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Abstract. Integrating thousands of smart devices over the various IoT domains
will require the devices to deliver services free of threats. Although intrusion de-
tection systems (IDS) offer a multi-layer of protection to IoT networks, they com-
monly operate in isolation, thus restraining their application in integrated envi-
ronments. In this context, collaboration among IDS emerges as an alternative
to enhance intrusion detection, relying on their knowledge about faced threats.
However, collaborative IDS (CIDS) generally exchange messages through cen-
tralized entities, disregarding direct communication among IDS. This work pro-
poses a collaborative network IDS (C-NIDS) that integrates standalone NIDS
for sharing information about detected and mitigated threats, improving overall
intrusion detection. Evaluation results showed that C-NIDS achieved an attack
detection rate of 99%, enhancing the attack mitigation by up to 50% compared
to non-collaborative scenarios.

1. Introduction
Intrusion detection systems (IDS) have usually been applied to prevent several classes of
attacks. In general operating independently, they aim to detect and mitigate malicious
activities surpassing the first security layer of the networks [Heidari and Jabraeil Jamali
2022, Hara and Shiomoto 2020]. However, mainly in Internet of Things (IoT), the grow-
ing number of devices in numerous application domains hampers their inter-operation and
resilience in such environments [Abikoye et al. 2021, Tanwar et al. 2022]. Therefore, a
seamless integration of such heterogeneous IoT networks claim for secure environments
for device operation by robust and integrated approaches. In this regard, Collaborative
Intrusion Detection Systems (CIDS) emerge as a possible response, standing out by en-
abling IDS to share knowledge and experience, like alarms and attack signatures. Such
collaboration allows building a collective knowledge about faced threats and attacks, and
increasing overall detection accuracy [Alkadi et al. 2020, Putra et al. 2021]. CIDS en-
ables a secure environment for the convergence of IoT networks by strengthening threat
defense and improving IoT interconnection in increasingly complex environments.

Since CIDS operation relies on exchanging messages among IDS, the knowledge
of each IDS holds about threats faced during its operation naturally becomes pivotal to
leverage the operation of others belonging to CIDS beyond a Zero-Knowledge condi-
tion [Feige et al. 1988]. Further, the sooner an IDS under attack shares its knowledge
about a faced threat, the faster other IDS are ready to overwhelm similar threats, i.e.,
the age of attack-related information [Yates et al. 2021] is critical to overall CIDS per-
formance. Although these IDS know each other previously, they establish connections



only when an IDS faces any threat. Hence, such a network performs as an opportunis-
tic network [Lilien et al. 2006], where an IDS directly delivering [Spyropoulos et al.
2004, Sachdeva and Dev 2021] the available knowledge to other IDS enhances network
protection and, hence, CIDS overall performance.

Since that communication between IDS is essential to a collaborative operation,
several studies aim to enhance IDS interactions. In a layered structure, network IDS
devices follow the network hierarchy to make decisions about attack detection [Nguyen
et al. 2019,Kheddar et al. 2023]. Further, technologies, such as blockchain and cloud, of-
fer a transparent layer for collaboration between IDS, enabling IoT devices to run as thin
clients [Alkadi et al. 2020, Javadpour et al. 2023]. As CIDS operates decentralized, a
cloud storage system can act as middleware, ensuring the availability of attack-related
information for autonomous IDS [Putra et al. 2021]. In host-based approaches, ma-
chine learning classifiers analyze data traffic and collaborate in making decisions about
attacks [Nguyen et al. 2022]. Transfer learning aids collaboration by enabling system
training using a small scale of data from the target domain based on knowledge acquired
from a source domain [Mehedi et al. 2022, Luo 2023]. These strategies promote collab-
oration between IDS, but they often restrict the direct communication of such devices.
Hence, they increase the time required for attack detection and mitigation, jeopardizing
network recovery. This constraint highlights communication barriers in CIDS to enhance
the overall efficiency and responsiveness of intrusion detection and mitigation processes.

This work addresses a collaborative network intrusion detection system (C-NIDS)
for IoT networks. NIDS devices communicate directly to share information about previ-
ously mitigated threats, like alarms, detection rules, and attack signatures, thus improving
overall attack detection. Each NIDS device operates autonomously, protecting its local
IoT network. They play collaboratively by exchanging such information in the face of a
detected attack. Therefore, other NIDS devices can perform better against similar threats
and improve their accuracy, detection, and response times. The proposed C-NIDS works
in a distributed and collaborative manner, establishing a framework where direct commu-
nication among NIDS nodes reduces the damage caused by attacks aimed at communi-
cation among devices belonging to an IoT network. Evaluation results showed that our
C-NIDS achieved a detection rate of 99%, with 0% false negatives and 100% true posi-
tive rate, and increased the attack mitigation by up to 50% compared to non-collaborative
scenarios. Further, it achieved a collaboration time among NIDS of less than 16 seconds,
highlighting the effectiveness of direct cooperation.

