
Stepwise Optimal Inter-Slices Radio Resource Scheduling for
Service-Level Agreement Assurance

Daniel Campos1, Gabriel M. F. de Almeida1, William T. P. Junior1,
Cleverson V. Nahum2, Aldebaro Klautau2,

Mohammad J. Abdel-Rahman3,4, and Kleber V. Cardoso1

1 Universidade Federal de Goiás (UFG), Goiânia, GO – Brazil,
2Universidade Federal do Pará (UFPA), Belém, PA – Brazil,

3Data Science Dept., Princess Sumaya University for Technology - Jordan,
4Electrical & Computer Engineering Department, Virginia Tech, USA.

{danielcampos, gabrielmatheus, williamjunior, kleber}@inf.ufg.br;
{cleverson, aldebaro}@ufpa.br; mo7ammad@vt.edu

Abstract. In 5G networks and beyond, radio access networks (RANs) must be
able to support multiple services with different service level agreements (SLAs).
Network slicing is a critical concept in this context and it depends on an effi-
cient approach for radio resource scheduling (RRS). Inter-slices RRS is respon-
sible for allocating resource block groups (RBGs) to the slices to ensure their
SLAs. Mainly motivated by the O-RAN initiative, several works in the litera-
ture have presented proposals based on machine learning (ML) to solve this
problem. However, there is still a lack of problem formalization and an optimal
strategy, which are both introduced in this work. Through simulations, we com-
pare our approach with a state-of-the-art deep reinforcement learning (DRL)
agent. The results show the excess resources employed by the agent when they
are plentiful, suggesting an unnecessary increase in energy consumption. Ad-
ditionally, we show the relevant gap between solutions when the resources are
scarce. Finally, we discuss guidelines on how to improve ML-based approaches
to the inter-slices RRS problem.

1. Introduction
While the adoption of Open RAN is still in the very beginning and surrounded by discus-
sions, the impact of the O-RAN Alliance and its standards is already huge in the telecom-
munications ecosystem. ML-based approaches in the RAN are not new since 3GPP Re-
lease 8 (from 2006) already had self-organizing networks (SON) related exactly to this
type of approach. The several advances in the ML field and the design adopted for the
O-RAN architecture [Polese et al. 2023] have kept most of the academic interest strongly
guided in this direction when investigating RAN-related issues. Two key components of
the O-RAN architecture are the near real-time RAN intelligent controller (Near-RT RIC)
and the non-real-time RAN intelligent controller (Non-RT RIC). O-RAN compatible so-
lutions must be developed as xApps (running in the Near-RT RIC) and rApps (running in
the Non-RT RIC), which are generally ML-based applications. As a consequence, com-
monly, the ML-based proposals found in the literature are compared only against other
ML-based counterparts. In the context of resource allocation, this may raise a basic ques-
tion: how far from the optimal are the solutions?

In the RAN, network slicing is critical and involves non-trivial resource allocation.
Network slicing is the main enabler for supporting multiple services with different SLAs



over the same infrastructure. An SLA takes into account a set of requirements that the net-
work operator must ensure to provide the necessary quality of service (QoS) to the users’
applications. To ensure the QoS, the network operator creates slices to serve the services
with SLAs that may be very different. For example, video streaming from a smartphone
requires a high throughput but tolerates packet loss and some latency, thus it may belong
to an enhanced mobile broadband (eMBB) slice. On the other hand, self-driving vehicles
need a very low packet loss and latency, best supported by ultra-reliable low-latency com-
munication (URLLC) slices. This means that each slice must receive a specific amount of
resources to satisfy the correspondent SLA and this resource allocation is highly dynamic
in the RAN due to two main reasons. First, the number of user equipment (UEs) asso-
ciated with each base station (BS) changes as the users move, thus, the consumption of
resources also varies. Second, wireless channel conditions of each UE also vary, not only
due to user mobility but also due to other environmental characteristics. This context is
appealing to model-free approaches such as ML-based ones, but we argue that this does
not preclude the pursuit of problem formalization and optimal solutions. Thus, we can
build consistent performance references and find important insights that can contribute to
designing better approaches, including the ML-based ones as we will discuss later.

Related work – There are several papers in the literature investigating issues related to
network slicing in the RAN. In the following, we do not try to be comprehensive, but cite
some critical works on the topic, mainly considering inter-slices allocation and including
some recent state-of-the-art papers. [Kokku et al. 2012] is a well-known solution for inter-
slice scheduling referenced by other inter-slice schedulers. Because it was developed in
the early 2010s, its assumptions are outdated. The main problem of its scheduling is not
considering orthogonal frequency division multiple access (OFDMA), thus scheduling
radio resources by allocating all RBGs to a single slice at every transmission time interval
(TTI). Another issue is that the resources are distributed in a weighted round-robin way,
where each slice weight is defined by its historical throughput. This weight may not
represent the needed resources to ensure each slice’s SLA, as its restrictions may not
directly relate to throughput.

[Chen et al. 2023] shows that the spectral efficiency can differ between RBGs for
a single UE. It then develops a heuristic that maximizes the total throughput by selecting
the best pair of RBG and UE. The intra-slice scheduling must be greedy to enable predict-
ing its allocation to select the best RBGs for each slice. Nonetheless, this solves only the
problem of selecting the resources, but the number of RBGs for each slice is determined
similarly to [Kokku et al. 2012], using a pre-determined slice weight. [Nahum et al. 2023]
develops a DRL agent to solve the inter-slices scheduling among eMBB, URLLC, and BE
slices. We call this solution the DRL agent. It uses intents, which are equivalent to SLAs
from the scheduler’s perspective, to determine intent-drifts: the normalized difference
between a required metric and its required value. Therefore, the agent’s objective is to
minimize the intent-drift for all slices.

