
Sliced WANs for Data-Intensive Science:
Deployment Experiences and Performance Analysis

Edgard C. Pontes1, Vitor Zanotelli1, Magnos Martinello1, Jordi Ros-Giralt2,
Everson S. Borges 1, Moisés R. N. Ribeiro1 and Harvey Newman3

1 Universidade Federal do Espírito Santo (UFES)
Av. Fernando Ferrari, 514, Goiabeiras – 29.075-910 – Vitória – ES – Brasil

2Qualcomm Europe, Inc –

3Caltech, California Institute of Technology

Abstract. The task of transferring massive data sets in Data-Intensive Science
(DIS) systems, such as those generated from high energy experiments at CERN
in Switzerland and France, and at the Sirius synchrotron light source in Brazil,
often rely on physical WAN infrastructure for network connectivity that is pro-
vided by various National Research and Education Networks (NRENs), includ-
ing ESnet, Géant, Internet2, RNP, among others. Sliced WANs bring a new
paradigm for infrastructure yet to be exploited by DIS, but a realistic study of
these particular systems poses a significant challenge due to their complexity,
scale, and the number of factors affecting the data transport. In this paper,
we address some of these challenges by deploying and evaluating a virtual in-
frastructure for data transport within a representative national-scale WAN. Our
approach here encompasses two main aspects: i) Evaluating the performance
of TCP congestion control algorithms (BBR versus Cubic) when only a single
path is available for the data transfer; and ii) Assessing the performance of flow
completion times (related to the management of bandwidth allocation) for sets
of interdependent transfers in an environment provided by a network slice.

Resumo. A tarefa de transferir conjuntos massivos de dados em sistemas Data-
Intensive Science (DIS), como aqueles gerados a partir de experimentos de alta
energia no CERN na UE e na fonte de luz síncrotron Sirius no Brasil, muitas
vezes depende de infraestrutura WAN física para conectividade de rede que é
fornecido por diversas Redes Nacionais de Pesquisa e Ensino, incluindo ESnet,
Géant, Internet2, RNP, entre outras. As WANs fatiadas trazem um novo para-
digma para a infraestrutura ainda a ser explorada pelo DIS, mas um estudo
realista desses sistemas específicos representa um desafio significativo devido
à sua complexidade, escala e ao número de fatores que afetam o transporte
de dados. Neste artigo, damos os primeiros passos para enfrentar esses desa-
fios, implantando e avaliando uma infraestrutura virtual para transporte de da-
dos dentro de uma WAN representativa em escala nacional. Nossa abordagem
aqui abrange dois aspectos principais: i) Avaliar o desempenho de algoritmos
de controle de congestionamento TCP (BBR versus Cubic) quando apenas um
único caminho está disponível para a transferência de dados; e ii) Avaliar o
desempenho dos tempos de conclusão dos fluxos (relacionados com a gestão da
alocação de largura de banda) para conjuntos de ambientes de transferências
interdependentes fornecidos por uma fatia de rede.



1. Introduction
Data-intensive science (DIS) is gaining increasing importance as it drives the exploration
of fundamental scientific questions by collecting and processing vast amounts of scien-
tific data [Dunefsky et al. 2022]. In the context of large-scale data intensive sciences,
scientists collaborate on various projects to design infrastructure for data generation,
establish data centers for storage and processing, and develop a network infrastructure
for efficient data transfer. An exemplary instance is the global system implemented by
CERN and its collaborating partners, featuring 170 data centers distributed across 40
countries [Newman et al. 2003].

One could suppose that crafting the transfer of massive data sets would be a
straightforward challenge by using existing widely available facilities and techniques de-
veloped by the networking community. Unfortunately, the type of data transport in DIS
introduces unique challenges that existing techniques do not tackle adequately. Although
TCP and the associated congestion control algorithms are capable of achieving reasonably
fair sharing among flows, in DIS this task needs to be coordinated with the management
of bandwidth allocation for sets of interrelated transfers, such as those associated with
the same scientific experiments. Additionally, it often involves making the appropriate
selection of a TCP congestion control algorithm and also intricate efforts in tuning TCP
parameters to improve performance [Weigle and chun Feng 2002].

DIS applications could also exploit traffic engineering and manage constraints re-
lated to the network topology in the interest of transporting their massive data sets. But,
unfortunately, regular network operators usually do not allow access to multiple path con-
figuration. In addition, the control over link features in that topology remains out of reach
of the DIS community when trying to match transport requirements of a given scientific
collaboration. On the other hand, softwarization of network functions, combined with
massive virtualization of computing resources, are being used to create the network slic-
ing paradigm. This enabling technology has the potential of creating overlaying solutions
to the DIS community that are yet to be fully investigated. In this direction, general pur-
pose experimental slice-based facilities are recently being made available, and we believe
that DIS could largely benefit from them. However, finding out more efficient ways to ex-
ploit traffic engineering, considering now full access to configurations of network nodes
and their interfaces (including shared and programmable NICs), is an intricate and timely
cross-layer issue in need to be addressed by DIS.

