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Abstract. We study the metric Page Load Time (PLT) which has a significant
impact on user experience, search engine optimization, and conversion rates.
We explore how page complexity metrics, specifically content and infrastructure,
affect PLT. We employ both supervised and unsupervised machine learning
models to analyze the influence of these metrics at multiple levels: single page,
page category, cluster, and general. Our study shows that the number of bytes,
requests, and distinct images are key features in PLT prediction, with the page
category model generally outperforming others. The results contribute to a
better understanding of the factors influencing PLT and show some insights into
how to optimize web pages for better user experiences and business outcomes.

1. Introduction
Web pages remain an indispensable part of our everyday lives, serving as gateways to a
variety of services, such as information, entertainment, and commerce. One crucial aspect
influencing the user’s browsing experience is page load time (PLT). PLT is the duration
taken by a web page to load its entire content, encompassing text, images, videos, and
interactive elements, that is, the time it takes from the initial request to the final rendering.

Providing a fast and responsive website is essential for guaranteeing a good
experience for end-users, as indicated by substantial research from leading corporations.
Over a decade ago, a stufy by Amazon highlighted that every 100 ms of added latency
cost 1% in sales. In 2006, Google noted that an additional 0.5 seconds in search page
generation time led to a 20% drop in traffic [Gigspaces 2023]. These and other cases
demonstrate why companies often invest significant resources in optimizing their websites
to avoid such costly delays.

The COVID-19 pandemic increased the importance of delivering a high-quality
user experience in web services. Business operations changed, and an effective online
presence was critical. Companies that provide low-quality digital experiences have faced
significant challenges in maintaining competitiveness and relevance in today’s rapidly
evolving digital world. As a site becomes less interactive, users increasingly tend to move
to a competitor’s site. User engagement is critically linked to a website’s interactivity, of
which PLT is a key determinant.

Page load time emerges as an important factor not only in user experience but
also in broader aspects such as search engine optimization and conversion rates. The
significance of PLT is recognized by Google, which has integrated this metric into
its search engine ranking algorithms [Google 2010]. Moreover, there is a significant



correlation between PLT and conversion rates. Pages that load within one second have
been found to have conversion rates nearly 2.5 times higher than pages that take five
seconds or more to load [Wiegand 2022]. This indicates that faster pages are more
effective at converting visitors into customers. Additionally, PLT plays a crucial role in
user-perceived quality. Studies like [Hora et al. 2018] employing the Absolute Category
Rating (ACR) scale, a self-reported measure of user experience, show a direct correlation
between PLT and user satisfaction. Faster loading times are consistently associated with
higher ACR ratings, indicating that users perceive websites with shorter load times as
more efficient and user-friendly.

In summary, enhancing PLT is not just a technical necessity but a fundamental
component of delivering an acceptable user experience. It impacts various dimensions,
from search engine rankings and visibility to conversion rates and overall user
QoE. Therefore, understanding how page content and infrastructure influence PLT
remains crucial. Previous works exploring the relationship between page complexity
metrics, namely page content and infrastructure metrics, and PLT have focused
either on a few selected pages, with individual analyses being performed for each
[Asrese et al. 2019], [Vogel and Springer 2022], or on a diverse group of pages, with an
overall analysis conducted for all of the pages simultaneously [Saverimoutou et al. 2019],
[Butkiewicz et al. 2011].

In view of the above, this paper investigates the relationship between page
complexity metrics and PLT. Specifically, we aim to answer the following question: what
are the most important features when it comes to inferring page load time? Supervised
and unsupervised machine learning models are employed to provide a broader view of
this relationship at multiple levels of granularity: single page, page category, cluster, and
“general” (which includes all pages). This approach provides insights at each level, which
are then compared and evaluated. The main contributions of this work can be summarized
as follows:

• Multi-dimensional analysis: In our multi-dimensional analysis, we examined the
impact of page complexity metrics on PLT across various levels of granularity.
This includes “general,” per-category, per-cluster, and per-page analyses, with
both supervised and unsupervised models having been utilized.

