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Abstract. The disaggregated and virtualized Radio Access Network (vRAN) is
already present in 5G but tends to have increased adoption in 6G, mainly in the
context of the Open RAN (O-RAN). Despite the potential benefits, the effective
success of disaggregated vRAN depends on the efficient placement of Virtual-
ized Network Functions (VNFs), which is influenced by the demand in the Radio
Units (RUs). Several factors create dynamicity in this demand, but the number
of users served by each RU is one of the most impacting. This problem has
already been tackled in the recent literature, however, the works oversimplify
important aspects that make their proposals inappropriate for real-world adop-
tion. In this paper, we introduce a Deep Reinforcement Learning (DRL) agent
that is constraint-aware, ensuring the solutions’ feasibility. We compare our
DRL solution with existing optimization models and evaluate it under different
scenarios, including the presence of Mobile Edge Computing (MEC) applica-
tions that compete for computing resources. Our contributions include a novel
formulation, the implementation of a publicly available DRL agent, and insights
into practical application scenarios for disaggregated vRAN optimization.

1. Introduction

The emergence of B5G and 6G has driven the adoption of Network Function Virtualiza-
tion (NFV) in the Radio Access Network (RAN), creating the vRAN. This transformation
involves converting Base Station (BS) functions into distributed VNFs, offering greater
flexibility, efficiency, and cost savings. To enhance RAN efficiency, Mobile Network Op-
erators (MNOs) are exploring various strategies, such as standardizing open interfaces,
network function disaggregation, and virtualization. The adoption of NFV in vRAN al-
lows MNOs to deploy radio functions on general-purpose hardware, eliminating the need
for specialized equipment. This introduces the concept of vRAN nodes, capable of run-
ning vRAN functions in three layers: Central Unit (vCU), Distributed Unit (vDU), and
Radio Unit (RU). While vRAN nodes reduce costs and enhance RAN control, they also
introduce the challenge of optimizing the placement of vRAN functions across the net-
work to meet the RUs demand [3rd Generation Partnership Project (3GPP) 2018].

Among the proposed solutions is the Cloud RAN (C-RAN) that centralizes base-
band processing functions in cloud nodes, enabling independent deployment from RUs
and integrated through high-speed transport networks. However, the practical feasibility
of this architecture is hampered by its dependence on a high-quality transport network,
which results in higher costs. In this context, recent advances presented by O-RAN dis-
cuss the use of two functional splits, namely Option 7-2x and CU/DU split F1 [Open



RAN Alliance 2022]. Figure 1 depicts the O-RAN functional splits (S0, S1, S2), illustrat-
ing the placement of each vRAN function within different vRAN nodes and their transport
requirements considering an RU with 100 MHz bandwidth of spectrum, 32 antenna ports,
8 MIMO layers, and 256 QAM modulation.
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Figure 1. O-RAN functional splits.

1.1. Related Work

The vRAN architecture introduces two key challenges: dynamic network resource alloca-
tion and the positioning of virtualized functions. Both problems are addressed in literature
as optimization problems, and are solved by classical and stochastic optimization mod-
els [Laghrissi and Taleb 2018,Abdel-Rahman et al. 2017], and by non-exact optimization
approaches. We refer to this decision problem as vRAN placement problem.

In [Garcia-Saavedra et al. 2018a, Fonseca et al. 2019], the authors provide ex-
act formulations for the vRAN placement problem, solving it optimally through an exact
optimization solver. They consider a single CU for placing the vRAN functions, aiming
to maximize the vRAN centralization [Larsen et al. 2019]. In [Garcia-Saavedra et al.
2018b], the authors focus on maximizing centralization, considering multiple CUs in the
RAN. Although, the authors present improvements in the centralization, their formula-
tion assumes fixed CUs and considers that RUs connected to the same CU must run the
same functional split. In this way, the formulation does not explore the capability of the
crosshaul to handle dynamic flows, limiting the centralization and cost reduction.

