the replicas until the utiliza-
tion of each DN remains within a range defined by U, ; &= threshold [Cloudera, Inc. 2021].
The existing operational mode of the HDFS Balancer, while functional, is hampered by
certain limitations. It relies on manual configuration and on-demand execution, which
requires the HDFS administrator to meticulously decide on configurations that enhance
reliability and performance without significantly disrupting the cluster’s overall health.
Such decisions often require a thorough understanding of the file system intricacies, in-
cluding the dynamics of client applications and their interactions with the system. As a
result, relying solely on the HDFS Balancer can lead to issues like delays or omissions,
sub-optimal configuration choices, and poorly timed activations.



4. Dynamic Architecture for Data Replica Balancing

Although HDEFS architecture supports rebalancing schemes to automatically move data
from one DN to another if free space on a node falls below a threshold, such functional-
ity is not natively implemented [Foundation 2023|]. To address this limitation, we devel-
oped a Dynamic Architecture for Data Replica Balancing (DARB). The evolution of the
architecture unfolded across different stages and validations [Fazul and Barcelos 2021,
Fazul and Barcelos 2022al], and now it embodies both proactive and reactive approaches
for data replica balancing tailored for distributed file systems based on replication. DARB
leverages the HDFS Balancer structure for effectively managing the distributed file sys-
tem while avoiding the pitfalls of periodic, time-based scheduling models, often lead-
ing to unnecessary intrusiveness and suboptimal balancing operations. Instead, DARB
introduces context-awareness and event-triggered mechanisms, continuously monitoring
HDFS components’ behavior and adjusting definitions accordingly to the system context.

Figure [I] outlines our solution’s architecture and key monitoring modules. Proac-
tively, DARB monitors the environment to automate the balancing process, identifying
favorable moments for balancing. To this end, DARB uses an event observation model
based on Hadoop Metrics [Foundation 2023]]: statistical information about events and
measurements exposed by Hadoop daemons belonging to several layers, such as HDFS,
MapReduce, and YARN. Metrics standardizes the flow to obtain parameters, and we built
three monitoring modules around it.
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Figure 1. Overview of DARB and its component interactions.

The monitor module is responsible for continuously collecting and consuming the
predefined metrics available through Hadoop Metrics (step 1 of Figure[I)). It performs the
initial data preprocessing and stores the processed metrics in the namespace of the Apache
ZooKeeper [Halo1 2015], which is incorporated by DARB to maintain the configuration
information and coordinate communication between the modules. Saving the data into
a subtree of the Data znode (step 2) triggers a notification — through the ZooKeeper’s
watches mechanism [Haloi1 2015]] — to the coordinator module (step 3).

The proactive strategy of DARB is based on this event-driven strategy to automat-
ically define when the balancing process should be performed according to the state of the
file system. With a global view of the system’s element states and the observed metrics,
the coordinator analyzes the environment, evaluating the applicability of replica balanc-
ing in the file system. To decide if the HDFS is suitable for balancing, the coordinator
relies on a set of trigger events [Fazul and Barcelos 2022a]. A trigger event comprises



one or more observed metrics and determines whether the balancing should be performed
at that moment or postponed. Currently, the supported trigger events are: (1) new read op-
eration and data volume increase in the system; (ii) completion of write operation and low
cluster load; and (iii) change in cluster configuration/topology. After identifying a trig-
ger event and based on the current level of cluster imbalance, DARB triggers the HDFS
Balancer configured accordingly to the current context.

The results of the coordinator analysis are stored in a znode of the Analyses sub-
tree (first stage of step 4). Moreover, suppose any corrective action proves necessary given
the conditions set by the trigger events. In that case, the coordinator defines the balanc-
ing attributes (such as the threshold and operation mode for the HDFS Balancer) to be
applied and stores them in a znode in the Operations subtree (second stage of step 4),
resulting in a notification to the supervisor module (step 5).

The reactive strategy of DARB consists of a personalized policy for HDFS Bal-
ancer called Prioritized Replica Balancing Policy (PRBP) [Fazul and Barcelos 2023]].
The PRBP exposes balancing guidelines to support the balancing process considering
the cluster architecture and context of the system and its applications. Upon receiving
the notification and based on the definitions of the coordinator, the supervisor triggers
replica balancing by executing the HDFS Balancer daemon with the appropriate guide-
lines of the PRBP and waits for its completion (step 6). The seamless choice of guidelines
is essentially the definition of how the balancing should be executed. Once the replica re-
distribution is completed, the supervisor captures statistics about the balancing operation
and saves them in the Results subtree (step 7). These data, alongside the historical analy-
ses of the coordinator, can be used to guide future balancing operations. In this way, the
architecture decisions relate to both the current cluster context and historical information.