• Feature importance: Our findings reveal that the number of bytes ranks among
the top three features for inferring PLT in all models under study. In the models
categorized by page types, both the number of bytes and the number of requests
emerged as the top two features for most categories. These observations from the
page category models are consistent with findings from the individual page model,
where the three most important features were identified as the number of bytes,
the number of requests, and the number of distinct images.

• Effectiveness of different models: We individually tested the general model, the
page category model, and the cluster model for each page. The page category
model outperformed both the cluster and general models for ten out of the 15
pages. Notably, in most models, the root mean squared error (RMSE) is less
than one, indicating a prediction error in estimating PLT of less than one standard
deviation.



2. Related Work

Extensive research has thoroughly examined page performance metrics, such as page load
time (PLT), time to first paint, and above-the-fold time, in relation to the perceived quality
of web browsing experiences. Studies involving passive and active user interactions with
pages [Salutari et al. 2019, Hora et al. 2018, Gao et al. 2017, Egger et al. 2012] carried
out evaluations based on several scales. These range from bad/neutral/good to a 5-
point ACR scale, or involve choosing preferred pages from a group [Salutari et al. 2019,
Hora et al. 2018, Gao et al. 2017]. Subsequently, these metrics are correlated with
user scores using either expert analysis or machine learning models [Egger et al. 2012,
Hora et al. 2018, Hoßfeld et al. 2018, Jahromi et al. 2018].

In addition to studying the relationship between page performance metrics and
the web users’ QoE, it is also important to analyze how these metrics are influenced by
various factors such as page structure/content, content provision strategies, and network
conditions. In [Avram et al. 2014], the authors introduce a new metric known as the
latency amplification factor, which measures the impact of latency on page load times.
To study this metric, they collect the page’s dependency graph and estimate the overall
effect on page load time through artificially added latency. In [Vogel and Springer 2022],
the authors report that 70% of JavaScript and 90% of CSS scripts are loaded as render-
blocking code, often only utilized after the page has finished rendering. This highlights a
good opportunity for optimization. For social media and news pages, our findings indicate
that the number of CSS objects and the number of JavaScript objects are, respectively, the
most important features for predicting page load time. This could be partly attributed to
the inefficient loading of this content. In [Saverimoutou et al. 2019], an analysis of time
to first visual rendering showed lower RTTs (Round Trip Times) and fewer requests in
“good response” navigations under various conditions, underscoring the significance of
the number of requests in page load time prediction. Similarly, [Butkiewicz et al. 2011]
finds a strong correlation between the number of bytes and PLT, while also identifying
the number of requests as the best predictor of PLT.

Our findings align with prior research, highlighting the importance of certain
features in predicting page load time, such as the number of requests and the number
of bytes. Notably, our study shows the significant impact of image-related features,
particularly in the context of single pages, and the importance of the number of servers in a
diverse group of pages, with respect to page load time prediction. Additionally, category-
specific relationships are also found, providing a more comprehensive understanding of
how these metrics influence page load time than previous works.

3. Methodology

To analyze the relationship between page complexity metrics and page load time, it is
essential to employ a software solution capable of navigating automatically to various web
pages and gathering all relevant metrics for each session. For the automatic navigation,
Node Puppeteer was used, instrumenting the Google Chrome browser, which was loaded
with a plugin developed in [Hora et al. 2018]. This plugin collects important page loading
timing information as well as page complexity metrics and was modified to send this
data to our collection server. The complexity metrics collected include: the total number
of servers contacted, the number of bytes, the number of requests, the number of CSS



objects, the number of JavaScript (JS) objects, the number of image objects, the number
of distinct images, and the number of image pixels.

We collected over two months of data, from July 5, 2023, to September 18, 2023.
The experiments were conducted using five Raspberry-Pi 4 Model B, each equipped with
4GB of RAM and a 1500MHz CPU with 4 cores. These Raspberry-Pi devices were
located across three different ISPs. Custom data-collecting software 1 was installed in the
Raspberry-Pi´s and each unit was placed in the home of a volunteer, connected directly
to the residential router via an Ethernet cable. After each web page is accessed the data
from that navigation is sent in JSON format to a collection server for later analysis.