Recent standards [3rd Generation Partnership Project (3GPP) 2018, ETSI 2019]
allow up to three vRAN nodes (vCU, vDU, and RU) for dividing the protocol stack, ad-
dressed in [Murti et al. 2021, Morais et al. 2023, Almeida et al. 2022b]. In [Murti et al.
2021], the authors optimize the problem using the framework from [Garcia-Saavedra et al.
2018a] with fixed vDU positioning. In [Morais et al. 2023], PlaceRAN is introduced,
supporting any number of functional splits, aiming to maximize centralization while min-
imizing the number of used processing nodes. In [Almeida et al. 2022b] they introduce
multipath routing to the transport network based on [Morais et al. 2023], enhancing rout-
ing in the transport network.

Considering that the vRAN placement problem is NP-hard [Morais et al. 2023],
[Murti et al. 2022, Almeida et al. 2022a, Almeida et al. 2023] presents non-exact ap-
proaches. [Murti et al. 2022] introduces a DRL agent finding near-optimal solutions but
with a simplistic problem formulation. In [Almeida et al. 2022a], a DRL agent uses the
formulation from [Morais et al. 2023], while [Almeida et al. 2023] presents a meta-
heuristic using a Genetic Algorithm. Both non-exact models efficiently solve larger-scale
problems compared to the optimal model.



None of the works presented solve the vRAN placement problem considering the
RUs demand variation over time. In this way, in [Murti et al. 2023, Alba and Kellerer
2022,Joda et al. 2022,Pamuklu et al. 2021,Gupta et al. 2022], the authors discuss the im-
portance of considering RUs demand variation. In [Murti et al. 2023], the authors design
a DRL agent to solve the vRAN dynamic placement problem with flexible vRAN nodes
placement. However, their approach does not guarantee the attendance of the constraints
of the problem, making it possible to try the deployment of infeasible solutions. This
means that the solutions found by DRL agent may not be feasible, which is a significant
concern since the effective operation of the network depends on adhering to these con-
straints. In [Alba and Kellerer 2022], the authors introduce a framework for calculating
positioning costs, addressing the problem by considering variable demand in RUs through
a highly complex exact optimization model.

In [Pamuklu et al. 2021], the authors introduce a DRL agent to the vRAN dynamic
placement problem. The agent is implemented using Q-Learning and Sarsa methods, aim-
ing to minimize energy consumption, a common objective in O-RAN resource allocation
problems [Abdel-Rahman et al. 2023]. However, the authors also do not consider the
need to satisfy the constraints. On the other hand, in [Gupta et al. 2022], the authors
solve the placement problem considering the problem constraints and demand variation.
However, they use a MILP formulation, which presents high complexity and scalability
issues, prompting the exploration of non-exact techniques.

Finally, in [Joda et al. 2022], the authors formulate a DRL agent to the problem,
considering in the reward function a positive signal if the agent finds a feasible solution
and a negative signal (penalty) for infeasible solutions. This approach mitigates but does
not solve the issue found in [Murti et al. 2023], only reducing the number of infeasible
solutions. The authors also consider a joint optimization problem, addressing both the
vRAN dynamic placement problem and user association. Table 1 presents the contribu-
tions of each paper described, and compares them to the contributions our work, where we
propose an DRL environment to solve the problem respecting the placement constraints.

Reference Formulation CUs
Functional

splits Demand Constrained

[Garcia-Saavedra et al. 2018a] MILP Single Fixed Static Yes
[Fonseca et al. 2019] MILP Single Fixed Static Yes

[Garcia-Saavedra et al. 2018b] MILP Fixed Fixed Static Yes
[Murti et al. 2021] MILP Fixed Fixed Static Yes

[Morais et al. 2023] BLP Dynamic Generic Static Yes
[Almeida et al. 2022b] MILP Dynamic Generic Static Yes

[Murti et al. 2022] DRL Single Fixed Static Yes
[Almeida et al. 2022a] DRL Dynamic Generic Static Yes
[Almeida et al. 2023] GA Dynamic Generic Static Yes

[Gupta et al. 2022] MILP Single Fixed Dynamic Yes
[Alba and Kellerer 2022] MILP Single Generic Dynamic No

[Murti et al. 2023] DRL Dynamic Fixed Dynamic No
[Joda et al. 2022] DRL Single Fixed Dynamic No

[Pamuklu et al. 2021] DRL Single Fixed Dynamic No
This work DRL Dynamic Generic Dynamic Yes

Table 1. Related work comparison.



