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Abstract. Due to the increased computational capacity of Connected and Auto-
nomous Vehicles (CAVs) and concerns about transferring private information,
storing data locally and moving network computing to the edge is becoming in-
creasingly appealing. This makes Federated Learning (FL) appealing for CAV
applications. However, the synchronous protocols used in FL have several li-
mitations, such as low round efficiency. In this context, this work presents FAL-
CON, a semi-synchronous protocol for FL based on the link duration. FALCON
leverages data periodically transmitted by CAVs to compute link duration and
establish a dynamic temporal synchronization point. Additionally, FALCON in-
cludes a client selection mechanism that considers the local model versions and
models with higher local loss. FALCON reduces the communication rounds and
the number of selected clients while maintaining the same level of accuracy for
FL applications.

1. Introduction

Autonomous Vehicles (AVs) free the driver from the stressful task of driving, providing
physical and mental relief [Sun et al. 2022b]. The operation of AVs considers a set of
sensors responsible for furnishing the vehicle with knowledge about the surrounding en-
vironment, often providing data to Machine Learning (ML) models in order to unders-
tand/learn the environment for better driving decisions [Liu and Gaudiot 2022]. In this
context, CAVs extend the capabilities of AVs by enabling them to share the data with
neighbors to add further aspects to data processing, enabling a cooperative understanding
of the environment [Damaj et al. 2021].

CAVs generate a vast amount of sensor data – up to 1 GB per second, and such
extensive data sharing in CAVs raises significant communication and privacy concerns
[Chellapandi et al. 2024]. For instance, the data collected by CAVs commonly reveals
sensitive information about their users, including their home addresses, frequently vi-
sited locations, and daily routines [Lv et al. 2023]. In this context, Federated Learning
(FL) emerges as a crucial solution to provide a privacy-preserving property for CAV ap-
plications while reducing the strain on the network [Chellapandi et al. 2024]. In addi-
tion, it is believed that the future of ML and cloud computing will be distributed at the



network edge, such as allowed by FL [Zhang et al. 2023]. Specifically, at each communi-
cation round, a set of CAVs is selected to receive the global model, perform the training
based on its local data, and share their model parameters instead of their sensing data
[Song et al. 2022]. Afterward, a given aggregation policy takes an average of the shared
local models at edge servers to produce an accurate global model. Finally, the updated
global model is distributed to the CAVs. Hence, FL allows continuous learning by adap-
ting the ML model of CAVs without sharing raw dat a[Wang et al. 2023].

Many FL implementations rely on synchronous protocols for model aggregation,
where the server waits for all selected CAVs to return the local training results before pro-
ceeding with the aggregation policy [You et al. 2023]. However, synchronous FL proto-
cols have limitations, including unreliable participants, low round efficiency, and underu-
tilization of CAV computation resources [Hao et al. 2020]. Furthermore, the synchronous
FL protocols require the server to wait for slow learners (stragglers) in each communica-
tion round, reducing the efficiency of FL [Wu et al. 2021]. Otherwise, semi-synchronous
FL protocols introduce the synchronization point concept for model aggregation. Speci-
fically, at each communication round, the edge server waits for a given time interval (i.e.,
temporal synchronization point) for CAVs to upload their local model before applying the
aggregation policy. As a result, the edge server no longer needs to wait for stragglers or
disconnections [Wu et al. 2021].

In this context, a suitable temporal synchronization point is crucial to improve
the efficiency in terms of number of communication rounds, number of selected clients,
and the aggregation cost of the semi-synchronous FL protocol [Chen et al. 2020]. Esta-
blishing a reliable synchronization point is challenging since there is a trade-off between
the temporal synchronization point and the FL efficiency [Ma et al. 2021]. For example,
having a large temporal synchronization point results in less communication rounds, redu-
cing computation and communication costs, as each round entails transmitting the model
across the network and applying the aggregation policy [Almanifi et al. 2023].

However, this also results in the server waiting for extended periods without re-
ceiving local updates [Sun et al. 2022a]. Furthermore, the number of selected clients also
influences the communication cost, since more clients lead to more model transmission
across the network in each communication round. Hence, defining the dynamic synch-
ronization point based on a given criteria at each round is crucial, which is still an open
issue. The dynamic synchronization point also enables to adapt to the dynamic nature
of CAVs and the wireless communication channel characteristics, since CAVs frequently
lose contact with the cloud or edge server and fail to complete training or upload their
local model [Niknam et al. 2020].