The network shown in Fig. 1 is from the FABRIC Testbed1, which serves our pur-
poses as a WAN topology that represents a national scale DIS network, where multipath
transport can potentially be effectively exploited. This facility allows us to perform a re-
alistic study of a sliced infrastructure designed to meet the data transport of DIS systems,
while simultaneously addressing their complexity, scale, and a number of factors affecting
the data transport. In this paper, our goal is to investigate the interdependence arising in
DIS to help architects formulate request sliced resources together with congestion control
to meet the transport needs. The experimental investigation here scales down DIS data
volumes and transmission rates accordingly for building a prototype2 representation that
yields the following contributions:

1https://portal.fabric-testbed.net/
2Our definition of prototype slice is scaling down the transport volumes present in DIS.



• i) We evaluate the performance of TCP congestion control algorithms (BBR versus
Cubic) and the use of multiple simultaneous TCP connections to transfer data,
when only a single path is available for the data transfer.

• ii) We assess the performance of flow completion times on a multi path slice which
is a WAN deployed within a national-scale testbed. Our focus is on the man-
agement of bandwidth allocation for sets of interdependent transfers, conducted
within a virtual environment provided by a network slice;
The remainder of this paper is as follows. Section 2 critically assesses exper-

imental testbeds. In Section 3, we present specific FABRIC features to support slice
definitions, including booking a set of components, configuration deployment, and setup
automation. Section 4 brings the experimental evaluation results assessing data transport
efficiency for DIS. Conclusions are drawn, and future work is discussed in Section 5.

Figure 1. FABRIC nationwide network topology

2. Slicing Networks in Experimental Testbeds for Data-Intensive Science
Looking at the state-of-the-art experimental testbeds, there have been many
projects that have provided experimental facilities for networking experimentation
[Berman et al. 2014, M. et al. 2014, Salmito et al. 2014, Both et al. 2019]. The GENI
project was the pioneer in building an open and distributed infrastructure at scale for
research and education [Berman et al. 2014]. The OFELIA project [M. et al. 2014] cre-
ated an experimental facility that was based on SDN/OpenFlow to control the network
environment. With a similar goal, Japan had the RISE project, which was an OpenFlow-
based research infrastructure for large-scale network experiments on the Japan Gigabit
Network [Huang et al. 2017].

In Brazil, the FIBRE project [Salmito et al. 2014] built federated testbeds
to provide a large-scale research platform. Furthermore, the FUTEBOL
project [Both et al. 2019] was conceived to enable experimental research on opti-
cal, wireless, and cloud convergence that has been an enabler of the recent 5G networks
architecture3. Currently, a comprehensive initiative called slicing future Internet infras-

3https://porvir-5g-project.github.io



tructures (SFI2) gathers efforts toward designing multi-domain and multi-technology
integrated experimental network deployment. SFI2 main features are native machine
learning optimization, energy-efficient aware slicing, and slicing-tailored security
functionalities for the practical domain [Martins et al. 2023].

The FABRIC testbed, as introduced in [Baldin et al. 2019], is designed to function
as a national research infrastructure, facilitating cutting-edge and exploratory research
on a large-scale network. FABRIC is characterized by a deep programmability model
(utilizing P4, SmartNiCs, and DPDK nodes), with terabits-per-second core network nodes
that interconnect existing facilities such as GENI [Berman et al. 2014], as well as future
resources such as Open Cloud [Zink et al. 2021], campus networks, clusters, national
high-performance computing (HPC) and data facilities.

Unlike previous efforts, FABRIC specifically aligns with the requirements of mas-
sive data transfer by offering a typical slice created on a wide-area network at the national
level. This slice can be connected using user-specified networking services, enabling
multiple configurations not presently available in the previous testbeds. For example, the
slice model allows us to tune virtual infrastructure toward meeting particular requirements
from DIS transport. Setting the capacity of the virtual interfaces evidently impacts flow
completion time; besides the traditional efforts to look into buffer sizes and the values
of RTT to evaluate the performance of TCP congestion control algorithms (e.g., BBR,
Cubic, Reno) in DIS.

A second challenge on the data transport performance is related to how the routers
use packet buffers to prevent packet loss during congestion. Proper sizing is crucial; if too
small, it causes high loss and under-utilization, while if too large, it leads to unnecessary
delays. Vendors tend to oversize buffers, and operators often configure larger buffers
than needed, resulting in increased costs and delays [Spang et al. 2022]. Also, BBR is
a congestion control algorithm that is gaining popularity, and addressing the bufferbloat
issue in traditional loss-based algorithms by preventing excessive queue buildup while
maintaining high throughput [Vargas et al. 2021]. However, research shows that BBR
can lead to poor performance with deep buffers, causing inflated latencies and degraded
quality [Cao et al. 2019].

In contrast to prior efforts that primarily concentrated on tuning TCP itself, e.g.,
[Weigle and chun Feng 2002] and [Cao et al. 2019], our approach involves tuning a slice
with one or multiple TCP flows transporting data across a WAN topology over a single or
even multiple paths. Different than previous works, our method enables the deployment
and performance analysis based on a slice as a prototyping process, providing insights to
better understand how DIS tranport applications can benefit from sliced-WANs.