The structure of some web pages can change frequently. Therefore, to obtain a
statistically significant number of samples for each page structure profile, the sampling
interval varied according to an exponential distribution with a mean of 30 minutes. In
each test, all selected pages were navigated in sequence. This approach limits the number
of pages that can be analyzed, which was defined as 20. If a page did not fully load
within 18 seconds, the navigation was canceled, and no data was collected for that
page in that test period. This methodology was adopted in [Saverimoutou et al. 2019].
Consequently, each test had a maximum duration of approximately 400 seconds, which
is just under seven minutes. The order in which the pages were selected followed a
sampling-without-replacement strategy, ensuring that each page was tested exactly once
before being excluded from subsequent selections.

The 20 pages were selected from a curated list of the top 100 most visited
websites in Brazil during 20222. These pages were chosen based on the following criteria:
preference for higher ranked pages, broad representation of web page categories, and
preference for pages where the landing page contains the content users usually consume
on the site.

One limitation of this study is that it only uses landing pages and not internal web
pages. This issue was addressed by [Aqeel et al. 2020], who found that two thirds of the
analyzed papers required at least minor revisions due to this limitation. The final selection
criterion was chosen to partially mitigate this issue, expecting that this limitation would
less impact web pages with similar landing and internal pages. Out of the 20 selected
pages, 18 received sufficient navigation data on each of the Raspberry-pis. The resulting
18 pages, along with their respective ranks and categories, are presented in Table 1. From
the top 34 most visited pages, we selected 18 based on the criteria described above. In
this group of 18 pages, the representation of each category was significant, with categories
being represented at levels ranging from 50% to 100% of those found in the list of the top
34 pages.

Following data collection, the next phase was data analysis. To determine the
most critical page complexity metrics for inferring PLT, various feature importance
methods were utilized. Specifically, these methods included recursive feature elimination,
forward and backward sequential feature selection, and Gini importance. These methods
were applied in conjunction with traditional regression models. Interpretable regression

1wptagent-automation: https://github.com/danielatk/wptagent-automation
2Top 100 most accessed sites in Brazil [2022 Edition]: https://pt.semrush.com/blog/

top-100-sites-mais-visitados/



Table 1. Pages Tested

Rank Page Category

21 123movies.net streaming
19 amazon.com.br e-commerce
30 americanas.com.br e-commerce
11 caixa.gov.br government
4 globo.com news
35 letras.mus.br music
26 magazineluiza.com.br e-commerce
14 mercadolivre.com.br e-commerce
28 olx.com.br e-commerce
7 pornhub.com adult
22 reddit.com social media
29 shopee.com.br e-commerce
18 spankbang.com adult
32 tiktok.com social media
34 twitch.tv streaming
9 twitter.com social media
5 uol.com.br news
3 xvideos.com adult

models, such as decision trees and random forests, were also employed, offering
additional insights into the significance of the selected features. The analysis was
conducted at different levels of granularity: individual page level, page category level,
and general level.

Additionally, an unsupervised approach was employed to cluster pages into groups
based on similar page complexity metrics, with analyses also performed at this level of
granularity. This approach involved using tensor decomposition to identify the principal
relationships among the page complexity metrics in a low-dimensional space. Following
this, the k-means algorithm was applied to cluster the data, enabling the impact of
complexity metrics on PLT within each cluster to be examined.

4. Results and Discussion

4.1. Feature Importance

As a first step to understanding the effect of complexity metrics on PLT, feature
importance was analyzed. This gave an understanding of which metrics had a significant
impact on PLT. For this, the following methods were used: Pearson correlation, recursive
feature elimination (RFE), forward and backward sequential feature selection (FSFS and
BSFS, respectively) and Gini importance.