This paper proceeds as follows. Section 2 presents the related work. Section 3
details the proposed C-NIDS system. Section 4 discusses system performance evaluation,
and Section 5 presents conclusions and future works.

2. Related Work
Collaboration among IDSs has enhanced anomaly detection by leveraging approaches
like blockchain, trustworthy collaboration, and machine learning. The decentralized na-
ture of blockchain is harnessed to enable IDSs to share detection signatures, enabling
data exchange and ensuring IoT devices function as lightweight clients [Alkadi et al.
2020]. Trustworthy collaboration includes device trust assessment [Putra et al. 2021],
contributing to detection of IoT botnets by machine learning classifiers that analyze data
traffic [Nguyen et al. 2022]. The use of machine learning comprises transfer learn-



ing, applying gained knowledge to combat attacks, like DoS, DDoS, and man-in-the-
middle [Mehedi et al. 2022, Luo 2023]. These studies, however, overlook direct commu-
nication among network IDS to facilitate real-time sharing of detection information.

In [Nguyen et al. 2019], IDS nodes run in a collaborative NIDS architecture for
SDN-based IoT networks to detect anomalies through hierarchical layers. They formulate
policies for gateway devices to block malicious traffic, including Edge-IDS, Fog-IDS, and
Cloud-IDS. The strategy distributes traffic analysis, relieving edge nodes. Collaboration
between IDS improves attack detection and mitigation. But dependence on IDS decisions
at higher hierarchical levels compromises system performance. [Sarhan et al. 2023]
present a distributed IDS for IoT network security using SDN and an optimized decision
tree algorithm. The system divides the network into monitored sub-networks with con-
troller nodes, optimizing accuracy through the black hole optimization (BHO) algorithm.
IDS employs a collaborative decision-making approach, with controller nodes sharing
results and determining attacks through majority voting. However, the approach does
not employ direct collaboration among IDSs, increasing decision-making time. [Pandey
et al. 2023] propose an IDS for a secure social network, employing soft and cooperative
edge computing. The approach seeks to optimize resource allocation and improve data
transmission, improving network security and performance in IoT environments. Despite
being a promising approach, the authors fail to address the collaboration time among IDS,
focusing exclusively on information distribution at the network’s edge.

In [Alkadi et al. 2020], a deep blockchain framework provides security-based dis-
tributed intrusion detection and privacy-based blockchain in IoT networks. It employs
a bidirectional long short-term memory (BiLSTM) deep learning algorithm for sequen-
tial network data and treats IDS alerts as blockchain transactions. Blockchain consensus
ensures alert validity and privacy for attack detection and mitigation. Given that heavy
processing takes place in blockchain, IoT devices can play as lightweight clients for ver-
ifying and disseminating alert correctness. However, deep learning depends on available
datasets for LSTM training and supporting CIDS operation, disregarding training costs
or collaboration time. Further, since collaboration primarily occurs at edge devices, it
overlooks direct communication among NIDS. In [Javadpour et al. 2023], a distributed
multi-agent intrusion detection and prevention system (DMAIDPS) performs on Cloud
Internet of Things environments. But the cloud centralization restrains direct information
exchange and collaboration among NIDS, compromising network operation. In [Quin-
cozes et al. 2021], an intrusion detection approach to a network of specialized detectors,
called counselors, collaborates to enhance the accuracy of intrusion detection in environ-
ments with heterogeneous data sources. However, such an approach lacks of information
about resolving conflicts between classifiers, the absence of representatives in training
data, the scarcity of labeled signatures, and a comprehensive evaluation to highlight its
effectiveness and robustness. In [Nguyen et al. 2022], a collaborative approach for early
detection of IoT botnets employs several machine learning classifiers to analyze data traf-
fic. They collaborate in the decision-making by voting about traffic analysis. Although the
applied strategy enables botnet detection, as a host-based solution, it operates centralized.