3. Slice Deployment and Experimentation with the FABRIC Testbed
To perform a realistic study of the data transport efficiency of DIS systems
[Dunefsky et al. 2022], a slice representing a large-scale WAN was requested to be cre-
ated on the FABRIC Testbed. After the deployment phase of the booked slice, there is
the configuration and automation phases, whereas the latter makes experiments easily
repeatable when reaching the final phase, which is focused on collecting results.

Booking a slice: An example of how to select nodes and link resources to book a
slice using FABlib library is shown in Code 1. This slice is composed of two L2 overlay



networks (lines 13 and 14), and the subnets (lines 6-7) attached to these connections
(lines 19-21 and 26-31). Selection and addition (lines 18 and 25) of NIC model
NIC_ConnectX_5 to the slice4. As a result, we can visualize the requested slice in Fig.
2. All configuration files in this Section are made available at a GitHub5.

1 # Creates a new slice
2 slice = fablib.new_slice(name=slice_name)
3

4 # Creates the subnetworks
5 subnet1 = IPv4Network("192.168.1.0/24")
6 subnet2 = IPv4Network("192.168.2.0/24")
7

8 # Lists of available ips
9 net1_available_ips = list(subnet1)[1:]

10 net2_available_ips = list(subnet2)[1:]
11

12 # Creates l2 overlay networks
13 net1 = slice.add_l2network(name='net1', subnet=subnet1)
14 net2 = slice.add_l2network(name='net2', subnet=subnet2)
15

16 # Adds the H1 node to the slice
17 h1 = slice.add_node(name='h1', site='SEAT', image=os_name)
18 [h1n1, h1n2] = h1.add_component(model=model_name, name='nic1').get_interfaces()
19 h1n1.set_mode('config')
20 net1.add_interface(h1n1)
21 h1n1.set_ip_addr(net1_available_ips.pop(0))
22

23 # Adds the R1 node to the slice
24 r1 = slice.add_node(name='r1', site='SALT', image=os_name)
25 [r1n1, r1n2] = r1.add_component(model=model_name, name='nic1').get_interfaces()
26 r1n1.set_mode('config')
27 net1.add_interface(r1n1)
28 r1n1.set_ip_addr(net1_available_ips.pop(0))
29 r1n2.set_mode('config')
30 net2.add_interface(r1n2)
31 r1n2.set_ip_addr(net2_available_ips.pop(0))

Code 1: Example of how to book a slice using FABlib library

Figure 2. Slice visualization at Fabric Testbed

Configuration and automation: The allocated nodes are virtual machines (VMs)
with Linux OS attached to network interfaces. They need to turned into routers or be
converted into end devices, which in DIS they are called data transfer nodes (DTNs).
For example, the configuration to apply CPU Pinning and Non-Uniform Memory Ac-
cess (NUMA) is especially interesting in systems with multiple processors or sockets,
on each slice node is presented in Code 2. This enforces the allocation of all virtual
CPUs (vCPUs) assigned to the VM on the specific NUMA node containing the relevant
components (e.g. network interfaces). In a VM, aligning vCPUs and memory with the
physical NUMA nodes helps reduce the time it takes for processors to access the memory

4Each NIC model NIC_ConnectX_5 added to the slice corresponds to two node interfaces.
5https://github.com/nerds-ufes/sbrc2024



associated with their node. Note that a system restart across all nodes is required for the
configuration changes to be implemented.

1 slice = fablib.get_slice(name = slice_name)
2

3 for node in slice.get_nodes():
4 # Pin all vCPUs for VM to same Numa node as the component
5 node.pin_cpu(component_name='nic1')
6

7 # Pin memmory for VM to same Numa node as the components
8 node.numa_tune()
9

10 # Reboot the VM
11 node.os_reboot()

Code 2: Example of how to apply performance tuning on all nodes using FABlib library

Experiment Automation: the Code 3 is an example of automation process that
allows us to configure a large number of system parameters such as: the data size to
be transferred, the target IP address of the iPerf3 server (line 1), the selection of TCP
algorithms (line 2), the added delays (line 3), the buffer size assigned to routers (line 4),
and bandwidth limit (5). The TC-NetEm and TC-tbf parameters are configured on router
R1 (lines 7-12) and changed at each iteration of the iPerf3 flows (lines 18 and 21). Note
that congestion control algorithms are here modified only on hosts/DTNs (lines 15 and
16).

Running the experiments and collecting data: All tests were performed in the
FABRIC Testbed using the Jupyter Notebook, provided by JupyterLab (v. 3.4.6) and the
FABlib library (v. 1.6.0). Each node in the experiments was equipped with the default
configuration of the testbed, which are 2 cores, 8 GB of RAM, and 10 GB of disk space.
The operating system used for the tests was Rocky Linux 8.9 (Green Obsidian), Linux
Kernel 4.18.0, while the interfaces used were dedicated NICs “Mellanox ConnectX-5
Dual Port 10/25GbE”. Traffic generation and throughput measurements were performed
using iPerf3 (v. 3.5.0).