[Khodapanah et al. 2020] provides a framework for inter-slice RRS using artificial
neural networks to maximize the number of fulfilled SLA requirements assuming the
allocation of fractional resources. In [Lotfi et al. 2023], an attention-based DRL agent is
presented for scheduling resource blocks (RBs), not RBGs, between eMBB, URLLC, and
massive machine-type communication (mMTC) slices. [Polese et al. 2022] uses proximal
policy optimization to train a DRL agent that executes as an xApp in O-RAN architecture,
scheduling resources to maximize or minimize metrics for each slice. Additionally, [Mei
et al. 2021] proposes a DRL framework combining a deep deterministic poly gradient and



a deep-Q-network algorithm to address the inter-slices scheduling problem. A common
aspect of the related works is that every solution always allocates 100% of the BS RBGs,
which may be inefficient in several scenarios. Allocating only the minimal resources
necessary to satisfy the SLAs brings benefits, such as the possibility to serve more users
or minimize energy consumption.

Our contributions and paper organization – In this work, we optimally solve the step-
wise optimal inter-slices RRS for SLA assurance problem, i.e., employing the minimum
amount of RBGs to assure the SLA of every UE. In summary, our main contributions are:

• The formalization of the problem of stepwise inter-slices RRS for SLA assurance.
• The design of an algorithm that solves the problem in polynomial time.
• A comparison of our approach with a state-of-the-art DRL agent, using simula-

tion, which illustrates the room for improvement and provides insights on how to
improve ML-based approaches.
Section 2 presents the system model and the problem formulation. Section 3 de-

scribes how to solve the formulated problem with a polynomial algorithm. Section 4
evaluates our solution in comparison with the DRL agent and a weighted round-robin in
a simulated environment. Lastly, Section 5 contains our conclusions and future works.

2. System model and problem formulation
In this section, we first introduce the system model employed to define the problem, de-
lineating parameters pertinent to our study. Subsequently, we present the problem formu-
lation, specifying the metrics associated with the SLA of each slice type and outlining the
objective of our formulation.

2.1. System model
We assume that each UE u possesses a buffer represented as an array Lu =
[Bu(0), Bu(1), . . . , Bu(L−1)], where L is the maximum buffer latency, in TTIs. Each el-
ement Bu(i) ∈ Lu indicates the number of packets awaiting transmission for i timesteps.
For example, if Lu = [1, 3, 5], it means that 1 packet has just arrived (waiting for 0
timesteps), 3 packets have been waiting for 1 timestep, and 5 packets have been waiting
for 2 timesteps. Furthermore, we denote the cumulative count of transmitted packets with
an array Bsent

u = [Bsent
u (0), Bsent

u (1), . . . , Bsent
u (η − 1)]. Each Bsent

u (i) represents how
many packets waited for i timesteps until been transmitted since the beginning of the en-
vironment. For instance, if Bsent

u = [3, 5, 4], it indicates that, until now, 3 packets were
immediately sent (no waiting), 5 packets waited for 1 timestep before transmission, and 4
packets waited for 2 timesteps before being transmitted.

The BS bandwidth is discretized into RBs with 2ζ · 180 kHz each, where ζ ∈
[0, 1, 2, 3, 4] is the BS option, as in the 5G standards [ETSI 2020a]. The TTI time length
is directly related to the RB bandwidth, expressed as I = 2−ζ ms. Moreover, ρ RBs are
aggregated into one RBG with a total bandwidth of R = ρ · 2ζ · 180 kHz [ETSI 2020b].
This way, we discretize the time in our model as timesteps lasting 1 TTI each. We define a
set T = {0, 1, . . . , η} comprising the timesteps, where η is the current one. Additionally,
we introduce a time window of W ∈ N+ timesteps for calculating historical metrics. As
W may be greater than the number of past steps, ω = min(W, η+1) is used as the current
window. The stages of a timestep are as follows: (i) packets arrive in each UE’s buffer,
then (ii) the inter-slice schedulers allocate the available RBGs of the BS among the slices,
which (iii) distribute the received resource among the UEs to (iv) transmit packets from
the buffer to the BS in an uplink communication.



2.2. Problem formulation

We address the stepwise optimal inter-slices RRS for SLA assurance problem by defining
the minimal number of RBGs necessary for ensuring the SLA requirements of every UE
in the actual timestep. We denote by S the set of slices in the environment, while Us is the
set of users assigned to the slice s ∈ S. In this way, we express αs ∈ N as the amount of
RBG served to slice s ∈ S in timestep η. To calculate the predicted metrics for the UEs,
we define βu as the number of RBGs that will be allocated for u ∈ Us if s ∈ S receives
αs RBGs. In this work, we address three types of slices: best effort (BE), eMBB, and
URLLC. The BE slice has services with tolerant throughput requirements [Khodapanah
et al. 2020]. The SLA for BE is defined as minimum values for fifth-percentile through-
put and long-term throughput. Moreover, the SLA for eMBB and URLLC comprises a
minimum value for the served throughput and maximum values for the packet loss rate
and the average buffer latency [Nahum et al. 2023]. To achieve a generic formulation that
may be expanded to include new slices and SLAs, we categorize the set of slices into two
subsets S = {Sbuf ∪Sthr}. The first, Sbuf , comprises slices whose SLA relates to buffer-
ing, while Sthr consists of slices with SLA depending solely on throughput metrics. In
this work, we assume Sthr = {BE} and Sbuf = {eMBB,URLLC}. In the following,
we describe the five SLA constraints and the objective function of our problem.