In [Mehedi et al. 2022], the knowledge of a source domain allows training an
IDS using only a small scale of data from the target domain. According to the training
data, such IDS faces attacks such like DoS, DDoS, and man-in-the-middle. However, the
operation of IDS relies on training data. In [Luo 2023], a cyber threat intelligence shar-



ing scheme employs federated learning for network intrusion detection. Nevertheless, the
decision-making time and the direct collaboration are hindered by training time. In [Putra
et al. 2021], a decentralized and trustworthy CIDS for IoT comprises three categories of
nodes: validator, contributors, and regular, each playing a distinct role in the system. Val-
idator nodes endorse rules submitted by contributing nodes, whereas regular nodes utilize
shared, validated rules. The collaborative strategy enables nodes to confront unknown
attacks by rules provided by CIDS from other environments. However, trust evaluation
depends on predefined rules for validators. Further, as CIDS collaborate through a dis-
tributed storage system, it increases the system’s detection time.

Therefore, there is a demand for solutions capable of acting through direct com-
munication and identifying and isolating malicious actions in IoT networks. By preserv-
ing communication security between devices and servers, solutions must promote the in-
tegration by allowing multiple networks to connect and converge securely and resiliently.

3. A Collaborative NIDS

In this section, we describe the system model for the collaborative NIDS to provide IoT
networks seamless integration. We also present the system architecture and its operation,
and we discuss NIDS interactions to achieve overall collaboration and knowledge sharing.

3.1. Environment and NIDS model

We take into account a network environment composed by a couple of IoT networks -
Net1, Net2, ..., Netn, each of them protected by a signature-based NIDS operating on the
gateway, as shown in Figure 1, which illustrates a scenario with three IoT networks. These
NIDS operate standalone and connect through the Internet or another network access
control to form the collaborative NIDS (C-NIDS). Over the established network, all NIDS
communicate with each other to exchange attack-related information. As signature-based
devices, they are previously configured with rules to meet the network domain security
requirements and operate on gateway to analyze all the data traffic traversing it.

Network model: Each IoT domain, named an Island model, corresponds to a set of IoT
devices, one data monitoring server (DMS), one NIDS, and one gateway. IoT devices
collect environmental data and send them to DMS to a given application, whereas the
DMS on each Island frequently exchange data to support a complete view of the surveyed
environments. Running on the gateway, a NIDS monitors all the data traffic traversing the
device from/to the Island. Therefore, C-NIDS establishes an overlay with all NIDS nodes
so that they can exchange warning messages to update their rules database whenever a
NIDS detects an anomaly on the IoT island.

NIDS communication model: All NIDS belonging to C-NIDS can connect to each other.
However, such connections take place only when a NIDS is under attack. They commu-
nicate through a secure and direct channel, and, for simplicity, we disregard any com-
munication failures. Each NIDS keeps other NIDS updated about detected anomalies by
warning messages, which carry a tuple ⟨Id, Anomaly, AplRule, FwdFlag⟩, where Id is
the NIDS identification; Anomaly indicates the type of detected anomaly; AplRule is the
applied rule to mitigate it; and FwdFlag indicates to the receiver NIDS the need to for-
ward such message to other NIDS. As a NIDS under attack may be overloaded during
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Figure 1. Collaborative NIDS

such period, which impairs its communication with other NIDS, we devised an oppor-
tunistic strategy to improve attack information delivery, where an attacked NIDS sends
warning messages to other NIDS. Thus, information collaboration occurs in two stages:
sending and forwarding, according to FwdFlag value. A NIDS under attack ends collab-
oration when it shares attack-related information with another NIDS, which corresponds
to the sending stage. The first device that confirms receipt of the information incorporates
the applied rule to its rules database and becomes responsible for forwarding it to oth-
ers NIDS, which must acknowledge its reception. Therefore, the collaboration between
a threatened NIDS and the others occurs in two steps, i.e., directly between a threatened
NIDS and other NIDS, and between the later NIDS and the other NIDS not under attack.

NIDS model: Each NIDS operates standalone on an island gateway to monitor, detect,
and mitigate threats to this environment. It analyzes the traffic traversing the gateway,
and whenever it detects an attack, it mitigates the threat and stores the attack-related
information. Next, it sends such information to other NIDS belonging to the C-NIDS.

Threat model: The main threat consists of attacks targeting the communication between
IoT devices and the DMS, aiming to overload the channel to carry the server out of its
normal state (i.e., its continuous and correct operation service). These attacks direct the
data flow to the monitoring server, overwhelming it with a large volume of data, which
leads it to deny service to IoT devices and servers on other networks.

3.2. C-NIDS architecture and operation

The architecture comprises a standalone NIDS operating on each island’s gateway, as
shown in Figure 1. Islands mean environments with physical IoT devices or emulate
IoT environments with multiple devices; such devices interact and exchange information.
Thus, each island can represent distinct application domains like smart homes, industries,
and hospitals. A NIDS on the island gateway monitors the data traffic traversing it and
mitigates detected anomalies through suitable countermeasures. Next, it shares informa-
tion about anomaly detection, forming a collaborative system. Thus, C-NIDS’ operation
depends on direct communication among all NIDS to improve overall network security.