4. Assessing Data Transport Efficiency for DIS
Suppose that our goal is to transfer a certain amount of data in a WAN so that all the flows
representing the interdependent transfers must complete in the shortest time possible.
This is a common application in DIS networks, where users need to share data obtained
from their experiments, often involving terabytes (or even petabytes) of information, with
collaborators around the globe. So, we want to investigate the data transport efficiency by
evaluating the performance of a set of flows that are being transferred on a WAN deployed
within a national-scale testbed.

4.1. Data transfer performance over a coast-to-coast single path
The first slice created is to investigate the performance of the TCP congestion control and
the use of multiple TCP streams to transfer data. The slice sets a coast-to-coast linear
topology with 5 nodes (H1, R1, R2, R3, and H2) deployed, respectively, geographically
located at the following sites: SEAT (Seattle), SALT (Salt Lake City), STAR (StarLight),
NEWY (New York) and MASS (UMass), as shown in Fig. 3.

With this simple setup, we can already investigate how to tune the slice network
parameters comparing BBR vs. Cubic in terms of throughput and flow-completion time.



1 size, target = '1G', '192.168.4.2'
2 algs = ['cubic','bbr']
3 delays = ['0', '60', '120', '180', '240', '320', '380', '440']
4 buffers = ['100K', '250K', '500K', '1M','5M', '10M', '25M', '50M']
5 rates = ['300']
6

7 r1.execute(f'sudo tc qdisc add dev eth1 root handle 1: htb default 10;\
8 sudo tc class add dev eth1 parent 1: classid 1:10 htb rate {rates[0]}Mbit;\
9 sudo tc qdisc add dev eth1 parent 1:10 netem delay 0ms;\

10 sudo tc qdisc add dev eth2 root handle 1: htb default 10;\
11 sudo tc class add dev eth2 parent 1: classid 1:10 htb rate {rates[0]}Mbit;\
12 sudo tc qdisc add dev eth2 parent 1:10 tbf rate {rates[0]}Mbit buffer

{rates[0]} limit {rates[0]}')↪→
13 h2.execute(f'iperf3 -s -p 5201 -i 2 -D')
14 for alg in algs:
15 h1.execute(f'sudo sysctl -w net.ipv4.tcp_congestion_control={alg}', quiet=True)
16 h2.execute(f'sudo sysctl -w net.ipv4.tcp_congestion_control={alg}', quiet=True)
17 for delay in delays:
18 r1.execute(f'sudo tc qdisc change dev eth1 parent 1:10 netem delay {delay}ms')
19 for buffer in buffers:
20 for rate in rates:
21 r1.execute(f'sudo tc qdisc change dev eth2 parent 1:10 tbf rate

{rate}Mbit buffer {buffer} limit {buffer}')↪→
22 h1.execute(f'iperf3 -c {target} -p 5201 -i 2 -n {size} -Z -C {alg} -J |

tee > bw-{rate}-sz-{size}-de-{delay}-bf-{buffer}-{alg}.json')↪→
23 h2.execute(f'sudo pkill iperf3')
24 r1.execute(f'sudo tc qdisc del dev eth1 root')
25 r1.execute(f'sudo tc qdisc del dev eth2 root')

Code 3: Automation process for setting the multiple configurations including tc, data size,
buffers size, TCP algorithms and delays.

In addition, multi-thread transport is also investigated in order to understand the effects
of multiplexing comparing BBR vs. Cubic. Traffic was generated using iPerf3 at (Fig.
3 from H1 host to H2), which are the DTNs. All TC-NetEm and TC-tbf configurations
were carried out at the router R1, more specifically, with the traffic policy applied at the
eth1 and eth2 interfaces. We used heatmaps to visualize the different network settings.
In each heatmap, we show a metric value under different RTT and Buffer size settings.
The tc tool is used for setting a range of parameters based on values commonly employed
in modern networks [Cao et al. 2019]:

• Bandwidth (BW): limited at 300 Mbps per flow (only for single thread experi-
ments);

• File to be transferred: 1GB (for flow-completion time single thread experiments)
• RTT: approximately 90 ms base value plus the following variations: +0, +60,

+120, +180, +240, +320, +380 and +440 ms;
• Buffer sizes: 0.1, 0.25, 0.5, 1, 5, 10, 25 and 50 MBytes.

Figure 4 shows the mean of TCP throughput (Left) in Mb/s and the flow com-
pletion time (Right) in seconds, for different values of buffer size. We observe that BBR
outperforms Cubic, specially for shallow buffer sizes. For instance, under 500 KB buffer
size, there are more light reds that indicate lower throughput for Cubic, although the dif-
ference is lower for higher values of RTTs (e.g. light colors for RTT greater than 410 ms
for both). Figure 4 (Right) complements this view (i.e. the lower the completion time,
the better with light red colors), showing that for lower values of buffer size (under 500
KB), there have been more dark red colors for Cubic, indicating that BBR outperforms
Cubic even when RTT is high, for the case of shallow buffer size.