1.2. Our Contributions and Paper Organization

In this work, we present a constraint-aware DRL agent formulation for the vRAN dynamic
placement problem, considering the ability to deal with any functional split configuration
and demand variation over time. In summary, the main contributions are:

• The vRAN dynamic placement problem considering RUs demand variation and
heterogeneous computing nodes able to act as both vCUs and vDUs within the
vRAN network.

• A constraint-aware DRL environment to address the vRAN dynamic placement
problem, employing principles of safe reinforcement learning.

• Comparing our results with two optimization models from the literature, evaluat-
ing our agent in practical scenarios.

This paper is organized as follows. Section 2 presents the system model and prob-
lem statement. Section 3 presents the vRAN dynamic placement problem formulation.
Section 4 introduces the DRL environment. Section 5 presents the evaluation of our DRL
agent. Finally, Section 6 concludes and presents future work.

2. System Model and Problem Statement

In this section, we introduce the system model for our work, outlining the sets, parameters,
and notation used in our formulation. Subsequently, we present the problem statement by
means of an optimization model that tackles the vRAN dynamic placement problem.

2.1. System Model

Within our vRAN system, we consider a set of RUs, denoted by B = {b1, . . . , b|B|}, a
set of Computing Nodes (CNs) denoted by C = {c1, . . . , c|C|}, responsible for processing
vRAN functions acting as vCU, vDU or both, characterized by their processing (cProc

m )
and memory (cMem

m ) capacities. We assume that CNs are spread across the vRAN topol-
ogy and connected through a set of transport nodes, represented by R = {r1, . . . , rR}.
Additionally, we assume that CNs are divided into two layers: edge sites, located closer
to the RUs but with limited processing capacity and higher processing costs, and cloud
sites, farther from the RUs but equipped with higher computing resources at a reduced
cost. We also consider the network core, c0, positioned closer to the cloud site CNs.

We represent the vRAN topology as a graph G = {V,E}, where V = {c0} ∪R∪
B ∪ C represent the nodes, and E = {eij : vi, vj ∈ V} represent the edges. Each edge
is characterized by its capacity and latency, denoted by eCap

ij and eLatij , respectively. We
consider Pl as the set of k-shortest paths from the core to each RU bl ∈ B, where each
path is composed of three sub-paths, representing the backhaul, midhaul and fronthaul
links, denoted by pBH , pMH and pFH , respectively.

In this work, we focus on the vRAN dynamic placement problem, considering
RUs demand variation. To characterize this time-varying behavior, we employ a time
discretization represented by a set T = {t1, t2, . . . , t|T |}. We use λt

bi
∈ [0, 1] to represent

the normalized demand at RU bi ∈ B at time t ∈ T . We define a set of functional splits
D = {d1, . . . , d|D|} where each functional split has its processing demand at vCU and
vDU, represented as γvCU

dr
and γvDU

dr
, a maximum delay requirement in backhaul, midhaul

and fronthaul, represented by βBH
dr

, βMH
dr

and βFH
dr

, and the worst-case throughput demand
in backhaul, midhaul, and fronthaul, represented by αBH

dr
, αMH

dr
and αFH

dr
, respectively.



2.2. Problem Statement

Given b ∈ B, c ∈ C, d ∈ D, cProc, cMem, γd, βd, αd and λb, we answer the following
questions jointly:

• What is the positioning of vRAN functions for all RUs considering the current
demand?

• Which paths are used to route traffic between functions?
• Which functional split is operating for each RU?
• What are the vCUs and vDUs positioning for all RUs?
• What resources are required in each CN to process the current demand?
• When is the most opportune moment to change the placement solution?
• What is the most cost-effective placement solution?

while ensuring the functional splits thoughput, latency and processing requirements, and
the CNs and links capacities.