C-NIDS operation depends on all NIDS functioning, thus requiring their pre-
configuration with specific rules according to the IoT application domain and its data
traffic pattern. For example, supporting a smart home environment, a NIDS node should
protect it from threats aiming to open a front door to interrupt the heating system, among



other unwanted actions. At the same time, a smart industry environment demands pro-
tection against attempts to interrupt an accumulation line to cut the energy supply, among
other threats. Therefore, each NIDS can have a distinct rules database suitable to deal
with the possible threats to its network environment.
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Figure 2. C-NIDS operation under attack

Figure 2 depicts a C-NIDS operation, where each NIDS protects an IoT network
(island), and one island - Net1 - is under attack from an external entity, like a botnet estab-
lished through BoNeSi tool [Goldstein 2023]. For instance, the attack can target the trans-
port layer in the communication between IoT devices and DMS, which occurs by UDP
protocol. Such a threat leads DMS to a denial of service so that it cannot receive data from
IoT devices while communication with other servers may be jeopardized. Another exam-
ple is an attack threatening the network layer through a large data volume sent to DMS
through ICMP protocol. In such a scenario, the communication between DMS through
the TCP protocol can experience data losses, high delays, and latency. Therefore, consid-
ering a botnet attacking Net1, as illustrated in Figure 2, its NIDS performs to detect the
attack from the botnet. Upon detection, it employs some available preconfigured rules to
mitigate the threat and sends a warning message to the other NIDS belonging to C-NIDS
carrying the attack-related information. The NIDS under attack stops sending warning
messages whenever another NIDS acknowledges the receipt of this message. Supposing
the NIDS from Net2 received the message, it keeps the information in its events database
to update it and forward the warning message to the NIDS on Net3, thus completing the
sharing of information initiated by the NIDS on Net1. Therefore, all the other NIDS can
employ the acquired knowledge to tackle new threats within their network environment.

4. Evaluation and Analysis
We implemented the proposed C-NIDS in a virtual environment according settings pre-
sented in Table 1, and engaging a set of tools, as showed in Table 2, to emulate three
distinct IoT networks and the DDoS attacks depicted in Figure 2. For this purpose, we
employed Docker to build isolated environments called containers and KIND (Kuber-
netes in Docker) to make multiple Kubernetes nodes using containers. The plug-in Calico
CNI implements the Kubernetes Container Network Interface (CNI), and assigns a fully
routable IP address to each pod to establish a Layer 3 network, providing connectivity for
containers and pods. The interaction with Kubernetes occurred by commands in the ter-
minal through Kubectl to construct and remove clusters, pods, and services. Calicoctl
enables us to assign IP policies for pods, manage security policies, and configure network



infrastructure and devices. Lastly, we emulated DDoS attacks targeting the monitoring
servers through BoNeSi tool [Goldstein 2023], creating a botnet with 3,000 bots, which
performed volumetric attacks of approximately 35,000 packets per second following the
chronology presented in Table 3. During an emulation, each network was subject to two
distinct attacks: one based on UDP protocol and one based on ICMP protocol.

Table 1. Emulation setup
Parameter Value
Emulation duration 1200 s
IoT devices → DMS protocol UDP
DMS ↔ DMS protocol TCP
# IoT networks 3
# IoT devices per network 15
Data transmission frequency:

- IoT devices 1 msg / s
- DMS 1 msg / 3 s

Table 2. Resources settings
Application Tool Version
Container orchestration Kubernetes 1.25.3
Container management Docker 24.0.2
Run local clusters KIND 0.17.0
Container interface Calico CNI 3.25
Clusters management kubectl 1.27.2
Calico management calicoctl 3.25.0
Botnet emulation BoNeSi 0.3.1

As described in Table 4, we emulated the scenario depicted in Figure 2 in four
distinct configurations to compare the performance achieved by the proposed C-NIDS. In
BASE, networks operate regularly and are not subject to malicious threats, e.g., DDoS
attacks. In the other three configurations, DDoS attacks took place, but NIDS were de-
activated in BASE-NIDS, enabled in BASE+NIDS, and collaborated in COLLAB. This
last configuration relies on rules previously available on each network NIDS: Net1 NIDS
holds a rule to UDP attacks, Net2 NIDS keeps a rule to ICMP attacks, while Net3 NIDS
operates without rules to face attacks based on these two protocols. We considered a tran-
sient state ended at 60 s of each emulation, being the moment that all emulated devices
reached their steady-state performance, i.e., when all nodes could send and receive mes-
sages. Hence, the presented evaluation considers the deletion of results obtained until 60 s
of each emulation. Lastly, each emulation was run for 1200 s, and the applied metrics are
averaged over 35 emulation runs to achieve a confidence interval of 95%. In the future,
we intend to make all data public available on a git-based platform.

