
Evaluation of Client Selection Mechanisms in Vehicular
Federated Learning Environments with Client Failures

John Sousa1, Eduardo Ribeiro1, Lucas Bastos1 Denis Rosário1,
Allan M. de Sousa2, and Eduardo Cerqueira1

1 Federal Univeristy of Pará (UFPA), Belém, Brazil
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Abstract. Federated Learning (FL) emerges as a promising solution to enable
collaborative model training for autonomous vehicles while preserving privacy
and communication overhead issues. An efficient selection of clients to partic-
ipate in the training process is still challenging, especially in scenarios with
statistical heterogeneity of data distribution and client failure events. Client
failure is an uncontrollable event in the training process that reduces accuracy,
convergence, and speed. Therefore, investigating the performance of client se-
lection mechanisms in this scenario is crucial. This paper presents a reliability
and robustness analysis of entropy-based client selection mechanisms in FL en-
vironments with client failure. The results demonstrated that entropy-based se-
lection outperformed the other methods regarding training loss, accuracy, and
AUC, particularly in high client dropout scenarios. These findings show the im-
portance of considering entropy data for client selection when addressing the
challenges posed by client failure in FL scenarios.

1. Introduction
Data privacy preservation emerges as a paramount concern in smart cities, especially
in sensitive domains, which become notably complex to address in the context of Con-
nected and Autonomous Vehicles (CAVs). CAVs are equipped with onboard sensors,
including cameras, RADAR, LiDAR, and proximity and temperature sensors, to collect
multi-modal data, such as navigation, perception, obstacle detection, and vehicle con-
trol. CAVs rely on vehicular network technology to enable data sharing with neighbors
and edge servers, providing data processing for a cooperative understanding of the envi-
ronment among vehicles and infrastructure entities [Zhang et al. 2023b]. Vision-related
tasks, such as steering wheel angle prediction [Zhang et al. 2021b], traffic sign recog-
nition [Stergiou et al. 2022], semantic segmentation [Fantauzzo et al. 2022], object de-
tection [Jallepalli et al. 2021], and driver monitoring [Yuan et al. 2023] typically use im-
ages captured by the camera as the data source. In this context, Deep Learning (DL)
plays a pivotal role with its ability to extract meaningful patterns and insights from large
datasets. By leveraging these datasets, services such as route optimization, predictive
maintenance, real-time decision-making, and personalized in-vehicle experiences can be
enhanced [Pervej et al. 2023].

Traditional Machine Learning (ML) approaches are based on cloud-centric
architecture where data is stored and processed centrally on the cloud server



[Zhang et al. 2021a]. However, the widespread data sharing between CAVs and servers
poses significant privacy risks and demands substantial network bandwidth. In response
to these challenges, there is an urgent need for a privacy-preserving distributed ML so-
lution for CAV environments. In addition, it is believed that the future of ML and cloud
computing schemes will be distributed at the network edges [Zhang et al. 2023c]. In re-
cent years, ML-driven Federated Learning (FL) has been gaining much attention in this
area due to its decentralized nature, allowing data training locally on devices, enabling
multiple clients (i.e., CAVs) to collaboratively train a shared model without sharing indi-
vidual information [Lian et al. 2022].

FL relies on a robust and always connected client selection mechanism deployed at
the edge server to choose a group of clients with valuable samples for the model training
at each communication round [Xiong et al. 2023, de Souza et al. 2024]. These selected
clients receive the global model, conduct training based on their local data, and then share
their model parameters instead of transmitting their raw sensing data, as described in
[Sousa et al. 2023]. Afterward, a given aggregation policy aggregates the shared local
models at the cloud or edge servers to produce an accurate global model. Finally, the
updated global model is distributed to the clients. In this way, FL allows ongoing learning
by adapting the ML model without sharing raw data, provides privacy preservation by
keeping the collected data stored on the CAVS, and avoids the potential communication
overhead that the heavy data traffic of CAV information can cause. Hence, integrating FL
in CAV systems opens up various possibilities for enhancing vehicular intelligence while
addressing privacy, security, and communication challenges [Zhang et al. 2023b].

The data distribution highly impacts the client selection mechanism since data
are not independent or have different statistical distributions, i.e., non-IID data scenarios.
This statistical heterogeneity results in lower classification accuracy, introducing non-
representativeness issues and potentially decreasing model accuracy and fairness among
the participating entities. In this way, it is essential to develop a client selection mech-
anism that can handle non-IID data in dynamic and mobile environments without com-
promising classification accuracy in FL over CAV scenarios [Nguyen et al. 2022]. In
addition, clients might fail to provide their local model updates, interfering with the FL’s
ability to learn effectively [Zhang et al. 2021a]. These failures result from different rea-
sons, such as, insufficient computing resources, client abort, network failure, etc, where
clients might experience different rates of failure owing to their heterogeneous composi-
tion [Huang et al. 2022]. In this way, only a subset of clients can complete local training
and transmit the model updates in each round, reducing the accuracy, convergence, and
training speed [Zhang et al. 2021a].