Based on this architecture, the replica balancing on HDFS transitions from a
generic procedure to one that considers the parameters of the applications running on
the cluster. This context-sensitive approach is deemed the essence of DARB as it of-
fers an evolutionary approach for replica balancing in distributed file systems like HDFS.
Decisions about the moment and the best strategy become transparent to the system’s ad-
ministrator, eliminating the need to manually monitor the file system’s state and properly
configure/execute the HDFS Balancer.

5. Experiments and Results

In this study, we evaluate the behavior of HDFS across three distinct scenarios to assess
its performance in handling replica balancing under various operational conditions. The
experiments were carried out on the Grid’5000 platform[] We used an environment com-
prising 10 nodes from the gros cluster at the Nancy site. Each node (Dell PowerEdge
R640), running a Debian GNU/Linux 11 (bullseye), featured an Intel Xeon Gold CPU
(2.20 GHz, 18 cores/CPU), 96GB of RAM, 447GB of storage (SSD), and dual Ethernet
connections with 25Gbps each (SR-IOV enabled).

The experimental flow, depicted in Figure [2] consisted of four stages. The first
focuses on data loading and reading operations — conducted with and without concurrent

'Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER, and several Universities as well
as other organizations (see https://www.grid5000. fr).
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background applications in the cluster — using TestDFSIO [White 2015]: a distributed
benchmark that measures HDFS performance through intensive parallel I/O operations.
The second stage involves new 1/O operations, including loading additional data and ex-
ecuting fresh read operations. The third stage introduces crash failures in the DN, in-
tentionally induced to highlight the re-replication process, followed by subsequent data
reading. The final stage examines read operations after adding new nodes into the sys-
tem. We included idle windows between each step, as indicated by the dashed lines. This
period of inactivity is strategically placed to ensure file system dteadiness, effectively
mitigating inadvertent disruptions from previous operations.
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Figure 2. Overview of the execution flow in the test scenarios.

We combined three test scenarios with the four stages. Scenario S4, serving as
the baseline, considers HDFS’s default behavior without any modifications. It reflects
most users’ typical setup in a regular HDFS deployment, providing a fundamental un-
derstanding of the system’s default data allocation and balancing strategies. In scenario
Sp, we introduced manual intervention by executing the HDFS Balancer (with default
configuration) after the first data load, aiming to understand the impact of such inter-
ventions on data distribution and system efficiency. Scenario S¢ incorporates DARB,
hypothesized to provide a more dynamic and responsive balancing mechanism. For our
analysis, we borrowed two performance metrics most known from the load balancing
field [Xu and Lau 1996]: stability and efficiency. The former refers to the ability of an
algorithm to coerce any initial workload distribution into a balanced state. The latter
measures the time required to reduce the variance or reach the equilibrium. In addition to
these metrics, we considered optimizations in data locality provided by replica balancing.

5.1. Balancing Stability Analysis

In this work, we examined balancing stability through a windowed analysis, evaluating
the cluster’s balance state at specific stages. This allows observing how the system’s
stability fluctuates over time. Stability, in this case, is quantified based on the standard
deviation (o) of the volume of data stored across the DNs, considering both occupation
and utilization percentage. By analyzing the variations in data volume within the tested
stages, we gain insights into the uniformity of data distribution across the cluster, with a
lower standard deviation indicating a more balanced and stable system.

In Stage 1, the data was loaded with TestDFSIO. For each test scenario, 25 files of
25GB each were written to the system with a default RF of 3 replicas per block, totaling
approximately 1.46TB of data (4,000 blocks of 128MB each and 12,000 replicas). Fig-
ure 3| presents the cluster’s state considering the utilization of the DNs (U; ssp, where ¢



refers to the i** DN). The average cluster utilization (U, u,ssp) after the data load, for all
scenarios, was 39.47%, depicted by the dashed blue line.
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Figure 3. HDFS state considering DNs utilization after data load in the first stage.