In this paper, we propose a dynamic semi-synchronous FL protocol based on con-
nectivity information, which reduces number of communication rounds and aggregation
cost while maintaining the accuracy of global model, called FederAted Learning based
on COnNectivity (FALCON). In its operation, the edge server computes the average link
duration of the selected clients (i.e., a set of CAVs) and defines a dynamic temporal syn-
chronization point to aggregate and update the global model. FALCON also includes a
client selection mechanism to select the models with higher local loss. Evaluation results
show that FALCON reduces the total number of communication rounds by 46.67%, in the
high density scenario, and the number of selected clients by 38.46% while maintaining
the accuracy of the global model by 83.11%, compared to other approaches.
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Our contributions can be summarized as follows: (i) We propose a protocol for
semi-synchronous FL called FALCON, which dynamically adjusts the temporal synch-
ronization point based on the link duration between CAVs and the edge server. (ii) We
design a client selection scheme by considering CAVs with higher local loss and model
version. (iii) In a detailed performance evaluation with a realistic mobility trace, we show
the benefits of link duration information to define the temporal synchronization point with
better reliability compared to other state-of-the-art approaches.

The remainder of this paper is structured as follows. Section 2 introduces related
work, highlighting the individual advantages and limitations of earlier approaches. Sec-
tion 3 presents the FALCON operation as well as the methods used to compute the syn-
chronization point and client selection. Section 4 shows the performance analysis of the
proposed protocol compared to state-of-the-art approaches in the CAV scenario. Finally,
section 5 describes the conclusion of this paper and present some future work directions.

2. Related Work
[Nishio and Yonetani 2019] proposed FedCS, an FL protocol with a client selection me-
chanism wherein the server seeks to maximize client inclusion within a fixed time in-
terval. FedCS employs a client selection mechanism based on the information Mobile
Edge Computing (MEC) provides. However, FedCS did not consider the impact of the
mobility of devices, which can significantly interfere with the performance of FL. Ad-
ditionally, FedCS is designed with optimistic assumptions in mind: it does not consider
clients’ unreliability and mainly focuses on leveraging the wireless networks when there
is a stable connection and no congestion.

[Stripelis et al. 2022] introduced a semi-synchronous FL protocol (SEMI-SYNC)
that aggregates local models in a fixed interval, reducing idle time and achieving fast con-
vergence. The synchronization point is determined based on the maximum time required
for any client to complete a single epoch. However, the communication model employed
in this work fails to account for network disconnections. Furthermore, the authors neglect
to consider the costs associated with model transmission.

[Wu et al. 2021] presented the SAFA protocol for fast and lag-tolerant federated
optimization. The authors implement a server cache-based mechanism to mitigate the
effects of stragglers, crashes, and local model obsolescence. The SAFA aggregation po-
licy relies on specific criteria, including attaching to fixed time intervals and cache sizes
for storing received models. However, the accuracy of FL applications can be influenced
by the number of communication rounds and can lead to an increase in selected clients,
primarily driven by the cache-based synchronization point. Moreover, the authors did not
consider the mobility of devices.

[Liang et al. 2022] proposed a semi-synchronous FL protocol to enhance the per-
formance of ML for CAVs. The authors implemented a dynamic waiting time technique
to adjust the server temporal synchronization point at each communication round based
on the local computation time. However, the authors assume that the communication of
CAVs occurs in an open space, which may not accurately reflect real-world scenarios.
Furthermore, the authors do not directly consider the impact of CAVs mobility on the
choice of waiting time.

By analyzing the state of the art, we conclude that existing approaches do not
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consider the mobility of CAVs, intermittent communication, nor network dynamics to
define a dynamic temporal synchronization point for model aggregation, which could
jeopardize the efficiency of FL-based applications. Some approaches also employ fixed
intervals for synchronization or a cache for model updates, which fails to ensure efficiency
in scenarios characterized by high network disconnections and dynamic mobility patterns.

3. Dynamic Semi-synchronous Federated Learning
This section introduces the FALCON protocol, which considers the link duration between
the CAVs and edge servers to define the dynamic temporal synchronization point. In its
operation, FALCON defines the temporal synchronization point to aggregate and update
the global model with better reliability. FALCON also includes a client selection mecha-
nism based on model version and local loss. In the following, we introduce the system
model and FALCON operations.