3. Problem formulation

To formulate the vRAN dynamic placement problem, we introduce a set of decision vari-
ables xp,r

l,i ∈ {0, 1} to represent the choice of path p ∈ Pl and functional split dr ∈ D to
serve RU bl ∈ B at time ti ∈ T . The objective of our formulation is to minimize the total
cost, which comprises two key components: the processing cost and the migration cost.

The processing cost is contingent on the volume of vRAN functions executed in
each CN and their respective costs based on their layer, whether they are deployed in a
cloud or edge site. The processing cost can be computed as:

ΦProc
ti

=
∑
cm∈C

∑
bl∈B

∑
dr∈D

∑
p∈Pl

(
xp,r
l,i y

vCU
cm,bl

f vCU
dr ωvCU + yvDU

cm,bl
f vDU
dr ωvDU

)
, (1)

where y•cm,bl
denotes whether CN cm ∈ C runs the vCU/vDU node for RU bl ∈ B,

f •
dr

represents the amount of functions running at vCU/vDU for configuration xp,r
l,i , and

ωvCU and ωvDU represents the cost of running a given vRAN function at vCU and vDU.

We can compute the migration cost as the number of functions that are changing
their positioning. Thus, the migration cost depends on the prior positioning solution and
the current positioning solution. We can formulate the migration cost as:

ΦMigr
ti =

∑
bl∈B

∑
dr∈D

∑
p∈Pl

[
xp,r
l,i N

t(i−1)

ti (x)ρ
]
, (2)

where N
t(i−1)

ti (x) represents the number of functions that change position in the current
solution, xp,r

l,i , compared to the previous one, xp,r
l,(i−1). ρ denotes the migration cost.

Finally, we can define the objective function as the minimization of the total cost:

minimize
xp,r
l,i

ΦTotal =
∑
ti∈T

(
ΦProc

ti
+ ΦMigr

ti

)
. (3)



The following constraints need to be satisfied in the problem. Initially, for each RU at
each time, exactly one combination of path and functional split must be selected:∑

p∈Pl

∑
dr∈D

xp,r
l,i = 1, ∀bl ∈ B ti ∈ T . (4)

The aggregated demand in the sub-paths, backhaul, midhaul, and fronthaul, should
not exceed links capacity, where zp•eij represents if link eij ∈ E is in path pBH , pMH or
pFH :∑
dr∈D

∑
bl∈B

∑
p∈Pl

[
xp,r
l,i λ

ti
bi

(
zpBH
eij

αBH
dr + zpMH

eij
αMH
dr + zpFH

eij
αFH
dr

)]
≤ eCap

ij , ∀eij ∈ E ti ∈ T .

(5)

For each functional split, there is a maximum latency demand βXH
dr

in each sub-
path (pBH , pMH , pFH), which depends on the chosen functional split dr ∈ D. We repre-
sent this constraint as follows:∑

eij∈E

xp,r
l,i z

pXH
eij

eLatij ≤ βXH
dr ,∀bl ∈ B, p ∈ Pl, ti ∈ T . (6)

Finally, the processing demand in each CN must not exceed its processing capac-
ity: ∑

fs∈F

∑
bl∈B

∑
Dr∈D

∑
p∈Pl

(
xp,r
l,i λ

ti
bi
yvCU
cm,bl

γvCU
dr + yvDU

cm,bl
γvDU
dr

)
≤ cProc

m , ∀cm ∈ C. (7)

The presented formulation is a Mixed Integer Linear Programming (MILP) model,
a class of problems widely acknowledged as NP-hard. Furthermore, it is worth noting that
even the non-dynamic formulation of the vRAN placement problem is proved to be NP-
hard, with scalability issues [Morais et al. 2023]. Thus, the formulation in this work ad-
dress the vRAN dynamic placement problem by solving instances for each time window,
which remains as challenging as its non-dynamic version. This emphasizes the necessity
to explore non-exact approaches, such as AI/ML-based solutions to the problem.