Table 3. Attacks chronology

Network Attack protocol
UDP ICMP

Net1 60 s – 180 s 840 s – 1020 s
Net2 240 s – 360 s 600 s – 780 s
Net3 420 s – 540 s 1080 s – 1200 s

Table 4. Scenario organization
Reference Configuration
BASE Operation without any threats
BASE-NIDS BASE with DDoS attacks with disabled NIDS
BASE+NIDS BASE with DDoS attacks with enabled NIDS
COLLAB BASE+NIDS with NIDS sharing data

We evaluate C-NIDS taking into account collaboration performance and security
metrics, as described in Table 5. Collaboration performance metrics measures the abil-
ity of C-NIDS to deal with the inflow of messages and how C-NIDS impacts network
operation. Collaboration security metrics evaluate C-NIDS attack detection capabilities.



Table 5. Evaluation metrics
Metric description Goal Equation

Collaboration time (CT): The total time required to a NIDS to share the
information about an attack with others NIDS belonging to the C-NIDS.
CT equals the sum of sending time (ST) to one NIDS, the time to incorpo-
rate (IT) the received rules to NIDS rules database, and the time to forward
(FT) the received message to other NIDS

P CT = ST + IT + FT

Throughput (THR): The rate of message delivery over a communication
channel. It equals the percentage of delivered messages (DM) in relation
to total messages sent (TMS)

P THR = (DM/TMS) x 100

Latency (LAT): The time taken for data to pass from one point to another
on a network, i.e., the difference between the data sending time (DST) and
data receiving time (DRT)

P LAT = DRT - DST

Packet Loss rate (PLR): The percentage of non-received packets – differ-
ence between the quantity of sent packets (SP) and received packets (RP)
– in relation to sent packets

P PLR = ((SP - RP) / SP) x 100

Attack Detection Time (ADT): Indicates how fast a policy is conducted and
implemented based on the analysis of the malicious traffic that generates
an alert, i.e., the difference between the attack start time (ST) and attack
detection alert time (AT)

S ADT = AT - ST

Attack Mitigation Time (AMT): Measures how fast a policy is conducted
and implemented after a detection alert is raised until its mitigation, i.e.,
the difference between the attack detection alert time (AT) and application
of attack mitigation policy time (PT)

S AMT = PT - AT

Detection rate (DR): Shows how C-NIDS correctly identify attacks S DR = ( TP / (TP + FN)) x 100

True positive rate (TPR): The percentage of correctly labeled attacks S TPR = ( TP / (TP + TN)) x 100

False negative rate (FNR): Indicates when C-NIDS fails to identify an
anomaly and classifies it as normal and is represented by the percentage of
attacks that are labeled as non-attacks

S FNR = ( FN / (TP + FN)) x 100

C: Performance metric; S: Security metric

4.1. Performance results
The collaboration among NIDS plays a crucial role in C-NIDS operation; hence, we start
by examining how collaboration takes place to verify the impact on overall system perfor-
mance and security under cyber attacks described in Table 3, as discussed next. According
to scenarios configuration presented in Table 4, the collaboration occurs after DDoS at-
tacks, from Net1 NIDS after the first attack (UDP), and from Net2 NIDS after the second
attack (ICMP). In all scenarios, Net3 NIDS operated without specific rules to face such
attacks, thus depending on other NIDS collaborations to perform successfully. Therefore,
in the COLLAB scenario, we measured the time to send (ST), incorporate (IT), and for-
ward (FT) attack-related information to compute the Collaboration time (CT) each NIDS
under attack takes to share its knowledge with others, as seen in Table 6.

Table 6. Collaboration assessment
Network/Attack Measured times CT(s)ST(s) IT(s) FT(s)
Net1 - UDP attack 6.65 2.12 6.76 15.53
Net2 - ICMP attack 0.54 1.29 0.52 2.35

The impact of attack type on CT is very distinct, as shown in the values in Ta-
ble 6. It is worth noting that the first attack threatens the transport layer, whereas the



second menaces the network layer. Although both attacks target DMS communication,
as it receives data from IoT devices through UDP protocol, the attack based on such pro-
tocol strongly jeopardizes its operation. Generally, a NIDS took 15.53 s to conclude the
collaboration of attack-related information during the first attack – UDP-based, mainly
because a NIDS under attack must probably be overloaded analyzing the traffic traversing
the gateway into the IoT network. On the other hand, during the second attack – ICMP-
based, the collaboration occurs much faster, generally concluding in about 2.35 s. In both
situations, other NIDS are still ready to face a similar threat during the attack, highlight-
ing the importance of all NIDS collaboration to the system’s overall performance, as we
will see in the following discussions.