Figure 3. Coast-to-coast WAN deployment in FABRIC Testbed in (Left) with its
logical slice linear WAN allocation in (Right).

90 150210270330410470530
RTT (ms)

bbr-100K
bbr-250K
bbr-500K

bbr-1M
bbr-5M

bbr-10M
bbr-25M
bbr-50M

cubic-100K
cubic-250K
cubic-500K

cubic-1M
cubic-5M

cubic-10M
cubic-25M
cubic-50M

Al
go

rit
hm

 - 
Bu

ffe
r S

ize

50

100

150

200

250

M
b/

s

90 150210270330410470530
RTT (ms)

bbr-100K
bbr-250K
bbr-500K

bbr-1M
bbr-5M

bbr-10M
bbr-25M
bbr-50M

cubic-100K
cubic-250K
cubic-500K

cubic-1M
cubic-5M

cubic-10M
cubic-25M
cubic-50M

Al
go

rit
hm

 - 
Bu

ffe
r S

ize

50

100

150

200

250

300

350

400

450

Co
m

pl
et

io
n 

Ti
m

e 
(s

)

Figure 4. Heatmaps comparing throughput (Left) and flow completion time
(Right) for BBR and Cubic algorithms, varying buffer size and delay (RTT).

In order to clarify the differences, we compute the BBR’s throughput percentage
gain over Cubic as BBR−CUBIC

BBR
× 100. Figure 5 shows the gain (Left) and the number

of retransmissions (Right). The red shaded regions and positive values indicate that BBR
outperforms Cubic, whereas blue shaded regions and negative values indicate that Cubic
outperforms BBR. As we can observe, BBR achieves higher throughput values in shallow
buffers (60% better) than Cubic, regardless of the RTT values. However, for deep buffer
sizes (beyond 1 Mbyte) and long RTTs (beyond 240 ms), Cubic outperforms BBR (20%
better), see the blue colors in the figure.

Figure 5 (Right) shows the number of packet retransmissions for both BBR and
Cubic. We observe that BBR often incurs 2 to 6 times more retransmissions than Cu-
bic, see the dark red colors on top of the figure. The key to understanding this result
lies in BBR’s maintenance of 2 × BDP (Bandwidth-Delay Product) number of packets
in flight. When the buffer size is smaller than BDP, BBR will continually have losses
[Cao et al. 2019]. Nevertheless, Cubic addresses these losses by substantially reducing
its congestion window (cwnd), whereas BBR does not immediately react to the loss (be-
ing more aggressive).

The second set of experiments aims to answer a practical question related to the
use of multiple TCP streams to transfer data. How much can we enhance on the flow-
completion time by utilizing parallel TCP streams? In other words, when we multiplex
BBR and Cubic connections, which one will demonstrate superior performance?



90 150210270330410470530
RTT (ms)

100K

250K

500K

1M

5M

10M

25M

50M

Bu
ffe

r S
ize

20

10

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 G

ai
n 

(%
)

90 150210270330410470530
RTT (ms)

bbr-100K
bbr-250K
bbr-500K

bbr-1M
bbr-5M

bbr-10M
bbr-25M
bbr-50M

cubic-100K
cubic-250K
cubic-500K

cubic-1M
cubic-5M

cubic-10M
cubic-25M
cubic-50M

Al
go

rit
hm

 - 
Bu

ffe
r S

ize

0

100

200

300

400

500

600

Nu
m

be
r o

f r
et

ra
ns

m
its

Figure 5. Heatmaps comparing goodput percentage gain (Left) and number of
retransmissions (Right) for BBR and Cubic algorithms and varying buffer size
and delay (RTT).

Figure 6 shows the time to transfer data of different sizes 1, 5 and 10 Gbytes. We
used multiple TCP streams, varying the number of threads for both BBR and Cubic. As
we can see in Fig. 6 (Left), the flow completion time decreases significantly as the number
of threads increases. Moreover, the impact of parallel TCP streams on decreasing the flow
completion time is notable up to a specific number of threads (typically showing lower
improvement after 15 as indicated by a vertical red line). Interestingly, with an increase
in the number of threads, for example beyond 15 in this experiment, Cubic starts to take
longer to transmit 5 GB (dotted orange) than BBR to transmit 10 GB (green). Notably,
BBR multiplexing appears to be more effective than Cubic. Figure 6 (Right) focus on
the flow completion time difference between BBR vs. Cubic (Cubic−BBR) in seconds.
While we do observe slight differences favoring BBR, averaging around (15s to 10 GB,
7s to 5 GB, and 1s to 1 GB), the overall effectiveness of increasing the number of threads
as a strategy surpasses the impact of selecting TCP algorithms.