4. Reinforcement Learning Solution

Due to the high complexity of the formulation presented in Section 3, solving the problem
optimally, using classical optimization solvers, is computationally expensive. This means
that optimization solvers have limited scalability in terms of efficiently solving large in-
stances and consume significant computational resources during execution. On one hand,
exact optimization models may not be suitable for practical problem-solving due to their
high cost. On the other hand, such models can be widely used as a baseline for comparison
and performance evaluation of other methods, such as non-exact formulations.

In this section, we present DRL environment formulation to address the vRAN
dynamic placement problem. First, we subdivide the problem formulated in Section 3
into two subproblems, aiming to reduce the number of actions and states in the presented
formulation. Then, we discuss the constrained-aware architecture developed in this work.

The vRAN dynamic placement problem is a joint optimization problem, where
one of the decisions is the vRAN nodes placement, vCUs and vDUs, in CNs spread



across the network. However, the larger the number of processing nodes and RUs, the
higher is the complexity to solve the problem, since the placement of vCUs/vDUs is a
combinatorial problem with exponential solution space (Θ(|C||B|)). In this way, to min-
imize the complexity of the joint optimization problem, we present a two subproblems
division, where the first subproblem address the vCUs placement, and the second sub-
problem solve the funcional split selection for all RUs in the network. Figure 2 illustrate
the subproblems proposed in our formulation.

CNs running vCUs

Edge site Edge site

Cloud site

(a) First subproblem.

CNs running vDUs

Split F1

Split F1

Split F1 Edge site

Split 7-2x

Split 7-2xEdge site

Cloud site

(b) Second subproblem.

Figure 2. Proposed subproblems division.

4.1. First Subproblem: vCU Placement

We represent the actions of the vCU placement subproblem as zml = {0, 1}, which indi-
cates whether the vCU of RU bl ∈ B is running at CN cm ∈ C. In this way, solving the
first subproblem defines the vCU placement for all RUs. However, to calculate the solu-
tion, we assume that the vRAN current state is known, containing data about the current
functional splits selection, the current RUs demand, the current CNs available resources
and the transport network resources.

Although the vCU placement presents a combinatorial solution space, this deci-
sion problem can be reduced to a classical optimization problem known as the bin packing
problem. In the bin packing problem, a set of items, each with a specific size, must be
efficiently placed into a limited number of bins, while minimizing wasted space. The ob-
jective is to find the most space-efficient way to allocate items, considering the items size,
bin capacities, and minimizing the number of bins used. The similarity of both problem
allows us to reduce our first subproblem into the bin packing problem, where the vCUs
are treated as items, the item size is their processing demand, the CNs serve as bins, and
the CNs processing capacity represents the bin capacities. In this way, by solving the bin
packing problem, we also solve our first subproblem, i.e., the vCU placement problem.

The reduction presented offers the advantage of transforming our first subproblem
into an optimization problem in the literature. However, it is worth noting that the bin
packing problem is known to be NP-hard, depending on the number of items and bins.
Fortunately, the literature provides effective algorithms for solving the bin packing prob-
lem. We use the First-Fit Decreasing heuristic [Dósa 2007] that finds solutions with an
approximation ratio of 1.7.



4.2. Second Subproblem: Functional Split Selection

Once the first subproblem addresses the vCU placement, we must now deal with the re-
maining decisions of the vRAN dynamic placement problem. This entails positioning the
vRAN functions at CNs, respecting the positioning constraints. Although considering a
two subproblems formulation can enhance RL environment efficiency, both subproblems
in our formulation are NP-hard, since even with the vCUs/vDUs positioning previously
defined, solve the vRAN placement problem remains NP-hard [Murti et al. 2021]. In this
way, to tackle the vRAN dynamic placement problem, we formulate our second subprob-
lem as the positioning of vRAN functions, achieved through the selection of the functional
split for each RU in the network. Since both subproblems are solved sequentially, in the
second subproblem, we assume the vCU placement defined by the First-Fit Decreasing
heuristic in the first subproblem.