Linear regression, decision tree, and random forest models were employed,
complemented by the various feature selection methods. For each combination of model
and feature selection method, 5-fold validation was used. In this process, the data was
divided into training and testing groups, with 80% used for training and 20% for testing
in each fold.



Table 2 displays the features selected by each method. The Gini importance
measure, which was employed together with the random forest model, selected three
features, by calculating the RMSE for each number of features and applying the elbow
method (for feature selection). The Pearson correlation coefficient method also chose
three features. The RFE, FSFS, and BSFS methods utilized all features, except in the
case of the decision tree combined with the BSFS method, where only four features were
selected. Number of servers was the only feature selected by all methods.

Table 2. Feature importance per method

feature Gini Corr. RFE FSFS BSFS+LR BSFS+DT

number of servers 0.321 0.488 1 1 1 1
number of CSS objects 0.166 0.102 1 1 1 1
number of bytes 0.149 -0.167 1 1 1 0
number of JS objects 0.100 0.501 1 1 1 1
number of image pixels 0.094 -0.283 1 1 1 0
number of distinct images 0.087 0.232 1 1 1 0
number of requests 0.066 0.125 1 1 1 1
number of image objects 0.016 -0.097 1 1 1 0

Table 3. Results of PLT prediction using different models

Model Feature Set RMSE MAE

Linear Regression Gini 0.814 0.645
Linear Regression Corr. 1.001 0.909
Linear Regression RFE 0.739 0.575
Linear Regression FSFS 0.739 0.575
Linear Regression BSFS 0.739 0.575
Decision Tree Regression Gini 0.483 0.260
Decision Tree Regression Corr. 0.410 0.235
Decision Tree Regression RFE 0.423 0.218
Decision Tree Regression FSFS 0.423 0.218
Decision Tree Regression BSFS 0.412 0.214
Random Forest Gini 0.409 0.230
Random Forest Corr. 0.415 0.232

The RMSE and mean absolute error (MAE) of the PLT predictions for all models
are shown in Table 3. For linear regression the feature selection performed with recursive
feature elimination yielded the best results. For decision tree regression the results using
the different feature sets were all very similar, with the lowest MAE obtained when using
RFE and the lowest RMSE obtained when using the correlation features. With random
forest the results were comparable whether using correlation metrics or features identified
as most important by the method. The best performing model out of all of them, in relation
to RMSE, was random forest, using the feature set obtained via Gini importance. The
features selected via this method were number of servers, number of CSS objects, and
number of bytes.

The interpretation of random forest models is quite limited given that it is an
ensemble model that uses many individual decision trees. One way of circumventing this



is through the use of a global surrogate; i.e., a simpler, usually more interpretable model
that can be used to reproduce the behaviour of a more complex model [Molnar 2019]. In
this case, a decision tree model was employed as a global surrogate to the random forest
model. This can be done by training the decision tree with the original training set, but
replacing the labels with the output of the random forest model. The tree for the surrogate
model is shown in Figure 1. The maximum depth was set at 2 for better visualization. The
root divides the tree according to number of servers, using 16 as the cut-off point, with
two thirds of the samples being below that. For those samples, the next discriminator is
number of CSS objects, with 47 as the cut-off point, with just under a tenth of the samples
being above that. The samples with higher number of CSS objects had an average PLT
roughly double that of the samples with lower values of CSS objects. Counterintuitively,
samples with number of servers above 16 and number of kBytes above 1086 resulted in
a low PLT of around 3.6 seconds. However, this occurred in only a small fraction of
the samples (approximately 0.2%), indicating that such instances should be considered
special cases.

Figure 1. Surrogate decision tree for random forest model

The same models were applied in a per-page fashion and, as was the case in the
general analysis, for most pages random forest was the best performing model. Table 4
presents the top three features selected by the random forest model for each page, along
with their corresponding Gini importance values.