Maximum tolerated average buffer latency – This constraint prohibits the solution from
surpassing the average buffer latency threshold defined for each slice s ∈ Sbuf , denoted
as lreqs . We use ψu(i) as the predicted number of packets in Bu(i) that will be transmitted
if u receives βu RBGs. The constraint is defined as follows:∑L−1

i=0 (ψu(i) +Bsent
u (i)) · i∑L−1

i=0 (ψu(i) +Bsent
u (i))

· I ≤ lreqs , ∀u ∈ Us, s ∈ Sbuf . (1)

Packet loss rate – This constraint prevents the packet loss rate from violating the packet
loss requirement for a slice s ∈ Sbuf , denoted by preqs . We consider a scenario where
packets can be dropped due to two reasons: (i) the buffer reaches its maximum capacity
at the moment a packet arrives, and (ii) a packet achieves its maximum latency L. We
denote Darr

u (t) as the number of packets dropped at timestep t ∈ T due to maximum
buffer capacity and Dlat

u (t) as the number of packets dropped at timestep t ∈ T due to
the maximum latency constraint. As Dlat

u (η) can only be known after scheduling, we call
ϕlat
u the number of packets that will be dropped in this timestep if u receives βu RBGs.

Similarly, we write ϕarr
u as the packets that will drop during arrival in the η + 1 timestep,

given βu. We assume that λu packets will arrive for the UE u in the timestep η + 1
when calculating ϕarr

u . Considering Bstart
u (t) as the number of packets in the buffer at the

beginning of timestep t ∈ η, before packet arrival, and Au(t) as the number of packets
that arrived the buffer at timestep t ∈ T , we define the packet loss rate constraint as:∑η

t=η−ω+1D
arr
u (t) +

∑η
t=η−ω+1D

lat
u (t) + ϕlat

u + ϕarr
u

Bstart
u (η − ω + 1) +

∑η
t=η−ω+1Au(t) + λu

≤ prequ , ∀u ∈ Us, s ∈ Sbuf . (2)

Served throughput – This constraint dictates that the required served throughput treqs

must be upheld for u ∈ Us. We denote Eu as the spectral efficiency of the user u ∈ Us in
the current timestep. The constraint is defined as:

βu ·R · Eu ≥ treqs ∀u ∈ Us, s ∈ Sbuf . (3)



Long-term throughput – This constraint prevents the solution from violating the long-
term throughput requirement for all slices s ∈ Sthr, denoted by greqs . We represent the
historically served throughput of user u ∈ Us at timestep t ∈ T as Tu(t). The long-term
throughput is defined as the average throughput of the UE over the time window of the
last ω timesteps. Therefore, the long-term throughput constraint is defined as follows:

1

ω
·
(
βu ·R · Eu +

∑η−1

t=η−ω+1
Tu(t)

)
≥ greqs , ∀u ∈ Us, s ∈ Sthr. (4)

Fifth-percentile throughput – This constraint assures the fifth-percentile throughput re-
quirement f req

s for s ∈ Sthr. This constraint prevents the solution from letting the fifth-
percentile throughput of a user u ∈ Us be below f req

s . The fifth-percentile throughput is
calculated by obtaining the h-th element of the sorted list [Tu(η − ω + 1), . . . , Tu(η −
1), βu ·R · Eu] of the throughput in the last ω timesteps, where h = ⌊ 5

100
ω⌋. Considering

W < 20, we can simplify the metric to represent the constraint as:

min
(
Tu(η − ω + 1), . . . , Tu(η − 1), βu ·R · Eu

)
≥ f req

s , ∀u ∈ Us, s ∈ Sthr. (5)

We aim to minimize radio resource usage while ensuring QoS for every user. Thus,
the stepwise optimal inter-slices RRS for SLA assurance problem is formalized as:

minimize
∑

s∈S
αs

Subject to Equation(1) to (5)
. (6)

However, linearizing the formulated problem is a complex task, which includes
restricting βu to how the intra-slice scheduler would work and expressing ψu, ϕlat

u and
ϕarr
u as variables that depend on βu for each UE u. Fortunately, this problem can be

solved by a polynomial algorithm, as explained in Section 3. It is important to note that
our stepwise problem is not equivalent to solving the scheduling for all the timesteps all
at once, which is an NP-hard problem.

3. Stepwise Optimal Algorithm

The problem in Equation 6 can be solved with a polynomial greedy algorithm. We call
our strategy the stepwise optimal algorithm (SOA), which considers a scenario where it
is possible to respect the QoS restrictions for all UEs at each timestep. In the following,
we describe how SOA assures SLA and predicts intra-slice scheduling.

3.1. Minimum throughput necessary

The output of the scheduling must be an allocation of RBGs, which is directly related to
the UE’s throughput. Based on this fact, we convert every SLA requirement in a Minimum
Throughput Necessary (MTN) to respect the restriction of u ∈ Us at the actual timestep.
This strategy enables SOA to be expanded to new scenarios by calculating the MTN for
new SLA restrictions, which may describe different slices.