Increasing the number of threads has some limitations, though. Figure 7 (Left)
shows the throughput per thread in Mb/s for BBR vs Cubic. As expected, the greater
the number of threads, the lower the throughput per thread. However, BBR keeps its
performance per thread longer than Cubic. While BBR begins to significantly decline
after 20 threads (i.e. throughput aggregated of 5 Gbps achieving the maximum empirical
rate), Cubic experiences a performance drop much earlier, at just 5 threads. Figure 7
(Right) complements the result showing the percentage gain per thread BBR−CUBIC

BBR
×100.

The gain is more pronounced from 5 to 20 reaching about 50% in favor of BBR. These
results confirm that in scenarios with a high number of threads and a substantial volume
of data, BBR multiplexing proves to be more effective than Cubic.

4.2. Data transfer performance over multipath

In the process of allocating a multipath slice, network providers commonly offer a net-
work with an uniform path capacity. As a result, a question emerges for DIS applications:
In a multipath-sliced network, how flow-completion time can be affected by using differ-
ent bandwidth values across the paths? Our objective is to empirically demonstrate the
existence of a configuration (by finding the bandwidth values in a slice) that both min-
imizes network completion time and maximizes network throughput. For this purpose,



100 101

Number of threads

101

102

Co
m

pl
et

io
n 

Ti
m

e 
(s

)

File Size
1G
5G
10G

Algorithm
bbr
cubic

1 2 3 5 10 15 20 30
Number of threads

0

5

10

15

20

25

BB
R 

- C
ub

ic 
(s

)

File Size
1G
5G
10G

Figure 6. Flow completion time as function of multiple TCP streams (using
threads) for Cubic vs. BBR (Left) and its differences (Right).

0 10 20 30
Number of threads

100

150

200

250

300

Th
ro

ug
hp

ut
 p

er
 th

re
ad

 (M
b/

s)

File Size
1G
5G
10G

Algorithm
bbr
cubic

0 10 20 30
Number of threads

20

0

20

40

60

Ga
in

 p
er

 th
re

ad
 B

BR
 v

s C
ub

ic 
(%

)

1G
5G
10G

Figure 7. Throughput per thread (Left) and its gain for BBR vs Cubic (Right).

a second slice with a multipath WAN topology was created to perform a traffic engineer
analysis, exploring the multiplicity of paths and the diversity of links between the host-
s/DTNs.

The slice is a multipath topology composed by 7 nodes (H1, R1, R2, R3, R4,
R5, and H2), respectively, geographically located in the following sites: USCD (USCD),
LOSA (Los Angeles), SEAT (Seattle), SALT (Salt Lake City), STAR (StarLight), DALL
(Dallas), and MICH (University of Michigan), as shown in Fig. 8 (Left) and (Right). The
Red, Green and Blue paths have respectively the average RTT of: 82.2 ms, 78.6 ms and
62.5 ms. We set the capacity of crossing links (l1 = R3 ⇐⇒ R4 and l2 = R1 ⇐⇒ R5)
seeking for the point that achieves maximal performance for transferring the flows. We
refer to an assignment of capacity values to the links as a slice configuration S1. For
example, in the configuration S1, we set the links l1 = R3 ⇐⇒ R4 = 50Mbps and
l2 = R1 ⇐⇒ R5 = 100 from the topology of Fig. 8 (Right), so that the ratio between
the crossing links are r = l1/l2 = 0.5.



Figure 8. Multipath WAN deployment in FABRIC Testbed in (Left) with its logical
slice varying links capacity in (Right).

The Fig. 9 shows the result of sending 6 TCP cubic flows6 of 1 Gigabyte each
(as a typical DIS workload) by using multiple paths (more precisely two crossing links)
between source and destination. The experiment is based on a classic load balancing al-
gorithm, Equal-Cost Multi-Path (ECMP) [Hopps and Thaler 2000], which typically dis-
tributes traffic to all available paths in a round-robin fashion. This means that flow 1 is
sent to the red path, flow 2 to the green path, and flow 3 to the blue path, and so forth. We
tested various slice configurations within the range of r ∈ {0.5, 1 = uniform, . . . , 2}.

As we can see in Fig. 9, the slice with a uniform bandwidth configuration (r = 1)
does not necessarily yield the lowest flow completion time. In fact, the flow completion
time decreases significantly as the ratio r increases, reaching the best performance when
r = 2. For instance, the time to transfer the flows is the double for r = 1 (around 350s to
complete all the flows) compared to r = 2 (around 175s).

This result is clearly explained by load balancing uniform flows over imbalanced
paths ([Ros-Giralt et al. 2019]), where the ECMP algorithm splits the flows across the
three paths, with two flows over l1 (red, green) and one flow on l2 (blue) per round. Nev-
ertheless, it is crucial to find out the existence in practice of a wasteless point in bandwidth
(known as proportional design [Ros-Giralt et al. 2021]) for a slice-specific configuration
(for this case when r = 2). This proportional design allows us to make the best usage of
the links tuning a multipath slice, which plays a crucial role in completing all the flows
basically at the same time (e.g. for uniform flows7) without wasting of bandwidth.