As observed, number of bytes and number of requests were the features chosen in
most cases, with these being prominent in 14 out of the 18 pages due to their high Gini
importance value. In 11 out of these 18 pages, the features including number of bytes,
number of requests, and one image-related aspect (such as number of image objects,
number of distinct images, or number of image pixels) were selected. However, only five
pages did not include an image-related feature. Number of distinct images was chosen
as frequently as the combined selection of number of image pixels and number of image
objects, suggesting that it may better represent the impact on PLT compared to other
image-related features.

The analysis was also conducted on a per-category basis, yielding the results
presented in Table 5. Interestingly, while number of servers was among the least
important features in the per-page analysis, it emerged as the most significant feature



Table 4. Features selected by random forest for each page (Gini Importance value)

web page bytes servers imgs. JS CSS requests dist. imgs. pixels

reddit 0.110 — — — — 0.187 0.513 —
magazineluiza 0.395 — 0.236 — — 0.121 — —
pornhub 0.707 — — — — 0.049 0.166 —
globo 0.184 — — — — 0.490 — 0.095
shopee 0.139 — 0.072 — — 0.659 — —
olx 0.661 0.176 — — — — 0.039 —
twitch 0.361 — — 0.090 — 0.364 — —
xvideos 0.345 — — 0.168 — 0.151 — —
letras 0.184 — — 0.458 — — 0.168 —
americanas 0.155 — — — — 0.208 — 0.287
caixa 0.773 — — — — 0.098 — 0.037
tiktok — — — 0.251 0.194 0.141 — —
amazon — — 0.170 — — 0.147 0.343 —
mercadolivre 0.394 — — — — 0.172 0.156 —
123movies 0.245 — — — — 0.468 0.110 —
uol 0.358 — — — — 0.126 — 0.180
spankbang 0.619 0.092 — — — 0.156 — —
twitter 0.580 — — 0.059 — 0.267 — —

in the e-commerce category. This suggests its crucial role in determining PLT for e-
commerce pages, though it appears to be less relevant for individual page differences.
The fact that over a third of the measurements originate from e-commerce pages explains
why number of servers was identified as the most important feature in the overall
analysis. Analogously, number of CSS objects was the key feature in the social media
category, while number of JS objects was the most important feature in the news
category. Consistent with the per-page analysis, number of bytes, number of requests,
and number of distinct images continued to be the three most important features across
these categories.

Table 5. Features selected by random forest for each page category

category bytes servers imgs. JS CSS requests dist. imgs. pixels

e-commerce 0.145 0.606 — — — — 0.114 —
adult content 0.843 — — — — 0.055 0.037 —
social media 0.074 — — — 0.737 — 0.062 —
news 0.162 — — 0.477 — 0.113 — —
streaming 0.205 — — — — 0.601 0.057 —
government 0.773 — — — — 0.098 — 0.037

4.2. Unsupervised Analysis

Analyzing how page complexity metrics affect PLT across different categories proved
useful, as demonstrated in Section 4.1. However, a potentially more insightful analysis
could involve examining pages that share similar complexity metrics. This approach may
reveal some nuances or patterns that are not apparent when comparing across broader



categories. To explore this possibility, we propose an unsupervised method that groups
pages based on their complexity metrics.

As a first step, we modeled the data as a three-way tensor. The first mode
represented the “page-raspberry” combination, encompassing all possible pairings of
pages and Raspberry-Pis. The second mode was dedicated to complexity metrics, and
the third mode to the hour of the day. For this last mode, we calculated the average value
of each complexity metric for every page-raspberry pair for each hour, which formed the
tensor’s values. We then normalized the data using standard scaling. Following this, a
PARAFAC algorithm was employed. To determine the tensor’s rank, split-half validation
was performed and the total explained variance of each tested rank value was calculated.
A rank value of 5 was selected, as the rank-5 tensor explained over 90% of the total
variance in the data.