The MTN to respect the served throughput constraint of Equation 3 is expressed as
MTN t

s(u) = treqs . The same simple expression happens to the fifth-percentile throughput
MTN, noted as MTN f

s (u). Because SOA respects all restrictions at every timestep, then
Tu(t) ≥ f req

s , ∀t ∈ T \ {η}. Thus, MTN f
s (u) = f req

s ensures the constraint in Equation



5. We denote by MTN g
s (u) the MTN to assure the long-term throughput requirement of

Equation 4, obtained by isolating the served throughput of the actual timestep:

MTN g
s (u) = greqs · ω −

∑η−1

t=η−ω+1
Tu(t). (7)

The average buffer latency MTN, denoted as MTN l
s(u), ensures the constraint

of Equation 1. We noted that respecting this constraint while minimizing resources, in
the long term, tends to a scenario where packets are sent at the last moment before lreqs .
Hence, we approximate MTN l

s(u) as the MTN to send the packets that will have waited
for more than lreqs in the next timestep:

MTN l
s(u) = Bu

(⌊
lreqs

I

⌋)
· Zs ·

1

I
, (8)

where Zs is the packet size for the slice s ∈ S . The packet loss rate MTN MTNp
s (u)

must ensure that ϕlat
u and ϕarr

u are small enough to respect the constraint of Equation 2.
We approximate the number of packets that will arrive in the next timestep as λu = Au(η).
Considering that no resource is allocated to the UE u, we calculate ϕlat

u = Bu(L− 1) and
ϕarr
u =

⌈
1
Zs
· max(0, (Au(η) +

∑Lu−1
i=0 Bu(i)) · Zs − Bmax)

⌉
, with Bmax as the buffer

capacity in bits. Then, the number of packets that will drop between this scheduling and
the next is max(ϕlat

u , ϕarr
u ), as ϕlat

u + ϕarr
u may count the same packet twice. We express

the denominator of Equation 2, the total of packets, as θ = Au(η) +Bstart
u (η − ω + 1) +∑η

n=η−ω+1Au(n). Thus, the MTN to send packets under drop risk and respect preqs is:

MTNp
s (u) =

⌈
Zs·max(0,

η∑
n=η−ω+1

Darr
u (n)+

η−1∑
n=η−ω+1

Dlat
u (n)+max(ϕlat

u , ϕarr
u )−preqs ·θ)

⌉
1

I
.

(9)
Lastly, we express as MTNs(u) the MTN to ensure the SLA of a UE u ∈ Us in

the actual step. It is calculated as the maximal MTN among the restrictions of u:

MTNs(u) =

{
max(MTN t

s(u),MTN l
s(u),MTNp

s (u)), if s ∈ Sbuf

max(MTN f
s (u),MTN g

s (u)), if s ∈ Sthr
. (10)

3.2. RBG allocation

The SOA achieves MTNs(u) at every timestep by ensuring the allocation of at least
βmin
u =

⌈
MTNs(u)

Eu·R

⌉
RBGs for each u ∈ Us, s ∈ S. Although the intra-slice scheduler

allocates RBGs for the UEs, we can predict its scheduling similarly to [Chen et al. 2023].
As in [Nahum et al. 2023], we consider that the intra-slice scheduler for each slice s ∈ S is
a Round-Robin, which cycles through Us uniformly distributing the slices’ RBGs among
the users. The Round-Robin state is saved as an offset, the index of the next UE in the
cycle. Knowing the offset, we act as a Round-Robin, allocating 1 RBG at a time until
the number of RBGs for u ∈ Us is βu ≥ βmin

u . Hence, SOA allocates αs =
∑

u∈Us
βu

for each slice s ∈ S as the minimal number of RBGs needed to assure the SLA of every
u ∈ Us. The SOA allocation is described in Algorithm 1. The MTNs(u) function can be
implemented in time O(1) using cumulative variables for the summations. Considering
a scenario with limited resources, the loop at line 6 could stop the algorithm if the total



allocated RBGs reaches G, which is the number of available RBGs in the BS. Hence, as
every RBG is allocated only once, the time complexity of SOA is O(G).

Algorithm 1: SOA allocation process.
Data: Set of slices S = {s1, . . . , s|S|} and set of users for each slice Us1 , . . . ,U|S|
Result: Number of RBGs allocated for each slice s ∈ S: αs1 , . . . , αs|S|

1 for s ∈ S do
2 offset← getIntraSliceRoundRobinOffset(s)
3 for u ∈ Us do
4 βu ← 0

5 βmin
u ←

⌈
MTNs(u)

Eu·R

⌉
6 while ∃u ∈ Us such that βu < βmin

u do
7 u← Us[offset] // Mimicking Round-Robin
8 offset← offset+ 1 (mod |Us|) // intra-slice allocation
9 βu ← βu + 1

10 αs ←
∑

u∈Us
βu

11 return αs1 , . . . , αs|S|

4. Evaluation
In this section, we present the evaluation results of the proposed SOA. First, we describe
the simulation environment used to implement the wireless network and its UEs. Then,
we compare the SOA solutions with two state-of-the-art models: a weighted round-robin
algorithm and the DRL agent proposed in [Nahum et al. 2023]. All evaluation results are
publicly available at GitHub1.