In scenario S 4, using the standard RPP, there was a discrepancy in the volume of
data stored on the DNs. This imbalance was evident from the high o in occupation and
utilization: 90.72GB and 23.87%, respectively. In scenario Sg, after running the HDFS
Balancer on-demand with default settings, the utilization of the DNs was maintained
within the lower and upper balancing limits considering a standard threshold of 10% (i.e.,
U,,ssp % threshold), represented by the dashed red lines. The rebalancing resulted in a
o of 25.87GB and 6.81%. In contrast, scenario S¢ used DARB, which automatically per-
formed replica balancing upon detecting trigger events related to new data being loaded in
the file system. In this sense, when DARB detects a trigger event, it looks at the cluster’s
balance level at that time taking the necessary actions to keep/achieve balancing stability.
This approach effectively reduced the disparities in data volume across the DNs, with o
values for occupation and utilization dropping to 10.66GB and 2.81%.

In Stage 2, additional data was loaded into HDFS: 10 files of 25GB each, increas-
ing the U}, ssp t0 59.34% (totaling approximately 2.2TB). In scenario S 4, the o values for
occupation and utilization were 92.71GB and 24.4%, reinforcing that the RPP does not
guarantee balanced data distribution. In scenario S, the imbalance was less pronounced
but remained accentuated, with deviations of 50.86GB and 13.38%. This demonstrated
that a single balancing operation was insufficient for maintaining the cluster in a balanced
state after new files were written. Conversely, in scenario S, DARB promptly responded
to workload variation caused by new files, keeping the cluster balanced. It achieved o
values for the occupation and utilization of the DNs of 8.63GB and 2.27%, respectively.

Stage 3 represents an environment with failures. To emulate the faulty behavior,
we introduced crash failures, spaced 60s apart, in two DNs (DNgg and DN;,) within the
same logical rack. The reduction in active DNs (down to 8) raised the average cluster uti-
lization (U, ssp) to 74.13%. Upon failure, the data held in the decommissioned DNs are
automatically redistributed by HDFS to the remaining active DNs. In scenario Sy, this
led to a o in occupation and utilization of 57.57GB and 15.15%, respectively. Although
there was a reduction in the discrepancy, it is noteworthy that the re-replication process
in the cluster indirectly benefited replica balancing in the cluster, now with fewer candi-
dates to receive the re-replicated blocks. Similarly, in scenario Spg, the o was 47.51GB
and 12.50%. As for scenario Sc, DARB automatically detected that the cluster topology



changed due to failures, assessing the need for rebalancing. Given that the DN still re-
spected the adaptable thresholds defined by DARB after the re-replication process, further
replica rearrangement was not deemed necessary. The o in the occupation and utilization
of the DNs were 11.35GB and 2.99%.

Lastly, in Stage 4, the cluster configuration was modified by adding new DNs
(DNgg+ and DNyg-). Figure []illustrates the final utilization state of the HDFS. In both
scenarios S4 and Sp, the data already stored were not redistributed to the new DNs. The
cluster administrator must manually configure and execute the HDFS Balancer to force
rebalancing. Apart from the unbalanced distribution inherited in the RPP, the addition of
the two DNs aggravated the imbalance, as noticed by the elevated o of occupation and
utilization: 57.57GB and 33.99% in S4 and 47.51GB and 33.12% in Sg. In contrast, the
replica balancing was automatically handled by DARB in scenario S¢, considering the
new and existing DN, resulting in much lower o values of 11.54GB and 3.04%.
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Figure 4. Final HDFS state considering DNs utilization in the fourth stage.

These results demonstrate the stability of replica placement algorithms within
HDFS, highlighting the essential role of rebalancing solutions. The default RPP falls short
of achieving a balanced distribution, notably after incorporating new data into the system.
Executing HDFS Balancer on-demand at specific times is helpful but does not maintain
adequate balance levels after new data loads. Regular execution of the balancer is rec-
ommended, but it requires the administrator to meticulously monitor the cluster’s status
and determine the optimal timing for its activation. Considering that different situations
can influence the balancing state of the system, this routine task is prone to inappropriate
choices. All of this is aggravated if new nodes become part of the HDFS instance. In
response to that, among the tested scenarios, DARB showed superior capability regarding
balancing stability, autonomously guiding the cluster toward a balanced state.