3.1. Network and System Model
We employ a scenario involving a set of n CAVs (referred to as clients or learners in
FL) navigating an urban area. Each CAV is uniquely identified by an index i within the
range of [1, n], represented as V = v1, · · · , vn. Every CAV, denoted as vi, is traveling
in a specific direction indicated by

#  »

diri and has a speed, si, that falls within the range
of a minimum speed (smin) and a maximum speed (smax) limit. Each vehicle vi has a
position Pi = (Xi, Yi) at a given time instant t assigned by the Global Navigation Satellite
System (GNSS). Furthermore, each CAV vi is equipped with a Vehicle-to-Infrastructure
(V2I) communication interface, such as Dedicated Short Range Communication (DSRC)
or 5G. Additionally, the CAVs are equipped with onboard sensors capable of collecting
data, which is subsequently utilized to feed ML models for tasks such as recognition or
image classification within the context of FL-based applications.

The scenario comprises a collection of m edge servers, strategically deployed at
arbitrary locations, where each edge server is uniquely identified by an index j within
the range of [1,m] and is denoted as ES = ES1, · · · , ESm. In this context, the edge
server ESj plays a crucial role in the distribution of ML parameters for the initial or
updated global model ω to all CAVs during each communication round µ. Furthermore,
the edge server also assumes the responsibility of collecting and analyzing connectivity
data, aiding in the determination of a dynamic temporal synchronization point for model
aggregation, and applying a client selection mechanism.

3.2. FALCON Operations
The operation of FALCON protocol consists of five steps performed by server or client
side during each communication round µ. The initial step (Step 1) occurs when the global
model ωµ−1 is disseminated to the CAVs by the edge server ESj . Concurrently, in the
Step 2, CAVs periodically broadcast beacon messages through the network, and thus the
edge server ESj could collect such beacons to underhand crucial CAV information, such
as, position Pi, speed si, local loss fi(ω

µ
i ;x

k
i , y

k
i ), and model version (vr(ωµ

i )). Based
on such information, the edge server ESj computes the link duration to determine a dy-
namic temporal synchronization point, guaranteeing that CAVs upload their local model
parameters within the specified link duration. Hence, the edge server ESj sets a synch-
ronization point T µ

lim at the start of each communication round µ, and waits for CAVs to
upload their local model parameters ωµ

i before applying the aggregation policy (step 4).
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In Step 3, each CAV undertakes the local model training using its respective local
data. In this way, each CAV vi has a local dataset Di = {xk

i , y
k
i }, where xk

i and yki
denotes the input data and output label of the k-th data sample, respectively, and |Di| is
the number of data samples collected by a given vehicle vi. The total number of data
samples is expressed by D ≜

∑|V |
i=1 |Di|. Hence, each CAV vi trains the local models

ωµ
i based on the local data Di with the local loss function fi(ω

µ
i ;x

k
i , y

k
i ) of the k-th data

sample. The local loss function of CAV vi can be computed based on Eq. 1, where
the local loss must be computed and minimized for better convergence with a minimum
accuracy value across users.

Fi(ω
µ
i ) ≜

1

Di

Di∑
k=1

fi(ω
µ
i ;x

k
i , y

k
i ). (1)

Once the CAV vi completes the local training, it uploads the resulting local model
to the edge server ESj . It is important to mention that the edge server ESj waits a tempo-
ral synchronization point T µ

lim to receive the uploaded models and apply the aggregation
policy to produce a new global model ωµ+1, as denoted by Eq. 2.

ωµ+1 = min
ωµ

F (ωµ) ≜
|V |∑
i=1

Di

D
Fi(ω

µ
i ) (2)

In addition, during the step 4, FALCON defines the number of K selected clients
based on a client selection mechanism, where the FALCON protocol sorts the models
based on the higher loss value and selects K clients to participate in the upcoming learning
rounds. Finally, the edge server generates the updated global model by aggregating the
selected local models (Step 3 and 4) and transmits the updated global model (Step 5). In
the following sections, we introduce how FALCON performs the computation of dynamic
temporal synchronization point and the client selection mechanism.