4.1. Simulation
To evaluate the SOA in different scenarios, we implemented a simulator that leverages
[Nahum et al. 2023] dataset of realistic spectral efficiency values generated with the
channel impulse responses for a wireless network simulated with QUAsi Deterministic
RadIo channel GenerAtor (QuaDRiGa)2 [Jaeckel et al. 2014]. The dataset contains 50
different trials of uplink communication that consider a massive Multiple Input Multiple
Output (MIMO) system, the dual-slope path loss statistical models of 3GPP 38.901 UMi
[Mondal et al. 2015,Zhu et al. 2021], the interference from the six more interfering nearby
cells, shadow fading, and the MIMO spectral efficiency estimate equation from [Heath Jr
and Lozano 2018]. Each trial collects the data of 10 UEs throughout 2000 timesteps
lasting 1 ms each. A timestep in our simulation has a time length of 1 TTI and is structured
as represented in Figure 1. The main parameters of the simulation are listed in Table 1.

Parameter W I L R Bmax G ρ ζ
Value 10 timesteps 1 ms 100 TTIs 720 KHz 32 kbytes 138 RBGs 4 RBs 0

Table 1. Simulation parameters.

We consider a base station with 100 MHz of bandwidth, resulting in 138 RBGs.
The packet arrival for a UE in each timestep is dictated by a Poisson distribution with
mean µs, where s ∈ S is the assigned slice to the UE. Our evaluation scenario considers

1https://github.com/LABORA-INF-UFG/paper-DGWCAMK-2024
2https://quadriga-channel-model.de/



Step (1 TTI)

RBGs

UE 4

UE 3

UE 1
UE 2

Packet arrival Inter-slice scheduling Intra-slice scheduling Packet transmission

Slice 2

Slice 1

2 3 2 3

1 0 1 1

UE 1
Buffer

UE 2
Buffer

6 5 7 5
UE 3
Buffer

UE 4
Buffer 4 7 8 6

Slice 2

Slice 1

1 0 0 0

2 3 2 1

6 5 6 0

UE 1
Buffer

UE 2
Buffer

UE 3
Buffer

4 7 8 0
UE 4
Buffer

RBGs

Slice 1

Slice 2

Not
Allocated

Not
Allocated

Figure 1. Example of one timestep in a scenario with 10 RBGs and 2 slices (2
UEs in each). One RBG is enough for a UE to send 2 packets during 1 TTI.
Note that UE 1 will drop a packet when advancing the step due to reaching
the maximum buffer latency (3 TTIs).

three different slices: an eMBB slice, a URLLC slice, and a BE slice. The slices are
instantiated following the parameters of Table 2. Each slice has a round-robin algorithm
as its intra-slice scheduler, as in [Nahum et al. 2023].

Slice type eMBB URLLC BE

trequrllc 10 Mbps treqembb 1 Mbps freq
be 2 Mbps

Requirements lreqembb 20 ms lrequrllc 1 ms greqbe 5 Mbps

preqembb 20% prequrllc 0.001%

|Us| 3 3 4

Zs 1500 bytes 500 bytes 1500 bytes

µs 15 Mbps 1 Mbps 15 Mbps

Table 2. Slice parameters.

Figure 2 illustrates the spectral efficiency of the trial used in our evaluation sce-
nario. Since SOA assures the SLAs of all UEs, the ones with the worst channel conditions
will be allocated more RBGs. To do this, the SOA must schedule more resources to ev-
ery UE in the slice, since we consider a round-robin intra-slice scheduler. Therefore, the
dynamic of SOA’s scheduling follows Figure 2b instead of Figure 2a.

4.2. Baselines
To assess the quality of the SOA for the inter-slice scheduling problem, we compare
its performance to two baselines: a heuristic and a state-of-the-art DRL scheduler. The
first is the weighted round-robin (RR) scheduler, which distributes resources uniformly
among slices based on their assigned weights. The second is the DRL agent introduced
by [Nahum et al. 2023], trained using the same Soft Actor-Critic algorithm of the original
work. Both baselines rely on weights that define the priority of each slice type, such as
eMBB, URLLC, and BE. In the RR algorithm, the weights indicate the priority of slices



0 250 500 750 1000 1250 1500 1750
Time (ms)

0

2

4

6

8

10

Sp
ec

tra
l e

ffi
ci

en
cy

 (b
its

/s
/H

z)

eMBB URLLC BE

(a) Average

0 250 500 750 1000 1250 1500 1750
Time (ms)

0

1

2

3

4

5

Sp
ec

tra
l e

ffi
ci

en
cy

 (b
its

/s
/H

z)

eMBB URLLC BE

(b) Worst

Figure 2. Spectral efficiency in the evaluated scenario.

in receiving RBGs and the proportion of the scheduling. In our scenario, the proportion
in RR scheduling is 30% for URLLC, 30% for eMBB and 40% for BE, as the first two
have 3 UEs and the latter has 4 UEs.

The weights used by the DRL agent, however, determine not the RBG allocation
itself, but the impact of respecting the SLA requirements. In the original work [Nahum
et al. 2023], for each SLA requirement, an intent-drift is calculated normalizing the dis-
tance to the required value if the requirement is not respected, otherwise, it is zero. Each
intent-drift is then multiplied by a normalized weight associated with the SLA require-
ment. The authors consider the same five distinct SLA requirements we described in
Section 2. We denote their weights as {wt

s, w
l
s, w

p
s , w

f
s , w

g
s}, corresponding to the weights

for served throughput, average buffer latency, packet loss rate, fifth-percentile through-
put, and long-term throughput requirements of a slice s, respectively. Therefore, we use
the same values from [Nahum et al. 2023]: wt

eMBB = 0.2, wl
eMBB = 0.05, wp

eMBB = 0.05,
wt

URLLC = 0.1, wl
URLLC = 0.25, wp

URLLC = 0.25, wf
BE = 0.05, andwg

BE = 0.05. The agent’s
reward function is then defined as the summation of the product between each intent-drift
and the weight, a sum that must be minimized.