5.2. Balancing Efficiency and Data Locality Optimization Analysis

Figure |5 displays the execution times for each read operation conducted in the experi-
ment. As Figure 2| indicates, each stage includes a reading phase, consisting of 10 ex-
ecution runs of TestDFSIO in read mode. For the first and second stages, we executed
the additional 10 benchmark runs with a background application running in the cluster (a
generic map/reduce load generator called loadgen [White 2015]).

In executions [1, 10] of the benchmark in Stage I (i.e., without concurrent appli-
cations in the cluster), it is noticeable that the read times in scenario S — after manual
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Figure 5. HDFS performance across all read operations.

execution of the HDFS Balancer — are lower than in scenario S 4. It means that a balanced
cluster can take better advantage of the spatial locality of the stored data. In the first 4
read operations in scenario S¢, the execution time of TestDFSIO was higher compared
to the other scenarios. This occurred because DARB automatically triggered balancing
operations that coincided with the initial read operations. Such behavior is expected due
to trigger events acting upon write operations followed by read operations, leading to data
rebalancing. After this period, the performance in scenario S¢ aligns closely with Sg, as
both scenarios benefit from replica rearrangement.

Table [I| presents the average read times for each read phase. For scenarios Sp and
S, the percentage change relative to the baseline (S4) is shown. Focusing on interactions
[1,10], scenario S 4, with data distribution based on the initial RPP, had the poorest read
performance. The lower execution times were observed in scenario Sz, where the balanc-
ing operation concluded before the read operations started. In scenario S, the balancing
operations were conducted dynamically across the experiment flow and did not exhibit
such pronounced gains in this phase.

| Stage 1 | Stage 2 | Stage3 | Stage4
It. | [1,10]  [11,20] | [21,30]  [31,40] | [41,50] | [51,60]

Sa Read time | 322.67s 538.30s | 421.79s 607.92s | 664.86s | 674.22s
Sk Read time | 252.24s 402.04s | 373.33s  501.66s | 559.98s | 555.94s

% change | -21.83% -25.31% | -11.49% -17.48% | -15.77% | -17.54%
Read time | 316.57s 363.87s | 329.02s 468.98s | 413.07s | 318.73s
% change | -1.89%  -32.4% | -21.99% -22.85% | -37.87% | -52.73%

Scenario Metric

Sc

Table 1. Average read performance in HDFS across all four tested stages.

In terms of the efficiency of the balancing process, in scenario S4, with the HDFS
default behavior, there were no balancing operations. In contrast, in scenario Sg, the
HDFS Balancer was executed right after the first data load in the first stage. This oper-
ation moved a total of 328.57GB of data, taking 2574s to complete (average throughput
for balancing 148.63MB/s). In scenario S, a total of seven rebalancing operations were
conducted by DARB. In the first stage, the HDFS Balancer relocated 539.81GB of data in



four balancing executions, totaling 3324s to complete (average throughput of 162.4MB/s).
The durations for each balancing operation were 1962s, 572s, 431s, and 359s. Considering
this, a trade-off becomes evident between the effort put into balancing and the balancing
efficiency. Scenario S, demonstrated the highest level of overall balance, as indicated by
the reduced standard deviation in data distribution. However, this was achieved at the cost
of increased duration and resource investment for balancing as it demanded more time to
transfer larger volumes of data, thereby consuming more bandwidth.

In iterations [11, 20|, the background applications significantly impacted read per-
formance in scenario S 4. The other scenarios maintained similar performances, although
also affected by higher resource competition and concurrency. Scenario S achieved the
best performance, as DARB already addressed the necessary balancing in the initial iter-
ations. Considering the average read times throughout the first stage ([1, 20]), the results
were: 432.89s for S, 329.46s for Sp, and 334.69s for Sc. Thus, in the overall read
performance for Stage 1, scenario S¢ performed very closely to Sp.