The throughput assessment took communication between IoT devices and DMS
via the UDP protocol and among DMS via the TCP protocol for each configured scenario.
Due to space limitations, we present only the results from Net1 for the BASE, BASE-
NIDS, and BASE+NIDS scenarios; however, as all networks have similar characteristics,
this does not affect the results. Figure 3 (a) exhibits the throughput results for the first
three scenarios where BASE presents stable values, 15 messages/s for UDP traffic, and 20
messages/s for TCP traffic. We expected this behavior since networks operate regularly,
without any threat, in the BASE configuration. Therefore, this conduct forms the basis for
future comparisons and represents the best operating condition. On the other hand, BASE-
NIDS is a type of attack without any network protection. In Figure 3 (b), we observe a
substantial rise in the amount of malicious packets and a corresponding decrease in benign
traffic during attack periods in both communications. The impact generated by attacks
degrades the capacity data availability and communication among devices and servers. It
is noteworthy that the network has no protection, allowing attacks to operate freely.

a) BASE b) BASE-NIDS c) BASE+NIDS

Figure 3. Network 1 data traffic

The BASE+NIDS scenario comprises both attacks under network protection pro-
vided by NIDS. Figure 3 (c) illustrates that network protection improved performance
by 98% for both communications and maintained stable performance even under threats.
However, NIDS achieved these results only against attacks for which it holds detection
rules, emphasizing the importance of collaboration among NIDS. Figure 4 shows the
throughput on the three networks in the COLLAB scenario, taking into account both
attacks. All networks maintained stability, indicating a 99% improvement in attack mit-
igation compared to BASE-NIDS and BASE+NIDS. This result was achieved due to the
effectiveness of C-NIDS, enabling interference-free communication among IoT devices



and DMS. This behavior underscores the efficacy of direct collaboration among NIDS in
detecting and protecting networks against attacks, as it allows all NIDS to access the rules
employed for attack detection.

a) Net1 b) Net2 c) Net3

Figure 4. Network data traffic in COLLAB scenario

We conduct a complete latency assessment across various scenarios to examine
the effects of device-to-server and server-to-server communication. The results allow us
to quantify the effects of collaborative actions among NIDS on network security. We
employed two approaches: the first targeted the latency of UDP traffic, while the second
took into account TCP traffic, and both were considered during attack windows. Table 7
summarizes the latency values for the UDP protocol, categorized over the entire emula-
tion time for all scenarios, and during the 1st and the 2nd attacks disregarding the BASE
scenario. We observed stable values in the BASE scenario, with a variance of just 1.52 µs
in communication among devices and servers across all networks. BASE-NIDS exhibited
a latency variation of 3 µs and 1 µs for the 1st and 2nd attacks, respectively. Meanwhile,
BASE+NIDS showed a variance of 10 µs for the 1st attack and 11 µs for the 2nd. How-
ever, the average latency time remained consistent at 94 µs for the 1st and 93.67 µs for
the 2nd attack. Lastly, COLLAB presented a variance of 9 µs for the 1st attack and 3 µs
for the 2nd. The mean across the networks for the 1st attack was 94.67 µs, and for the
2nd attack, it was 90.00 µs.

Table 7. UDP traffic latency
LAT (µs)

Window Emulation time 1st attack 2nd attack
Scenario Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3
BASE 149 150 147 - - - - - -
BASE-NIDS 122 123 119 103 103 100 101 101 100
BASE+NIDS 105 105 108 100 90 92 89 100 92
COLLAB 96 97 93 98 97 89 91 91 88

Table 8 presents TCP traffic latency values for DMS communication. We observed
a significant variation among the scenarios, particularly in the BASE-NIDS scenario. The
server communication showed a variation of 55 µs during the 1st attack, and 1.0 µs during
the 2nd attack. The BASE+NIDS scenario shows a 172 µs variation among all networks
during the 1st and 11 µs during the 2nd attacks. In contrast, the COLLAB scenario
showed an average latency variation of 132 µs for the 1st attack and 3.0 µs for the 2nd,
indicating an improvement compared to the other scenarios. Furthermore, we observed



that the nature of volumetric attacks can lead to significant variations in latency. The
results emphasize this latency behavior, given that UDP attack on device-server commu-
nication and ICMP attack on server-server communication accentuate values variation. It
also supports the hypothesis that collaborative efforts increase the network’s ability to re-
cover quickly from damage caused by attacks. Besides, as a quality metric, ideal latency
values vary for different communication types, subject to the influence of the protocols
employed in data transmission.