3.3. Dynamic Temporal Synchronization Point

In semi-synchronous FL protocols, the edge server ESj sets a synchronization point T µ
lim

at the start of each communication round µ and waits for CAVs to upload their local
model parameters ωµ

i before applying the aggregation policy. However, the dynamic mo-
bility patterns of CAVs and the inherent variability of wireless communication channels
often result in frequent disruptions in connectivity between CAVs and the edge server,
leading to failures in completing training or uploading their local models within the de-
signated link duration. As a result, establishing an appropriate temporal synchronization
point based on connectivity information is critical for enhancing the efficiency of semi-
synchronous FL protocols, since it allows fine-tuning the synchronization frequency, ag-
gregation cost, and maintaining control over the number of communication round.

FALCON protocol effectively addresses such issues by integrating the link dura-
tion value to establish a temporal synchronization point T µ

lim, which guarantee that CAVs
upload their local model parameters within a valid link duration. Based on this, we as-
sume that edge server is aware of CAV information in real-time to build the knowledge
necessary to determine the temporal synchronization point, which is possible by edge
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server receiving the beacons already exchanged by CAVs without extra overhead. Speci-
fically, each CAV transmits periodic beacons containing its index i, position Pi, and speed
si information.

Given the history of associations of a given CAV vi with the edge server ESj ,
it is possible to decompose the link duration information into time series representing
the connection status between a given CAV vi in the communication range of the edge
server ESj , which is stored in the edge server ESj . In this way, FALCON calculates the
time difference between consecutive beacons by analyzing the timestamp of each received
beacon, where ∆ti denotes the link duration of a given CAV vi maintains contact with the
edge server ESj and it is modeled as follows.

∆ti =
Ri − dist(vi, ESj)

abs(si)
, (3)

where Ri denotes the estimated maximum communication range of CAV vi,
dist(vi, ESj) denotes the Euclidean distance between CAV vi and the edge server ESj ,
and si represent the speed of a CAV vi. Hence, the analytical model on link duration
∆ti incorporates the influence of mobility characteristics and channel range, offering a
mathematical representation of the intermittent CAV network.

However, Eq. 3 only works for situations in which the CAV speed (si) is diffe-
rent from 0. Thus, the FALCON protocol filters speed data in instances where stationary
or parked CAVs may influence the link duration. Specifically, when computing the ave-
rage link duration, the protocol distinguishes parked CAVs, establishing an assumption
of an initial synchronization time T 0

lim, which subsequently results in a predictable fixed
behavior. Hence, if the collection of connection or speed data is not precise, it would
not adversely affect the efficiency of the protocol. Our speed filter can be formulated as
follows:

∆ti =

{
∆ti if si > 0 and Ri−dist(vi,ESj)

abs(si)
> T 0

lim,
T 0
lim otherwise.

(4)

Finally, at the begin of the dynamic temporal synchronization point, FALCON
computes the average of link duration of all CAVs ∆t stored by the edge server, as shown
in Eq. 5. Precisely, FALCON sets a dynamic temporal synchronization point T µ

lim at the
start of each communication round µ by taking into account the average link duration
from the previous temporal synchronization point.

T µ
lim =

∑|V |
i=1 ∆ti
|V |

. (5)

3.4. Client Selection
The client selection mechanism is responsible for determining specific subsets of CAVs
eligible to participate in the upcoming learning rounds. In this way, the edge server ESj

distributes the global model parameters ωµ
i to the selected CAVs, which train the ML

model over their local data Di. However, the mechanism must guarantee that the partici-
pating CAVs have valuable samples, which reduces the waste of computation resources
by removing the learning whose data are no longer critical for the model training.
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In this context, the efficiency of the client selection mechanism is closely asso-
ciated to the fraction of picked clients. In this sense, FALCON incorporates a hyper-
parameter C to regulate the maximum fraction (0 < C < 1) of CAVs suitable to partici-
pate in a single round of training. For instance, we can set C to a large value (i.e., closer
to 1) in order to pick as many clients as possible in each round. However, this is neither
realistic nor beneficial, since allowing more CAVs to participate increases the potential
risk of uplink congestion and the communication cost as well. In addition, the server may
have to wait for more CAVs, which may never respond due to crash midway.

In order to select the best models, based on the values obtained after training,
FALCON uses beacon transmission to collect the local loss values from each CAV vi and
model version vr(ωµ

i ) without additional communication overhead. In this context, we
integrate a lag tolerance mechanism to guarantee performance stability in the models of
CAVs and prevent outdated CAVs with stale models from participating in the aggregation
policy. Specifically, FALCON verifies the version of the local model vr(ωµ

i ) received
by the edge server and compares it with the current global round ωµ. The lag tolerance
mechanism defines a limit τ for stale model versions, allowing stragglers to still contribute
to the model aggregation policy. Hence, we compute the difference between the local
model version for a given CAV vi and the global model version at the edge server, and
our lag-tolerant distribution principle can be formulated as follows:

ωµ
i =

{
ωµ
i if vr(ωµ

i ) ≥ (µ− τ),
ωµ otherwise.