Figure 2 presents the factor matrix for the page complexity metrics mode. The
values in the matrix are called loadings, which are a way to measure how much each
complexity metric contributes to each factor, allowing for a representation of the metrics
in a low rank space. Considering the first three factors, all of the complexity metrics
had loadings higher than 0.45. This high value suggests that every complexity metric
significantly influenced at least one of these factors. Additionally, these factors are
arranged in order, wit the first factor explaining the most about the variations in the data,
the second factor explaining the next most, and so on. Since the first three factors had high
loadings for all the metrics, it means they were the most significant in terms of explaining
differences in the data.

Figure 3 displays the page-raspberry factor matrix. For clarity, only five page-
raspberry combinations are depicted. As observed, the loading values for each page-
raspberry pair are similar for a given factor. This similarity suggests that the patterns
of page complexity metrics are consistent across different page-raspberry pairs. Given
that these Raspberry-Pis were connected to three distinct ISPs, this finding implies that
network variations do not significantly influence these metrics, a conclusion that aligns
with observations in other studies [Huet et al. 2021]. The first factor primarily accounts
for the variation observed in the complexity metrics of amazon.com.br, as evidenced by
the high positive loading values for the metrics: number of bytes, number of JavaScript
objects, and number of distinct images (Figure 2). In contrast, caixa.gov.br showed
negative loadings for the second factor, while TikTok had positive loadings for the same
factor. The second factor was mostly associated with a high number of servers, distinct
images and image objects. As expected, TikTok showed positive loadings for these
metrics. Conversely, Caixa, being a government website, tended to have fewer images
and servers.

The data points were then clustered using the loadings from the complexity
metrics mode. K-means clustering was performed with K = i, i ∈ [2, 10]. The silhouette
scores were then computed for each value of K, with the elbow method being used to
choose the final number of clusters to continue the analysis, which yielded a value of 4.

Figure 4 displays the distribution of navigations for each web page, categorized by
the assigned cluster. Note that almost half of all the pages had all their navigations mapped
exclusively to a single cluster. Additionally, every page had at least 60% of its navigations



Figure 2. Factor matrix for complexity metrics mode

Figure 3. Abbreviated factor matrix for page-raspberry mode

mapped to one predominant cluster. A notable correlation exists between the category of a
web page and its corresponding cluster. Navigations to web pages featuring adult content
were exclusively mapped to cluster 0, while cluster 1 predominantly grouped news and
e-commerce web pages. Cluster 2 mainly grouped e-commerce and social media pages.
Notably, cluster 3 was unique in containing only navigations to amazon.com.br. (Note that
not all Raspberry Pis collected data from the Pornhub page, thus precluding its evaluation



via unsupervised analysis.)

Figure 4. Cluster distribution per web page

A random forest analysis was applied to each of the clusters, calculating the Gini
importance for each feature. The results are presented in Table 6. Similar to the per-
category analysis, the number of bytes is one of the top three features for all clusters.
Notably, the number of requests was among the top three features only in cluster 3, which
exclusively comprises navigation instances from amazon.com.br. As expected, cluster 1,
predominantly consisting of e-commerce and news pages, identified the number of bytes,
number of servers and number of JavaScript objects as the three top features. Recall that
in Section 4.1 the number of bytes and number of servers were the two most important
features for the e-commerce category, and the number of bytes and number of JavaScript
objects are the two most important features for the news categories.

Table 6. Features selected by random forest for each cluster

cluster bytes servers imgs. JS CSS requests dist. imgs. pixels

0 0.287 — — — 0.160 — 0.111 —
1 0.658 0.063 — 0.131 — — — —
2 0.069 0.743 — — 0.063 — — —
3 0.139 — — — — 0.189 0.183 —

To compare the effectiveness of the different models, the general model, the
category model, and the cluster model were tested on each page individually. For cluster
models, the assigned cluster for each page was the one containing over 60% of that page’s
navigations. All data points were normalized using standard scaling, considering the
entire dataset, before fitting the models.