Table 8. TCP traffic latency
LAT (µs)

Window Emulation time 1st attack 2nd attack
Scenario Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3
BASE 434 434 433 - - - - - -
BASE-NIDS 390 378 379 511 566 520 101 101 100
BASE+NIDS 403 351 369 540 570 398 89 100 92
COLLAB 420 434 427 643 775 740 91 91 88

Table 9 highlights the results obtained regarding packet loss during the two attacks
in different network scenarios. Organizing the data between the 1st and 2nd attacks allows
a more detailed analysis of how packet loss impacts each protocol in different configu-
rations. This strategy provides a comprehensive view of each network’s vulnerabilities
and identifies the scenarios most susceptible to each attack. As mentioned previously, the
BASE-NIDS scenario revealed the highest losses, reaching up to 24% and 90% loss for
the 1st (ICMP) and 2nd (UDP) attacks, respectively. These values were expected, con-
sidering the absence of specific security systems to prevent packet loss in communication
among servers, depending exclusively on TCP control mechanisms. The BASE+NIDS
scenario demonstrated a significant improvement compared to the previous scenario. In
some cases, packet loss reached 0%, while in others it remained at 88%. This result occurs
because only some NIDS have rules for identifying the 1st and 2nd attacks, while others
do not. Notably, the COLLAB scenario showed the most promising results, recording
0% loss for the 1st and 2nd UDP attacks and ranging from 1% to 6% for ICMP attacks.
These results highlight the effectiveness of collaboration among NIDS in protecting the
network. The cooperation enables the direct exchange of information among systems,
improving attack detection. When an attack is identified, NIDS shares the rule applied
with others, strengthening the network’s overall security.

Table 9. Packet Loss during attacks windows
PLR

Attack window 1st attack 2nd attack
Attack protocol UDP ICMP UDP ICMP

Network Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3
BASE-NIDS 83% 84% 83% 24% 29% 30% 90% 90% 90% 27% 25% 30%
BASE+NIDS 0% 84% 84% 4% 13% 33% 88% 0% 88% 26% 0% 23%

COLLAB 0% 0% 0% 1% 0% 2% 0% 0% 0% 4% 6% 0%

We also analyzed the full 1200 seconds of emulation, and the results revealed that
the BASE scenario, without interference, showed no packet loss, serving as the base-
line for subsequent scenarios. In the BASE-NIDS, an average of 21% packet loss was
recorded across all networks, with a variation of 5%. Notably, this scenario lacked net-
work protection. In the BASE+NIDS, the networks were individually protected by NIDS,
operating in isolation, resulting in an average loss of 14%, with a variation of 9%. Finally,
in the COLLAB, the average packet loss was 1% throughout the emulation.



4.2. Security results
The security assessment focused on deploying attack protection systems in the
BASE+NIDS and COLLAB scenarios. Table 10 presents the results of the detection
process, encompassing the time from the arrival of the first malicious packet to the DSM
until the NIDS identifies this action. In the BASE+NIDS scenario, the absence of rules for
all attacks results in Net1 achieving the best detection time of 48 ms in the 1st attack and
Net2 recording 100 ms in the 2nd attack. In the COLLAB scenario, Net3 stands out with
the best detection time of 90 ms in the 1st attack and 32 ms in the 2nd attack. Averaging
at 17 ms in critical moments attests to the system’s detection effectiveness, which is at-
tributed to the direct collaboration mechanism among the NIDS. These results emphasize
the system’s robustness, highlighting its substantial assistance to network security.

Table 10. Detection and Mitigation time
Metric ADT (ms) AMT (ms)
Attack protocol UDP ICMP UDP ICMP
Network Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3
BASE+NIDS 48 - - - 107 - 47 - - - 78 -
COLLAB 103 106 98 231 178 324 97 103 90 190 123 244

Table 10 summarizes values for the BASE+NIDS and COLLAB scenarios, spec-
ifying each network and type of attack regarding mitigation time, which involves inter-
rupting the data malicious flow and source isolation after detection. In the BASE+NIDS
scenario, Net1 achieved the best mitigation time of 47 ms in the 1st attack, and Net2
showed 78 ms in the 2nd attack. In the COLLAB scenario, Net1 stands out with the best
mitigation time of 90 ms in the 1st attack, and Net2 records 123 ms in the 2nd attack. Com-
paring these values of detection times underscores C-NDIS’s ability to take prompt action
against threats. Furthermore, the immediate response to the threats expedites network re-
covery, guaranteeing a more secure communication environment among its participants.
We highlight that direct collaboration increases the security of all network participants,
thus ensuring greater communication availability.