(6)

We define a lag tolerance limit τ = 1 model version, which guarantee performance
stability in the models of CAVs and prevent outdated CAVs with stale models from parti-
cipating in the aggregation policy. The lag-tolerant model distribution policy compels the
CAVs outdated models to utilize the most recent global model as their starting point for
the subsequent round of training. Conversely, for clients deemed as having tolerable lag,
they are permitted to build upon their prior local results. In summary, FALCON mandates
synchronization only for CAVs categorized as deprecated, allowing tolerable clients to
maintain their asynchronous status with the server. Deprecated CAVs are compelled to
synchronize to prevent severely outdated local models from adversely affecting the global
model.

Furthermore, previous research has emphasized that selecting clients with higher
local loss computed at each communication round µ facilitates faster convergence
[Jee Cho et al. 2020]. In this context, the FALCON protocol creates a list comprising
K representing the number of CAVs to be selected, where K is calculated as ⌈C ∗ |V |⌉,
as determined by the hyper-parameter C. This list of potential candidates undergoes an
arrangement based on descending order of loss values. Furthermore, the FALCON pro-
tocol identifies and selects the CAVs that exhibit the highest loss function value, denoted
as fi(ω

µ
i ;x

k
i , y

k
i ). The FALCON protocol also employs a list of previously chosen clients

(QK) to prevent the repetition of a limited group of clients. By using this approach, clients
who have already been picked in the prior round will be excluded from being selected in
the subsequent round.

For example, let us examine a scenario involving two clients with different data-
sets, one experiencing a notably high loss rate and the other with significantly lower local
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loss. In a specific training round µ, the global model acquires more substantial new kno-
wledge, prioritizing its training emphasis on the local data from the client with the highest
loss, and this occurs because the client with the highest local loss needs to contribute more
time to the model to make it more generic. In this sense, each new communication round
repeats the client selection process.

4. Evaluation
In this section, we describe the CAV scenario, including framework, data-
base and simulation details. We evaluate of the FALCON compared to
FedCS [Nishio and Yonetani 2019], SEMI-SYNC [Stripelis et al. 2022], and SAFA
[Wu et al. 2021]. We also discuss the obtained results in terms of the number of selected
clients, the total number of communication rounds, the average aggregation cost, and the
global model’s accuracy.

4.1. Simulation Description
We conducted simulations using OMNeT++ 5.7.1 as the simulator and
FLEXE[Lobato et al. 2022] as the simulation framework. FLEXE is an open-source
extension to the vehicular network simulation framework Veins which offers researchers
a simulation environment to run FL experiments in realistic vehicular scenarios. FLEXE
uses the TensorFlow’s training interface to split the data for each CAV and train the local
model. FLEXE also uses SUMO 1.4.0 as a traffic simulator to simulate the CAVs moving
on the road at a random cruise speed.

We employ the Luxembourg SUMO Traffic (LuST) scenario to evaluate the im-
pacts of different semi-synchronous protocols with realistic vehicular mobility trace
[Codeca et al. 2017]. LuST is an open-source realistic mobility trace scenario contai-
ning 24 hours of mobility data for multiple CAVs, routes, and road lengths. The LuST
scenario predetermines vehicle routes, and all CAVs share identical properties, such as
size, mean speed, and acceleration. We chose an arterial area from the Luxembourg city
center (i.e., a highway scenario), where several city routes converge on this region. We
conducted simulations at three different times of the day to represent three network den-
sities in the vehicular environment (i.e., low, medium, and high density), which enables
to comprehensively examine the effects of different traffic levels on the efficiency of FL.
We conducted 48 simulation runs with different randomly generated seeds, and the results
include a 95% confidence interval.

The simulation scenario includes an edge server with a single global model placed
in the scenario’s center. We assume that all participating CAVs have similar computati-
onal capabilities and are willing to contribute data for training the FL model. We set the
transmission power to 20 mW for the edge server. We also use a bit rate of 6 Mbit/s at the
MAC layer. For vehicles, we changed the transmission power to 15 mW to give a com-
munication range equal to 300 m. The beacon’s frequency was 1 Hz. Table 1 summarizes
the main simulation parameters used in our evaluation.