The combination of these subproblems allows us to model the second subprob-
lem as an RL environment. The RAN environment exhibits complex and intricate natural
behaviors, making it a suitable candidate for representation as an RL environment. Conse-
quently, as we aim to address the vRAN dynamic placement problem, our goal for the RL
agent is to optimize the placement of vRAN functions with the primary objective of mini-
mizing processing costs. Additionally, we want the agent to learn when it is cost-efficient
to adapt the placement solution based on the varying demand patterns of the RUs.

To address the second subproblem, we formulate a Markov Decision Process
(MDP) as ⟨S,A,R,P , µ⟩, where S and A represent the set of states and actions, R
represent the reward function, P : S × A × S = [0, 1] captures the transition proba-
bilities between states and actions, and µ signifies the initial state distribution. Within
this framework, we introduce a parameterized resource orchestration policy, denoted as
πθ : S → Pr(A), which maps states to probability distributions over actions, where θ
denotes the neural network parameters.

We define the state st to include all vRAN current information, representing the
vRAN functions positioning, the vCUs positioning, the CNs available resources and the
RUs demand. Thus, the policy πθ generates an action at, indicating the selection of
functional splits for all RUs in the vRAN, where arl = {0, 1} denotes if split dr ∈ D is
selected for RU bl ∈ B. The reward function is defined as the solution total cost (Equation
(3)), considering processing and migration costs.

As the second subproblem represents an NP-hard decision problem, the MDP
involves an exponentially large number of actions in each state. We can define the size of
the action space as Θ

(
|T | × |C||B|

)
. To address this challenge, we developed an Actor-

Critic framework using DRL principles to train the agent.

Figure 3 illustrates the proposed DRL framework to the vRAN dynamic place-
ment problem. We implement an Actor-Critic environment to strikes a balance between
exploration and exploitation, comprising two key components, the actor (policy network)
and critic (value function approximator), this architecture facilitates the vRAN dynamic
placement problem learning, where the actor selects actions, while the critic assesses their
value, updating the policy optimization. This collaborative approach is suitable for our
formulation since we have a large action space and state space, enhancing the learning
process due to its interactive behavior.

A constraint-aware solution to the vRAN dynamic placement is essential, since in
practice the RAN environment present a series of network requirements, e.g., latency and
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Figure 3. DRL environment of our vRAN-DPRL formulation.

throughput. In this way, while the MDP framework does not explicitly account for these
constraints, we have integrated a Constraint Verifier module based in the principles of
Safe Reinforcement Learning [Liu et al. 2021]. This module acts as a critical gatekeeper,
evaluating the feasibility of the agent selected actions before they are applied in the RAN
environment. This proactive approach prevents the introduction of infeasible or disruptive
changes into the network, maintaining the integrity and stability of the vRAN placement
solution. The Constraint Verifier does not impose a significant overhead on training, as
its time complexity is polynomial, defined as O(|B|).

The repair function implemented is based on Genetic Algorithms models, where
random modifications are applied to the chromosomes of infeasible individuals until they
become feasible [Almeida et al. 2023]. This approach is well-established in the literature
and yields efficient results as it avoids many infeasible actions mapping to the same fea-
sible solution. Thus, our approach does not impact the agent exploration and exploitation
throughout the learning process. Since, the reward returned by the RAN environment is
calculated based on the feasible solution applied by the constraint verifier.

5. Evaluation
In this section, we evaluate the DRL agent proposed in Section 4. First, we analyze the
training phase of our DRL agent, evaluating the convergence to the optimal policy. Then,
we evaluate the solutions found by the agent during the inference phase across various
scenarios. All the data and code used in this evaluation is publicly available at GitHub1.

We evaluate two scenarios: first, a fully provisioned RAN where CNs can process
all RUs demand; second, an augmented scenario introducing Mobile Edge Computing
(MEC) applications competing with RUs for CNs resources. Our evaluation employs
a real-world RAN topology with 51 CNs and 47 RUs connected via an annular-based
midhaul. We introduce a cloud site layer with 2 and 4 CNs. In each setting, we compare
the DRL agent’s solution with the optimal implementation outlined in Section 3.