Besides the reward, the DRL agent is defined by two other components: (i) the
action space, which represents the possible schedulings for the agent, determined in the
original work as a number for each slice, and (ii) the observation space, which describes
the state of the environment and is used as input for the agent to select the action that
minimizes the intent-drift. In [Nahum et al. 2023], two observation space strategies are
defined: (i) the limited observation space, which includes the SLA requirement values and
9 metrics for each slice, calculated as the average for its UEs, and (ii) the full observation
space, which includes also the 9 metrics for each UE. Between the metrics are the spectral
efficiency and the 5 metrics used in the intent-drift calculation. However, as highlighted
by [Nahum et al. 2023], both observation spaces demonstrate similar performance. Con-
sequently, we adopt the limited observation space to streamline the training complexity.
The training process for the DRL agent follows the approach described by [Nahum et al.
2023], where we create a training dataset with 45 trials from the spectral efficiency dataset
and the agent undergoes training 10 times over the 2000 timesteps in each trial. This re-
sults in a total of 900,000 training steps. One trial, not included in the training dataset, is
reserved for evaluating the three schedulers.

It is important to notice that the DRL agent was originally evaluated in a differ-
ent scenario, where assuring the SLA for every UE is not possible. We use a different
number of UEs per slice, higher spectral efficiencies, and lower buffer sizes, and we do



not consider changes in the traffic or requirements during the experiment. The number of
RBGs is also higher, since we divide the resources into RBs with a lower bandwidth to
follow the specifications of [ETSI 2020a]. Hence, the comparisons we perform consider
the scenario of our evaluation and differ from the results in [Nahum et al. 2023].

4.3. Results
To evaluate SOA solutions, we consider two scenarios, a standard and a limited scenario.
In the standard scenario, the SOA allocates the minimum RBGs necessary, while RR and
DRL schedule all available RBGs in the BS at each timestep. This is a consequence of
how the two baselines are formulated to not consider minimizing resource usage. While
this strategy offers lower complexity for scenarios with lower demands, it does not prior-
itize radio resource optimization, resulting in the usage of more resources than is strictly
necessary, difficulting the comparison of SOA with the baselines. Therefore, we consider
a limited scenario where the number of available RBGs in the BS dynamically changes
to the minimum needed to assure the SLA of all UEs at each timestep, defined by the
SOA resource usage. In this scenario, we emphasize the significance of considering RBG
minimization and how it can be difficult for the baselines to ensure SLA requirements for
each UE with fewer resources.

Standard scenario – In this scenario, we compare the RBG usage for all models. Figure
3 depicts the radio resource usage for the RR algorithm, the DRL agent, and SOA across
all timesteps. It is important to observe that, while the RR algorithm and the DRL agent
utilize all radio resources in every timestep (lines are overlapped at 100%), our SOA
dynamically adjusts the radio resource usage based on the current demand. Consequently,
we achieved an average reduction of 62% in radio resource usage over the 2000 timesteps,
while the worst-case demand, around 750 ms, has a peak of 91% allocated resources.

0 250 500 750 1000 1250 1500 1750
Time (ms)

30
40
50
60
70
80
90

100

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA
RR
DRL

(a) Radio resource usage as a function of time

20 40 60 80 100
Resource usage (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

SOA
RR
DRL

(b) CDF of radio resource usage

Figure 3. Radio resource usage of the schedulers in the standard experiment.

Although both baselines utilize all available radio resources for each timestep, it
is important to note that neither method explicitly prevents the violation of slice require-
ments. Despite the DRL agent incorporating an intent-drift in its formulation, penalizing
the agent when slice requirements are broken, this approach does not entirely eliminate the
possibility of such faults occurring. To quantify SLA violations, we count the instances
where UEs fail to meet the specified requirements for each slice at every timestep. For in-
stance, if the URLLC slice receives no resource allocation throughout all 2000 timesteps,
the served throughput requirement is violated for each of its 3 UEs, resulting in a total of
3× 2000 = 6000 instances.

As expected, the SOA respected all SLAs throughout the 2000 timesteps. The
same happened to the RR algorithm but with a less efficient resource utilization. Despite



also allocating 100% of the resources, the DRL agent performs worse than RR and ex-
hibits SLA violations during the experiment. It especially violates the served throughput
requirement for the URLLC slice a total of 210 times. This is due to the set of actions
chosen by the agent throughout the simulation: (i) equal distribution for all slices, chosen
in 1930 timesteps, and (ii) 50% for eMBB, 0% for URLLC, and 50% for BE, chosen in
70 timesteps and thus violating 70 × 3 = 210 times this SLA requirement.

We also analyze the radio resource allocation for each slice during the experiment.
Figure 4 illustrates the resource allocation for eMBB, URLLC, and BE slices, comparing
the RR algorithm, the DRL agent, and our SOA. As expected, the RR algorithm exhibits
a static radio resource allocation among all slices during all timesteps due to its formula-
tion. A similar behavior is observed in the DRL agent allocation. As it chooses an equal
distribution across 1930 timesteps, the overall allocated resources are mostly constant.
Its only fluctuations in allocation happen around 1000 ms and after 1400 ms, when the
channel conditions for eMBB and BE are worse, therefore they are prioritized. This is the
reason why URLLC gets no resources from the DRL agent in some timesteps.