Each CAV possesses an ML model tailored to perform an image classification
task, such as, required in task for autonomous or self-driving cars. After recognizing the
type of objects, the CAV can take appropriate action. For example, if the detected ob-
ject is classified as a cyclist or pedestrian then the CAV can overtake the detected object
at the safe distance. Therefore, recognition or image classification is an important task
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for smooth driving in CAVs. In this sense, we employ a publicly available large-scale
image databases, namely, Fashion-MNIST (FMNIST)1. The FMNIST database consists
of 28x28 grayscale images showcasing fashion products across ten categories, sourced
from a Zalando article image database. Besides it is a fashion products database, it en-
compasses a training set of 60 000 examples and a test set of 10 000 samples.

We implemented a Convolutional Neural Network (CNN) composed of two con-
volution layers with a 5x5 kernel size and 32 filters. A 2x2 max pooling operation follows
each convolution layer. The model includes a fully connected layer with a ReLU activa-
tion function and a final softmax output layer. Stochastic Gradient Descent updates the
model weights, while Sparse Categorical Cross-entropy is the loss function during trai-
ning. During each communication round, the CAVs train their local models with five
epochs for both models.

Tabela 1. Simulation Parameters
Parameter Value

co
m

m
un

ic
at

io
n

Simulation area 1 km2

Scenario LuST
Traffic density 58 (Low), 157 (Medium), 235 (High)
Vehicle speed 13.84 m/s (49.82 km/h), St.Dev: 5.27
Beacon transmission rate 1 Hz
Transmission power 15 mW
Reception sensitivity −110.0 dB
Bitrate 6 Mbit/s
Transmission range 300 m

fe
d.

le
ar

ni
ng

Database FMNIST
Database size 50k
Local training 5 epochs
Batch size 64
Loss function Sparse Categorical Cross-entropy
Optimizer Adam

We consider data across CAVs exhibit non-Independent and Non-Identically Dis-
tributed (non-IID) characteristics in our evaluation scenario, due to data heterogeneity
across various CAVs and ML applications. In this sense, numerous distributed ML trai-
ning approaches encounter substantial accuracy degradation due to the disparities in data
quantity and category distribution within non-IID data. In the non-IID context, we use
label distribution skew to characterize the local data distribution among the CAVs, resul-
ting in varying label proportion [Hao et al. 2020]. Specifically, we sample a proportion
pk,i ∼ Dir(β) that represent the instances of class k to the CAV vi, where Dir(β) is a
Dirichlet distribution with a concentration parameter β = 0.1 [Li et al. 2021].

4.2. Simulation results

Figure 1 shows the cumulative number of selected clients on each communication rounds
for the analyzed semi-synchronous FL protocols under different network density levels.
By analyzing the results, it is possible to conclude that FALCON reduces the number

1https://github.com/zalandoresearch/fashion-mnist
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of selected clients by 95.28%, 58.97%, and 38.46% for low density compared to SEMI-
SYNC, FedCS, and SAFA, respectively. It is important to note that the number of selected
clients increase as the network density increases as well, due to the increase in the number
of vehicles available to share the model with the edge server. For instance, FALCON
increases the number of selected clients by 76.81% for high density compared to low
density.

The performance of FALCON protocol is due to it employing the shared local
model’s hyper-parameter C and τ to prioritize models with the lag tolerance and highest
local loss, which reduces the number of selected clients on each round while keeps the
accuracy level similar to other approaches as shown in Figure 4. In this context, FedCS,
SEMI-SYNC, and SAFA require more model transmission across the network in each
communication round, consuming more network resources. For instance, compared to
FALCON, the bit transmission of the SEMI-SYNC, FedCS, and SAFA is about 95.92%,
61.76%, and 35% higher in the medium-density scenario.