To implement our DRL environment, we used the Stable Baselines3 version 1.8.0,
an OpenAI Gym-based framework to train and evaluate RL agents. We implemented
the RL environment using Python version 3.8.10. The optimization models were imple-
mented with the IBM CPLEX solver, version 12.8, docplex library version 2.25.236, and
Python version 3.8.10. All experiments were conducted on a computer node equipped
1 https://github.com/LABORA-INF-UFG/paper-GMK-2024



with an Intel Core i7-10700F CPU @ 2.90GHz, 1 TB SSD, and 32 GB of memory. Table
2 describe the parameters used to evaluate our model in all scenarios.

Parameters Values
|C| and B| 51 CNs and 47 RUs
|D| and |Pl| 3 split options (Fig. 1) and k-shortest path [Morais et al. 2023]

CNs processing capacity
{central site, edge site} (cores)

Fully provisioned RAN: {16, 4}
Scenario 50% MEC demand: {8, 4}
Scenario 75% MEC demand: {4, 4}

CNs memory capacity
{central site, edge site} (GBs)

Fully provisioned RAN: {32, 8}
Scenario 50% MEC demand: {16, 8}
Scenario 75% MEC demand: {8, 8}

Dataset 53 weeks of tracing, resulting in 8,904 timesteps

Table 2. Experiment parameters.

5.1. Training Phase

To train our agent, we used a dataset with demand variation data, of 53 weeks and a set of
RUs with uniform characteristics, i.e. transmission power and bandwidth. The minimum
throughput and maximum latency requirements considered for each functional split are
presented in Fig. 1. During training, we pass to the agent the inputs following the demand
variation dataset, ensuring that the demand scenarios do not repeat during the training. In
this way, we ensure that, during the training phase, the agent will process each day of the
dataset only once. This approach showcases the applicability of our solution in an online
environment, where metrics are processed in real-time and do not repeat, which makes
our solution proper to be deployed at the O-RAN AI/ML framework [Lee et al. 2021].
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Figure 4. Reward during training phase.

Figure 4 illustrates the reward during the training phase. Note that in the initial 400
episodes, the agent exhibits exploratory behavior since it does not have prior knowledge
of the problem. Starting from episode 600, the agent starts to converge to the best-known
solution found. However, the agent still demonstrates exploratory behavior, since each
episode represents distinct demand scenarios that have not been encountered before. In
this way, in each episode, the agent is learning the demand variation pattern of the net-
work, considering the migration cost, which encourages the agent to alter the placement
solution only when it is cost-effective rather than changing it solely based on necessity.

Additionally, it is worth noting that the reward curves during the training phase
exhibit variations between the scenarios with 4 CNs and 2 CNs at the central site. This



variance can be attributed to the decreased availability of processing resources at the cloud
site, which affects the solution’s cost as there is a need to utilize edge site CNs to meet
the demand of the RUs. This variance illustrate that scarce resource scenarios are tricky
to train and solve, specially in constrained DRL environments, due to the high complexity
landscape in the search space, which impacts the agent’s exploration and exploitation.

Scenario Step time (sec) Episode time (sec) Training time (sec)
4 CNs at cloud site 0.148002 3.108072 1292.801
2 CNs at cloud site 0.147237 3.092384 1286.119

Table 3. Training time results.

Table 3 presents the training time of our DRL agent. For each scenario, we con-
ducted 30 training runs using the same dataset, and the results in Table 3 represent the
average time across these 30 runs. It is noteworthy that our agent consistently completes
each step in less than 148 milliseconds. In each step, the agent successfully solves the
problem for a given hour of the day. Furthermore, our agent demonstrates the capability
to solve each episode in approximately 3 seconds, indicating its efficiency in processing
a complete day, i.e., 24 hours of tracing. Notably, to conclude the training phase and pro-
cess all 53 weeks of tracing, the agent requires less than 22 minutes. In essence, our DRL
agent can efficiently process an entire year of data traces in under 22 minutes.