0 250 500 750 1000 1250 1500 1750
Time (ms)

0

10

20

30

40

50

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR DRL

(a) eMBB

0 250 500 750 1000 1250 1500 1750
Time (ms)

0

10

20

30

40

50

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR DRL

(b) URLLC

0 250 500 750 1000 1250 1500 1750
Time (ms)

0

10

20

30

40

50

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR DRL

(c) BE

Figure 4. Allocated radio resources for each slice in the standard experiment.

Limited scenario – In this scenario, we use the SOA’s minimal resource allocation rep-
resented in Figure 4 as the total number of RBGs available at every timestep to the RR
algorithm and the DRL agent. It is noteworthy that the DRL agent was trained to use
100% resources, so it may not have learned how to solve scarce scenarios.

Figure 5 illustrates the radio resource allocation for each slice during this exper-
iment. Comparing the slices, we can see that both RR and DRL allocate more RBGs to
eMBB and BE than the SOA’s optimal solution at most of the time, while the inverse
happens to URLLC. The DRL agent consistently distributes resources equally among the
slices for the majority of the experiment. This allocation strategy is similar to the RR
algorithm, where the allocation is determined as a constant fraction of the available RBGs
at each timestep. Additionally, we observe that the SOA strategy to allocate resources
among the three slices has a highly different dynamic from the baselines. This occurs as
the SOA decision is based on channel and buffer conditions, thus leading to an adaptable
solution responding to the current demand.

0 250 500 750 1000 1250 1500 1750
Time (ms)

0
5

10
15
20
25
30

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR Nahum's

(a) eMBB

0 250 500 750 1000 1250 1500 1750
Time (ms)

0
5

10
15
20
25
30

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR DRL

(b) URLLC

0 250 500 750 1000 1250 1500 1750
Time (ms)

0
5

10
15
20
25
30

R
ad

io
 re

so
ur

ce
 u

sa
ge

 (%
)

SOA RR DRL

(c) BE

Figure 5. Allocated radio resources for each slice in the limited experiment.



preqeMBB t reqeMBB f reqBE greqBE t reqURLLC l reqURLLC

Requirement

0
200
400
600
800

1000
1200
1400
1600

SL
A 

vi
ol

at
io

ns
 (#

)

504

1417

0

315
410

022

866 877

623

881

26

RR
DRL

Figure 6. SLA violations in the limited exper-
iment. SOA has no SLA violation.

0 5 10 15 20 25
Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F SOA
RR
DRL
requirement

Figure 7. CDF of worst packet loss rate for
eMBB in the limited experiment.

10 20 30 40 50
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

SOA
RR

DRL
requirement

(a) eMBB

0 2 4 6 8 10
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

SOA
RR

DRL
requirement

(b) URLLC

Figure 8. CDF of worst served throughput in the limited experiment.

As expected, the RR algorithm and the DRL agent solutions in scarce scenarios
are worse, as shown by the SLA violations in Figure 6. We can see that as the DRL agent
allocation for eMBB is higher than RR’s, it has fewer SLA violations for the requirements
of this slice. The same does not happen to BE requirements, which are more respected
by the RR algorithm since the slice has a higher weight. We recall the BE intent-drifts
having the lowest weights in the DRL’s reward as a reason for not prioritizing it. Lastly,
although the URLLC allocation is similar between the baselines, the DRL agent performs
worse. This happens due to the DRL agent scheduling zero resources to the slice in a few
timesteps.

As eMBB has larger packets and a higher demand than URLLC, if high throughput
is not achieved, it leads to high packet losses. Figure 7 illustrates the CDF for the worst
eMBB packet loss, calculated as the maximum packet loss for an eMBB UE in each
timestep. We note that the DRL agent maintains zero packet loss most of the time due to
over-provisioning, but violates the requirement when the channel quality is low.

Figure 8 depicts the worst served throughput for eMBB and URLLC. Again, the
DRL agent has a better performance than the RR algorithm regarding the eMBB slice.
However, we can see that URLLC has a throughput of 0 Mbps for the DRL scheduling
during a considerable portion of the simulation. This is explained by its set of selected
actions: (i) equal distribution for the three slices, (ii) 100% for eMBB, (iii) half for eMBB
and half for BE, and (iv) half for eMBB and half for URLLC. An option where no resource
is scheduled to URLLC and BE is selected in 11% and 4%, where eMBB always receives
at least 33% of the available RBGs.

The BE performance is represented by Figure 9. Since the fifth-percentile through-
put is calculated as the minimum throughput for our time window of 10 timesteps,



scheduling no RBGs to BE impacts the actual timestep and the next 9 ones. This ex-
plains why the DRL agent has a value of 0 Mbps for the metric almost 10% of the time.
The long-term throughput does not achieve such low values as it is more tolerant to fluctu-
ations in allocation. This metric also exemplifies how SOA respects the SLA of each UE
while reducing resource usage, as it allocates exactly the required value at every timestep.

0 2 4 6 8 10
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F SOA
RR
DRL
requirement

(a) Fifth-percentile throughput

4 6 8 10 12
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F SOA
RR
DRL
requirement

(b) Long-term throughput

Figure 9. CDF of worst metrics for BE in the limited experiment.