Moreover, the SEMI-SYNC protocol outperformed the other methods, mainly at-
tributable to its strategy of choosing all available models within the communication range
of the edge server. Conversely, the FedCS protocol employs a hyper-parameter, denoted
as C, to select a percentage of the models received by the edge server for aggregation pur-
poses. The number of clients chosen is directly linked to the value of the hyper-parameter
C. Lastly, the SAFA protocol adopts a selection mechanism similar to that of FedCS and
FALCON, which combines a defined percentage of clients with the lag-tolerance variable
to select clients.
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Figura 1. Impact of CAVs density on the number of selected vehicles

Figure 2 demonstrates the impact of the temporal synchronization point on the
number of communication rounds conducted by each evaluated protocol. By analyzing
the results, it is possible to observe that FALCON achieves 46.15%, 46.15%, and 41.67%
reductions, in low density, compared to the SEMI-SYNC, FedCS, and SAFA protocols,
respectively. This reduction is attributed to FALCON’s utilization of the link duration to
determine the next temporal synchronization point, effectively minimizing communica-
tion rounds and significantly decreasing the number of transmitted packets by edge server.

It is important to highlight that the protocols SEMI-SYNC, FedCS, and SAFA
have a fixed synchronization point, where FedCS and SEMI-SYNC select the synchro-
nization based on a fixed time interval, while SAFA chooses based on the local updates
stored in the cache. We refer to the same values established by [Wu et al. 2021] to ensure a

10



fair definition of this fixed temporal synchronization point in the FedCS and SEMI-SYNC
protocols. Hence, FALCON provides lower number of communication rounds, which re-
duces the model training and usage of computation and communication resource. In the
high-density scenario, as shown in Figure 2, FALCON reduces the communication rounds
approximately by 52.94%, 52.94%, and 46.66% compared to the FedCS, SEMI-SYNC,
and SAFA protocols, respectively.
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Figura 2. Total number of communication rounds

Figure 3 presents the average aggregation cost for each communication round
in milliseconds (ms), offering valuable insights into the direct relationship between the
number of selected clients and the total number of communication rounds. This result
highlights the significant reduction that the FALCON protocol achieved in terms of mi-
nimizing aggregation costs, where FALCON protocol outperforms SEMI-SYNC, FedCS,
and SAFA by impressive margins of 96.30%, 64.11%, and 35.96%, respectively. Mo-
reover, it becomes evident that the aggregation cost intricately relates to the number of
rounds conducted by FALCON, as demonstrated in Figure 2. Figure 3 effectively illustra-
tes the concurrent reduction in communication and computation costs throughout the FL
process, thereby highlighting the overall efficiency of FALCON approach. An intriguing
observation emerges when we compare the FedCS and SEMI-SYNC protocols, which
share the same number of communication rounds but exhibit an 88% difference in the
number of selected CAVs, as indicated in Figures 1 and 2. This disparity is reflected in
the aggregation cost, where the FALCON protocol strategically reduces client selection
values and the total number of communication rounds.

Finally, Figure 4 presents the learning accuracy results using the FMNIST data-
base to examine the performance of the protocols in a specific AV application. It is crucial
to highlight that higher accuracy values within these figures signify superior classification
outcomes. Upon analyzing the results in Figure 4(a), we conclude that all protocols exhi-
bit similar accuracy levels, hovering around 83%, in the final round of communication for
the classification task using the FMNIST database, regardless of the CAV density. What
is particularly noteworthy is the sustained high accuracy values across all protocols. In a
standout fashion, FALCON demonstrates remarkable consistency by maintaining an ac-
curacy level of 85.11% in Figure 4(b) while simultaneously reducing the required number
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Figura 4. Impact of CAVs density on global model accuracy in the FMNIST

5. Conclusions and Future Work
In this paper, we have outlined the operation of FALCON, a semi-synchronous FL pro-
tocol that considers the temporal link duration between CAVs and the edge server. FAL-
CON considers data periodically transmitted by CAVs operating within the edge server’s
communication range to calculate the link duration and dynamically set up a temporal
synchronization point. Additionally, FALCON relies on a client selection mechanism
that considers lag tolerance and prioritizes clients based on their highest local loss. Simu-
lation results show that the dynamic temporal synchronization point affects the number
of global model aggregations, the total number of selected clients, and the aggregation
cost applied in the edge server. The results indicate FALCON’s effectiveness in reducing
the number of communication rounds and significantly decreases the number of selected
clients, while maintaining the same classification task accuracy.
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In future work, we plan to undertake comprehensive assessments of more intricate
applications tailored for CAVs and explore various aggregation policies to gain deeper
insights into their effects and associated costs. We also intend to incorporate the historical
mobility patterns of CAVs when determining the temporal synchronization point and a
detailed discussion on scalability to prove the scalability, acknowledging the significance
of accounting for diverse mobility scenarios to assess our solutions comprehensively.
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