In Stage 2, with new data loaded into the system, scenario S4 experienced signifi-
cant performance degradation, both in iterations [21, 30] and [31, 40] with the background
applications in the cluster. Scenario S was also affected due to the increased imbal-
ance in the cluster after adding new files. However, DARB in scenario S¢ effectively
performed corrective actions, maintaining cluster balance. Even though an increase in
time from iterations [21, 30] to [31,40] was expected in all scenarios as the cluster was
serving other background applications, scenario S showed consistent performance im-
provements compared to the baseline. The average read times for the entire stage ([21, 40))
were 516.17s for S 4, 435.46s for Sp, and 397.71s for S¢. These results support the ben-
efits of maintaining replica balancing after new data loads to improve the performance
of subsequent read operations. In this stage, two balancing operations were activated by
DARB after the second data load, moving 168.01GB of data. The total time for data
rearrangement was 1024s (average throughput of 164.07MB/s). The first operation took
469s to complete, while the second required 555s. In this stage, the trade-off between bal-
ancing effort and efficiency proved highly beneficial. The optimizations in data locality
within a well-balanced cluster significantly reduced read times.

In Stage 3, failures caused an increase in read times due to reduced active DNs
(i.e., less read parallelism). The average read times for scenarios S4 and Sp in iterations
[41,50], as shown in Table|l, were higher than those in iterations [31, 40|, which included
background applications. In scenario S¢, the average read time was lower even without
DARB handling new balancing operations since the cluster balance was not impacted by
the re-replication process, as mentioned in Section [5.1] This indicates that the previous
balancing operations conducted by DARB whitin Stage 2 provided high stability and were
enough to keep the cluster at balanced levels even after failures.

In Stage 4, new DNs were added to the cluster, leading to a substantial difference
in behavior among the scenarios. In S4 and S there was no redistribution of the stored
data replicas to the new DNs. In contrast, in scenario S¢, the balancing process was
automatically performed by DARB upon detecting changes in the cluster’s topology. To
this end, a single balancing operation was performed by DARB, redistributing 182.82GB
of data in 511s (an average throughput of 357.77MB/s). The efficiency of this operation
is attributed to DARB configuring the HDFS Balancer in fast mode upon detecting new



nodes, aiming for rapid system rebalancing to include the new nodes in subsequent read
operations (i.e., avoid underutilization of resources).

In scenarios S4 and Sp, the execution times for iterations [51, 60] remained similar
to those in [41, 50]. Conversely, DARB in scenario S¢ allowed leveraging the new DN in
the following operations, enhancing the overall cluster bandwidth utilization. This capa-
bility resulted in the most significant performance gain among the scenarios: a reduction
of 52.73% in the time required to read the files in scenario Sc compared to the baseline.
Even with reduced balancing efficiency, as more data replicas were redistributed across
the cluster, DARB showed significant improvements in relation to the other scenarios,
ensuring optimal data distribution and enhanced read performance as the cluster evolves.

6. Conclusions and Future Work

Data replication is the primary mechanism for fault tolerance in HDFS, but it can lead to
unbalanced data distribution, affecting performance. In this study, we conducted an in-
depth analysis of the replica balancing process in HDFS, emphasizing the critical role of
the HDFS Balancer. Our experimental investigation considered variations in data volume,
background loads, node availability, and cluster topology, offering a new perspective on
replica balancing and demonstrating the importance of stability and efficiency in the data
replica placement algorithms used in HDFS.

We found that the default replica placement policy struggles to maintain data bal-
ance and that the on-demand use of the HDFS Balancer provides a temporary solution
but fails to sustain equilibrium amid continuous data loads and changes in cluster topol-
ogy. Here, DARB, an autonomous balancing solution, proves more effective, dynami-
cally adapting to context changes. While it may impact balancing efficiency by reallocat-
ing more data for improved stability, DARB brings substantial benefits for long-duration
applications dependent on replicated data. The evaluation results also show that data im-
balance in HDFS directly affects data locality, underscoring the importance of regular and
strategic balancing interventions. The performance enhancements observed in scenarios
where balancing is frequently conducted, specially after data loads and node additions in
environments characterized by frequent changes and growth, highlight the importance of
dynamic and responsive balancing mechanisms like DARB.

In conclusion, our study reaffirms the significance of effective replica balancing
in HDFS, not only for maintaining data equilibrium but also for ensuring efficient sys-
tem performance. As the demand for data-intensive applications continues to increase,
we hope the insights from this research will help shape the evolution of data balancing
strategies in HDFS. Looking forward, future work could focus on adapting the developed
balancing architecture for new environments and file systems. Additionally, we aim to in-
tegrate predictive models to foresee imbalance scenarios and address them preemptively.
Such advancements could further enhance the efficiency and stability of replica balancing,
contributing significantly to the field of distributed file systems.
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