5. Conclusion

Addressing the challenges related to the massive data transfer in DIS networks requires a
holistic approach. While one might initially assume that existing networking techniques
would seamlessly handle this task, the unique characteristics of data transport unveil com-
plexities that demand specific considerations. Our exploration with a prototype slice, i.e.,
scaled down in terms of transport volumes present in DIS, already highlighted the need for
effective bandwidth allocation management, especially for sets of interdependent trans-
fers linked to scientific experiments. Additionally, the selection of an appropriate TCP

6We did also for BBR flows with slightly differences on performance.
7Non-uniform flows are intended for evaluation in future work.



0 200 400 600
Time (s)

0

50

100

150

M
b/

s

A) r = l1/l2 = 0.5

flowID
Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

0 100 200 300
Time (s)

0

20

40

60

80

100

M
b/

s

B) r = l1/l2 = 1

0 50 100 150
Time (s)

0

100

200

300

M
b/

s

C) r = l1/l2 = 2

Figure 9. Flow completion time using ECMP algorithm for load balancing the
flows in a WAN with different ratios of bandwidth: A) r = l1/l2 = 0.5, B) r =
l1/l2 = 1 and C) r = l1/l2 = 2).

congestion control algorithm becomes crucial, particularly in scenarios involving a single
path transfer.

To summarize the presented results, while slight differences favor BBR, the over-
all effectiveness of increasing the number of threads surpasses the impact of selecting
TCP algorithms. However, in scenarios with a high number of threads and substantial
data volume, BBR multiplexing appears to outperform Cubic. For multipath slice allo-
cation, it is crucial to determine the practical existence of a bandwidth wasteless point,
known as proportional design [Ros-Giralt et al. 2021], for a specific slice configuration.
This design optimally utilizes links in tuning a multipath slice, playing a critical role in
achieving nearly simultaneous completion of all flows, thus efficiently using available
physical infrastructure bandwidth in DIS slices avoiding over-provisioning approaches.

As future works, we envision deploying PolKA source routing protocol
[Dominicini et al. 2020] and its recent extension for multi-path [Guimarães et al. 2022],
as a next step to advance our previous experience in protocol deployment at testbeds
reported in [Borges et al. 2022]. We also plan to incorporate bottleneck structure anal-
ysis [Ros-Giralt et al. 2021] for the design of bandwidth-efficient slices and to opti-
mize traffic engineering on a deployed slice. An example involves a distributed arti-
ficial intelligence (AI) workload, specifically the training of a large foundation model
using globally-distributed computational nodes connected over a wide area network
(WAN) [Yuan et al. 2023]. In such scenarios, efficient slices optimized for determin-
istic communication patterns like AllGather or AllReduce are essential. At last, we
should evolve our prototype towards real DIS context, so we intend to use (Fast Data
Transfer) FDT [Dunefsky et al. 2022] as a point of comparison. This tool can be
adapted to incorporate strategies and different congestion control algorithms (e.g., BBRv3
[Cardwell et al. 2023]) or even the QUIC protocol [Iyengar and Thomson 2021].

6. Acknowledgments

This study received financial support from Brazilian agencies: CNPq, CAPES, FAPE-
SP/MCTI/CGI.br (PORVIR-5G 20/05182-3, FAPES (94/2017, 281/2019, 515/2021,
284/2021, 06/2022, 1026/2022, 941/2022, #2022/NGKM5, #2021/GL60J) and SERPRO.
Also, we express our gratitude to FABRIC for their support, with a special acknowledg-
ment to Paul Ruth.



References
Baldin, I., Nikolich, A., Griffioen, J., Monga, I. I. S., Wang, K.-C., Lehman, T., and Ruth,

P. (2019). Fabric: A national-scale programmable experimental network infrastructure.
IEEE Internet Computing, 23(6):38–47.

Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R.,
and Seskar, I. (2014). Geni: A federated testbed for innovative network experiments.
Computer Networks, 61:5–23. Special issue on Future Internet Testbeds – Part I.

Borges, E., Pontes, E., Dominicini, C., Schwarz, M., Mate, C., Loui, F., Guimarães,
R., Martinello, M., Villaça, R., and Ribeiro, M. (2022). A lifecycle experience of
polka: From prototyping to deployment at géant lab with rare/freertr. In Anais do XIII
Workshop de Pesquisa Experimental da Internet do Futuro, pages 35–40, Porto Alegre,
RS, Brasil. SBC.

Both, C., Guimaraes, R., Slyne, F., Wickboldt, J., Martinello, M., Dominicini, C., Martins,
R., Zhang, Y., Cardoso, D., Villaca, R., Ceravolo, I., Nejabati, R., Marquez-Barja, J.,
Ruffini, M., and DaSilva, L. (2019). Futebol control framework: Enabling experimen-
tation in convergent optical, wireless, and cloud infrastructures. IEEE Communications
Magazine, 57(10):56–62.

Cao, Y., Jain, A., Sharma, K., Balasubramanian, A., and Gandhi, A. (2019). When to use
and when not to use bbr: An empirical analysis and evaluation study. In Proceedings of
the Internet Measurement Conference, IMC ’19, page 130–136, New York, NY, USA.
Association for Computing Machinery.