Table 11. Detection, True positive and False negative rates
Attack 1st attack 2nd attack
Metric DR (%) TPR (%) FNR (%) DR (%) TPR (%) FNR (%)
Network Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3 Net1 Net2 Net3
BASE-NIDS 94.39 0 0 100 0 0 6 100 100 0 97.70 0 0 100 0 100 0 100
COLLAB 99.93 99.94 99.96 100 100 100 0 0 0 99.97 99.85 99.96 100 100 100 0 0 0

Table 11 shows the security performance values for the BASE+NIDS and COL-
LAB scenarios under the 1st and 2nd attacks among Net1, Net2, and Net3. Metrics in-
clude Detection Rate (DR), True Positive Rate (TPR), and False Negative Rate (FNR),
expressed as a percentage (%). In the BASE+NIDS scenario, Net1 achieved a high DR of
94.39% during the first attack. In comparison, Net2 and Net3 had 0% DR. These results
were expected, as the NIDS of Net2 and Net3 did not have rules to identify the attack.
TPR, representing the proportion of true positives from the total number of attacks, was
100% for Net1 and Net3, indicating complete detection. In contrast, Net2 did not detect
the attack. The FNR, meaning the proportion of false negatives about the total number of
attacks, was 6% for Net1, indicating a small number of undetected cases. In the second at-
tack, Net2 kept a high DR of 99.70%, while Net1 and Net3 failed to detect the attack. In the
COLLAB scenario, all networks exhibited an impressive detection rate DR of around 99%
for the first attack, indicating highly effective detection. TPR reached 100%, showing the



precise identification of all attacks. FNR remained at 0% for all networks, signaling that
virtually no attacks went unnoticed. For the 2nd attack, the DR rates consistently hovered
around 99%, and the TPR remained steadfast at 100%. The result points out that when de-
tected, all NIDS accurately identify attacks. Similarly, FNR remained at 0%, showcasing
the robustness of accurate identification, with the system rarely overlooking attacks.

Note that the DR, TPR, and FNR values may vary depending on the complexity
and specific nature of the attacks since these attacks are volumetric, and NIDS are rule-
based. Additionally, the adaptability of detection rules to new threats can influence the
NIDS effectiveness. Also, in scenarios involving volumetric attacks, the traffic overload
can affect the ability of NIDS to analyze and detect all instances of attacks. Thus, the vari-
ation in results can be attributed not only to the detection system’s effectiveness but also to
the specific characteristics of the attacks and the network dynamics during attack events.

5. Conclusion

This work presented a collaborative network intrusion detection system (C-NIDS) for
dense IoT environments against volumetric DDoS attacks. C-NIDS aims to provide a
resilient and integrated system among different networks to share threat-related informa-
tion. For that, C-NIDS adopts direct communication among participating NIDS to reduce
the time it takes to exchange information about threats and enable faster detection. The
results demonstrate the effectiveness of C-NIDS in keeping networks operational in the
face of volumetric attacks, consequently providing greater communication availability
between devices and servers. Furthermore, C-NIDS improves detection time, data loss
reduction, and network recovery time compared to scenarios without collaboration. As
future work, we will make a C-NIDS based on anomalies, analyze its behavior in the same
experiment and compare its performance against C-NIDS based on rules.
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(2021). Counselors network for intrusion detection. International Journal of Network Man-
agement, 31(3):e2111.

Sachdeva, R. and Dev, A. (2021). Review of opportunistic network: Assessing past, present, and
future. International Journal of Communication Systems, 34(11):e4860.

Sarhan, M., Layeghy, S., Moustafa, N., and Portmann, M. (2023). Cyber threat intelligence sharing
scheme based on federated learning for network intrusion detection. Journal of Network and
Systems Management, 31(1):23.

Spyropoulos, T., Psounis, K., and Raghavendra, C. S. (2004). Single-copy routing in intermittently
connected mobile networks. In 2004 IEEE Communications Society Conference on Sensor and
Ad Hoc Communications and Networks, 2004. IEEE SECON 2004., pages 235–244.

Tanwar, S., Gupta, N., Iwendi, C., Kumar, K., and Alenezi, M. (2022). Next Generation IoT and
Blockchain Integration. Journal of Sensors, 2022.

Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., and Ulukus, S. (2021). Age of
information: An introduction and survey. IEEE Journal on Selected Areas in Communications,
39(5):1183–1210.