Guidelines for RL solutions – A critical aspect of RL methods is designing an efficient
reward function. Defining a constant weight for summing different intent-drift may be
a solution for prioritizing slices, but it also may lead to SLA violations. For example,
when the DRL agent allocates half resources for eMBB and half for BE, it chooses to
disrespect a requirement of weight wt

URLLC = 0.2 while assuring the requirements of
weight wg

BE + wt
eMBB = 0.25. Another crucial aspect of RL solutions is defining the

observation space. Using the average spectral efficiency for a slice may invisibilize the
heterogeneous channel conditions of UEs in a slice. A scenario with two UEs u1 and u2
whereEu1 = 0.5 andEu2 = 5.5 bits/s/Hz will be equivalent to another whereEu1 = Eu2 =
3 bits/s/Hz, as both scenarios have the same average spectral efficiency. Lastly, much of
the resource usage can be reduced if the agent is designed to not allocate every RBG, as
seen in SOA’s allocation. An improvement can be made in the DRL agent by adding an
action value for the not-used resources and then adding it as part of the reward function.

5. Conclusions and future works
In this work, we presented the stepwise optimal inter-slices RRS for SLA assurance prob-
lem. We described SOA, a polynomial algorithm that solves this problem by ensuring the
SLA requirements of each UE and minimizing resource allocation. Our solution is used
to evaluate a state-of-the-art DRL scheduler in a scenario where every SLA can be en-
sured. We showed that the ML approach may fail in ensuring the SLA of every UE even
with a less efficient resource utilization. Moreover, the SOA achieves zero SLA violations
while reducing resource usage by an average of 62%. We expect that new ML solutions
could leverage our strategy as a baseline to improve their approaches. Lastly, our future
works include expanding the scenarios where SOA can be used to address competition
and prioritization when resources are scarce.

Acknowledgements
This work was supported by CAPES, MCTIC/CGI.br/São Paulo Research Foundation
(FAPESP) through the Project Smart 5G Core And MUltiRAn Integration (SAMU-
RAI) under Grant 2020/05127-2, by CNPq through the Project Universal under Grant
405111/2021-5, by RNP/MCTIC, Grant No. 01245.010604/2020-14, under the 6G Mo-
bile Communications Systems project, and Program OpenRAN@Brasil.



References
Chen, Y., Yao, R., Hassanieh, H., and Mittal, R. (2023). Channel-Aware 5G RAN Slicing

with Customizable Schedulers. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 1767–1782.

ETSI (2020a). 5G; NR; Physical channels and modulation (3GPP TS 38.211 version
16.2.0 release 16). Technical report, European Telecommunications Standards Institute
(ETSI).

ETSI (2020b). ETSI TS 136 213. LTE; Evolved Universal Terrestrial Radio Access (E-
UTRA); Physical Layer Procedures (3GPP TS 36.213 version 15.10.0 Release 15).
Technical report, European Telecommunications Standards Institute (ETSI).

Heath Jr, R. W. and Lozano, A. (2018). Foundations of MIMO communication. Cam-
bridge University Press.

Jaeckel, S., Raschkowski, L., Börner, K., and Thiele, L. (2014). Quadriga: A 3-d multi-
cell channel model with time evolution for enabling virtual field trials. IEEE transac-
tions on antennas and propagation, 62(6):3242–3256.

Khodapanah, B., Awada, A., Viering, I., Barreto, A. N., Simsek, M., and Fettweis, G.
(2020). Framework for Slice-Aware Radio Resource Management Utilizing Artificial
Neural Networks. IEEE Access, 8:174972–174987.

Kokku, R., Mahindra, R., Zhang, H., and Rangarajan, S. (2012). NVS: A Substrate for
Virtualizing Wireless Resources in Cellular Networks. IEEE/ACM Transactions on
Networking, 20(5):1333–1346.

Lotfi, F., Afghah, F., and Ashdown, J. (2023). Attention-based Open RAN Slice Manage-
ment using Deep Reinforcement Learning. arXiv:2306.09490 [cs, eess].

Mei, J., Wang, X., Zheng, K., Boudreau, G., Sediq, A. B., and Abou-Zeid, H. (2021).
Intelligent Radio Access Network Slicing for Service Provisioning in 6G: A Hierarchi-
cal Deep Reinforcement Learning Approach. IEEE Transactions on Communications,
69(9):6063–6078.

Mondal, B., Thomas, T. A., Visotsky, E., Vook, F. W., Ghosh, A., Nam, Y.-H., Li, Y.,
Zhang, J., Zhang, M., Luo, Q., et al. (2015). 3D channel model in 3GPP. IEEE
Communications Magazine, 53(3):16–23.

Nahum, C. V., Lopes, V. H., Dreifuerst, R. M., Batista, P., Correa, I., Cardoso, K. V.,
Klautau, A., and Heath, R. W. (2023). Intent-aware Radio Resource Scheduling in a
RAN Slicing Scenario using Reinforcement Learning. IEEE Transactions on Wireless
Communications, pages 1–1.

Polese, M., Bonati, L., D’Oro, S., Basagni, S., and Melodia, T. (2022). ColO-RAN:
Developing Machine Learning-based xApps for Open RAN Closed-loop Control on
Programmable Experimental Platforms. IEEE Transactions on Mobile Computing,
pages 1–14.

Polese, M., Bonati, L., D’Oro, S., Basagni, S., and Melodia, T. (2023). Understanding O-
RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE
Communications Surveys & Tutorials, 25(2):1376–1411.

Zhu, Q., Wang, C.-X., Hua, B., Mao, K., Jiang, S., and Yao, M. (2021). 3GPP TR 38.901
channel model. In the wiley 5G Ref: the essential 5G reference online, pages 1–35.
Wiley Press.