Cardwell, N., Cheng, Y., Yang, K., Morley, D., Hassas, S., Jha, P., Seung, Y., Jacobson,
V., Swett, I., Wu, B., et al. (2023). Bbrv3: Algorithm bug fixes and public internet
deployment. Presentation in CCWG at IETF, 117.

Dominicini, C. et al. (2020). Polka: Polynomial key-based architecture for source routing
in network fabrics. In 2020 6th IEEE Conference on Network Softwarization (NetSoft),
pages 326–334. IEEE.

Dunefsky, J., Soleimani, M., Yang, R., Ros-Giralt, J., Lassnig, M., Monga, I., Wuerth-
wein, F. K., Zhang, J., Gao, K., and Yang, Y. R. (2022). Transport control networking:
Optimizing efficiency and control of data transport for data-intensive networks. In Pro-
ceedings of the ACM SIGCOMM Workshop on Network-Application Integration, NAI
’22, page 60–66, New York, NY, USA. Association for Computing Machinery.

Guimarães, R. S., Dominicini, C., Martínez, V. M. G., Xavier, B. M., Mafioletti, D. R.,
Locateli, A. C., Villaca, R., Martinello, M., and Ribeiro, M. R. N. (2022). M-polka:
Multipath polynomial key-based source routing for reliable communications. IEEE
Transactions on Network and Service Management, pages 1–1.

Hopps, C. and Thaler, D. (2000). Multipath Issues in Unicast and Multicast Next-Hop
Selection. RFC 2991.

Huang, T., Yu, F. R., Zhang, C., Liu, J., Zhang, J., and Liu, Y. (2017). A survey on large-
scale software defined networking SDN testbeds: Approaches and challenges. IEEE
Communications Surveys Tutorials.

Iyengar, J. and Thomson, M. (2021). Rfc 9000: Quic: A udp-based multiplexed and
secure transport. Omtermet Emgomeeromg Task Force.



M., S. et al. (2014). Design and implementation of the ofelia FP7 facility: The european
openflow testbed. Computer Network, 61:132–150.

Martins, J. S. B., Carvalho, T. C., Moreira, R., Both, C. B., Donatti, A., Corrêa, J. H.,
Suruagy, J. A., Corrêa, S. L., Abelem, A. J. G., Ribeiro, M. R. N., Nogueira, J.-
m. S., Magalhães, L. C. S., Wickboldt, J., Ferreto, T. C., Mello, R., Pasquini, R.,
Schwarz, M., Sampaio, L. N., Macedo, D. F., De Rezende, J. F., Cardoso, K. V., and
De Oliveira Silva, F. (2023). Enhancing network slicing architectures with machine
learning, security, sustainability and experimental networks integration. IEEE Access,
11:69144–69163.

Newman, H. B., Ellisman, M. H., and Orcutt, J. A. (2003). Data-intensive e-science
frontier research. Commun. ACM, 46(11):68–77.

Ros-Giralt, J., Amsel, N., Yellamraju, S., Ezick, J., Lethin, R., Jiang, Y., Feng, A., Tas-
siulas, L., Wu, Z., Teh, M. Y., and Bergman, K. (2021). Designing data center net-
works using bottleneck structures. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21, page 319–348, New York, NY, USA. Association for
Computing Machinery.

Ros-Giralt, J., Bohara, A., Yellamraju, S., Langston, M. H., Lethin, R., Jiang, Y., Tassi-
ulas, L., Li, J., Tan, Y., and Veeraraghavan, M. (2019). On the bottleneck structure of
congestion-controlled networks. Proc. ACM Meas. Anal. Comput. Syst., 3(3).

Salmito, T. et al. (2014). Fibre-an international testbed for future internet experimenta-
tion. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos-SBRC
2014, pages p–969.

Spang, B., Arslan, S., and McKeown, N. (2022). Updating the theory of buffer sizing.
SIGMETRICS Perform. Eval. Rev., 49(3):55–56.

Vargas, S., Drucker, R., Renganathan, A., Balasubramanian, A., and Gandhi, A. (2021).
Bbr bufferbloat in dash video. In Proceedings of the Web Conference 2021, WWW
’21, page 329–341, New York, NY, USA. Association for Computing Machinery.

Weigle, E. and chun Feng, W. (2002). A comparison of tcp automatic tuning techniques
for distributed computing. In Proceedings 11th IEEE International Symposium on
High Performance Distributed Computing, pages 265–272.

Yuan, B., He, Y., Davis, J. Q., Zhang, T., Dao, T., Chen, B., Liang, P., Re, C., and Zhang,
C. (2023). Decentralized training of foundation models in heterogeneous environ-
ments.

Zink, M., Irwin, D., Cecchet, E., Saplakoglu, H., Krieger, O., Herbordt, M., Daitzman,
M., Desnoyers, P., Leeser, M., and Handagala, S. (2021). The open cloud testbed (oct):
A platform for research into new cloud technologies. In 2021 IEEE 10th International
Conference on Cloud Networking (CloudNet), pages 140–147.