5.2. Scenario of a Fully Provisioned RAN
To evaluate our agent, we consider one week of demand variation data that was not part
of the training dataset. To compare the DRL agent solutions, we implemented the optimal
model described in Section 3 using CPLEX solver. Given that both the DRL agent and
the optimal model solve the same problem, we can assert that the solution obtained by
the optimal model represents the best possible solution that the agent can find. In this
experiment, we considered two scenarios, with 2 and 4 available CNs at the central site.
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Figure 5. Fully provisioned RAN results.

Figure 5 illustrates the results from both simulation scenarios. In Figure 5a, we
depict the demand variation employed in both simulations. Additionally, Figure 5b show-
cases the optimal gap of the solutions for each simulation scenario. The solutions found
by the DRL agent are in proximity to the optimal solutions, showing that the optimal pol-
icy learned by the agent is representative, leading the agent to find only optimal solutions



when solving the problem considering 4 CNs at central site. However, due to the non-
exact nature of RL methods, in some instances, the DRL agent may not find the optimal
solution. In this case, the agent finds solutions close to optimality, with 9% of gap to the
optimum value, when considering 2 CNs at central site. This behavior is expected, since
it is more complex to solve the problem in scenarios with scarce resources, and shows the
importance of a constrained DRL agent.

On one hand, the solutions found by the agent in the fully provisioned RAN sce-
nario exhibit a maximum gap of 9% from the optimal solution. On the other hand, this
behavior may become more critical in scenarios with higher resource competition with
different demand variation patterns.

5.3. Scenario with MEC Application

In this scenario, we evaluate our DRL agent in a demand-intensive edge environment,
considering the coexistence of MEC applications and vRAN functions. We assume that
MEC applications and RUs competes for CNs processing resources addressing two sce-
narios, with 50% and 75% of MEC processing demand. In these experiments, we also
compare our DRL agent solutions with the optimal implementation of a state-of-the-art
formulation found in the literature.

In [Murti et al. 2023], the authors formulate the vRAN dynamic placement prob-
lem. However, they do not consider problem constraints in a prohibitive manner. Con-
sequently, the solutions found by the proposed model may violate network constraints,
albeit incurring penalties. Thus, in this evaluation scenario, we compared the number of
constraints broken by our DRL agent with the vRAN Unconstrained Dynamic Placement
(vRAN-UDP) model based on [Murti et al. 2023].
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Figure 6. Number of broken constraints for each MEC application scenario.

Figure 6 illustrates the constraints violated by both models, our DRL agent, and
the vRAN-UDP. We conducted evaluations under two scenarios, each featuring 50% and
75% utilization of MEC application resources, e.g. eMBB demand. The RUs demand is
depicted in Figure 5 (a). In both scenarios, our constraint-aware framework, empowers
our agent to identify solutions without violating any problem constraints, ensuring sta-
bility and functionality of all RUs. In contrast, the solutions generated by vRAN-UDP
fail to exhibit such compliance. This discrepancy arises from the representation of vRAN
dynamic placement problem constraints solely as penalties in the objective function, al-
lowing vRAN-UDP to neglect constraints. This constraint violation is more pronounced



under conditions of intense competition, as observed in the scenario with 75% of eMBB
demand. In this case, vRAN-UDP breaks more than 15 constraints in all instances. Even
in the scenario with 50% eMBB demand, although the number of broken constraints
decreases, vRAN-UDP still presents RUs with degraded service. This underscores the
significance of employing a constraint-aware formulation.

6. Conclusion and Future Work
This work introduced a constraint-aware deep reinforcement learning environment for the
vRAN dynamic placement problem. Our results demonstrate that our agent can learn
an optimal policy, yielding solutions with a maximum optimality gap of 9%. Further-
more, we conducted practical scenario evaluations, including a fully provisioned RAN
and a scenario featuring resource competition due to the presence of MEC applications.
A comparison with a state-of-the-art unconstrained model revealed that our agent suc-
cessfully adheres to constraints across all evaluated problem instances. As future work,
we intend to incorporate characteristics of the O-RAN Intelligent Controllers in the for-
mulation to make the proposed DRL agent compliant with the O-RAN specifications.
Additionally, exploring the evaluation of network metrics based on a heterogeneous set of
users connected to each base station presents an interesting avenue for future research.
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