The models were adapted to train on all the pages except the one being analyzed.
Taking the Shopee page as an example, the general model used all pages except Shopee
for training, selecting the top three features. This model was then exclusively tested on
Shopee data. In the category model, an e-commerce model was trained (since Shopee is
an e-commerce site) using all e-commerce pages except Shopee, and then tested only on
Shopee data. For the cluster model, we allocated Shopee to cluster 2, as it encompasses
most of its navigations. This model was trained using all data from cluster 2, excluding
Shopee, and tested on all Shopee data, including navigations on the Shopee page that did
not belong to cluster 2. The features were selected for each page/model combination,
according to the training data, which, in certain cases resulted in different feature sets
from those previously reported.

Table 7. RMSE per page per model

page category cluster category model cluster model general model

magazineluiza e-commerce 1 2.488 1.888 0.537
shopee e-commerce 2 0.841 1.351 1.242
olx e-commerce 1 0.870 0.752 0.813
americanas e-commerce 1 0.718 1.219 0.912
amazon 1 e-commerce 3 0.992 — 1.369
mercadolivre e-commerce 0 1.342 2.140 1.799
reddit social media 0 1.173 1.344 1.641
tiktok social media 2 1.074 1.429 1.734
twitter social media 0 0.896 0.811 1.133
globo news 1 0.669 0.868 0.766
uol news 1 0.717 0.831 0.942
xvideos adult 0 3.486 2.920 1.207
spankbang adult 0 0.420 0.698 0.468
pornhub adult — 0.283 — 0.324
twitch streaming 0 1.014 0.792 0.982
123movies streaming 1 0.698 1.181 1.416
caixa 2 government 1 — 0.578 1.695
letras 2 music 0 — 0.829 0.954

Table 7 shows the RMSE for each page. For ten out of the 15 pages, where the
category and the cluster models were evaluated, the category model outperformed both
the cluster and general models. This highlights the significance of incorporating page
categories in analyzing PLT. Note that, in most models, the RMSE value suggests an
error in estimating the PLT of less than one standard deviation. In future research, a
larger number of pages will be analyzed to gain a more comprehensive understanding of
category-specific trends.

5. Conclusion
In this work, we examined the relationship between page complexity metrics and page
load time using both supervised and unsupervised models. The Random Forest model

1There are no results from the cluster model because cluster 3 comprises solely of Amazon data.
2The category model results are absent for caixa and letras, as these were the only websites in the

government and music categories, respectively.



demonstrated the best performance among the supervised models. For the unsupervised
analysis, a tensor decomposition approach was employed. This method enables
the representation of data in a multidimensional space, which facilitates subsequent
clustering. This clustering was used to analyze how the complexity metrics affect page
load time within each identified cluster.

We trained three Random Forest models: a general model (encompassing all
pages), a specific page model, and a page category model, to analyze the most important
features for each. The results indicate that the number of bytes is one of the top three
features for the majority of models, with the only exceptions being the models for Amazon
and TikTok pages.

In the page category models, the number of bytes and the number of requests
emerge as the top two features for most categories. However, distinct trends appear
depending on the page category. For the e-commerce category, the number of servers
is the most crucial feature for determining page load time. In the news category, it is
the number of JavaScript objects, likely due to the ads loaded through JavaScript. For the
social media category, the number of CSS objects is most significant. These findings from
the page category models align with the analysis from the specific page model, where
the three most important features were identified as the number of bytes, the number of
requests, and the number of distinct images.

We obtained four clusters from the unsupervised analysis. Interestingly, number
of bytes is one of the top three features for all clusters, aligning with the findings from the
supervised analysis. Each cluster predominantly groups navigations to web pages within
specific categories: cluster 0 exclusively contains pages with adult content; cluster 1
primarily includes news and e-commerce web pages; and cluster 2 features a combination
of e-commerce and social media pages. Remarkably, cluster 3 is unique, exclusively
encompassing navigations to amazon.com.br.

To assess the effectiveness of different models, we individually tested the general
model, the page category model, and the cluster model on each page. The page category
model outperformed both the cluster and the general models for ten out of the 15 pages.
This indicates that page category models are significant in predicting page load time. It
should be noted that, in most models, the RMSE value suggests an error in estimating the
page load time of less than one standard deviation.
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