When clients fail to contribute their local model updates, the overall training data
available for the global model update is reduced, and it obtains a biased update that devi-
ates from the desired global model [Sun et al. 2023]. This reduction in training data leads
to slower convergence of the global model and decreased model accuracy. In this con-
text, it is essential to design a robust and reliable client selection mechanism for FL over
CAV systems, which can be based on random clustering, entropy, and other approaches
[Shanmugarasa et al. 2023]. Entropy-based client selection is a promising approach for
an FL over CAV scenario with client failure since entropy enables identifying the most
relevant client with more diverse data for learning models, capturing the heterogeneity of



FL over CAV scenario. In this sense, clients with high entropy ensure that the learned
models represent the entire network and capture the scenario variations to improve the ac-
curacy of round training more robustly. However, it is essential to understand the impact
of arbitrary client failure and how it affects the performance of an entropy-based client
selection mechanism, which are the central questions of this paper.

In this paper, we assess the reliability and robustness of an entropy-based client
selection mechanism where clients have a higher probability to fail due to various kinds
of reasons and indifferent levels of frequency [Sousa et al. 2023]. In its operations, the
entropy-based mechanism measures the randomness or unpredictability of a system based
on the entropy of client data, where it prioritizes clients with more diverse and represen-
tative data. In this way, it only selects a subset of clients with the better-suited data for
model training, i.e., clients are selected based on their data distribution heterogeneity.
We assessed the reliability and accuracy of the client selection mechanism with different
client failure rate in a non-IID scenario. Simulation results demonstrate that, even in the
face of client failures, our entropy-based selection strategy consistently outperforms ex-
isting client selection mechanisms. These findings motivate the detailed analysis of client
failures effects in FL environments presented in this work.

The remainder of this paper is structured as follows. Section 2 presents an
overview of well-known client selection works and their main drawbacks. Section 3
presents the system model, and the entropy-based client selection mechanism. Section
4 discusses the simulation results. Finally, Section 5 concludes the paper and presents
some future work directions.

2. Related Work
Previous studies have examined the challenges of FL in vehicular networks, mainly focus-
ing on non-IID data and biased device data distributions. For example, [Zhu et al. 2021]
noted that non-IID data on local devices significantly impacts model performance, con-
trasting with centralized learning. This research assesses the effects of non-IID data on
parametric and non-parametric ML models across different FL settings. It reviews prior
studies, proposes specific strategies, and evaluates the advantages and disadvantages of
these methods. Moreover, client failures complicate training with heterogeneous data,
intensifying the non-IID issue, with existing algorithmic solutions unable to fully bridge
the gap in local and global loss minimization. However, this research must extensively
address resilience and how these algorithms fare under dynamic conditions such as client
failures.

In our previous work, [Sousa et al. 2023], we proposed a novel entropy-based
client selection, which ranks the entropy of label data of the users in the area and selects
the 25% highest entropy values. Despite the promising results, a more detailed investiga-
tion regarding the resilience of the selection method in the face of the challenges of the
network, such as client failures, is needed.

[Shanmugarasa et al. 2023] highlighted issues stemming from security, privacy
concerns, and the intricacies of FL processes, particularly the increased computational
burden on clients. These challenges may impact specific clients or affect the entire net-
work, with privacy management being a universal concern. The study concludes that
collaborative efforts between servers, platforms, and clients are imperative to effectively



address client-side challenges in the FL ecosystem. While advocating for collaborative
solutions, the work only extensively explores the intersection of these challenges with a
scenario with client failures. A more nuanced comparison with a work emphasizing fail-
ures analysis could delve into how client-related challenges impact the overall robustness
and performance of FL algorithms, especially in adverse conditions.

[Wang and Xu 2023] explored the challenges posed by client failures in FL, em-
phasizing a key distinction from client sampling, noting that failure introduces uncon-
trollable client participation. While previous studies often focused on actively managing
client participation through sampling, Wang et al. bring attention to passive partial par-
ticipation. In this scenario, clients fail involuntarily due to external events, an aspect less
explored in existing literature. This perspective adds valuable insights into the impact of
unplanned client failure on the performance and robustness of FL algorithms.

[Souza et al. 2023] addressed the communication challenges and scalability issues
by dynamically adapting the number of participating devices and training rounds through
a client selection strategy that selects the clients whose accuracy falls below the average.
Using a containerized environment, DEEV showcases significant reductions of up to 60%
in communication overhead and an impressive 90% in computation overhead compared to
existing approaches. Its robust performance in scenarios with non-IID data underscores
its potential for enhancing FL model efficiency. However, the work considers only an
environment where every client is available and is stationary, a scenario different from the
scenarios usually present in vehicular networks.

[Sun et al. 2023] studied the convergence performance of the classic Federated
Learning Average (FedAVG) aggregation algorithm in scenarios involving arbitrary client
failures. The theoretical analysis indicated that client failures lead to biased updates in
each training iteration. When employing the commonly used strategy of a decaying learn-
ing rate, the model trained by FedAvg may, in the worst-case scenario, exhibit oscillations
around a stationary point of the global loss function. A cross-device federated learning
system simulation was carried out to validate these findings, incorporating various client
failure patterns.

[Huang et al. 2022] investigated the vital topic of client selection in a fluctuating
environment. They acknowledged that choosing particular clients for each synchronous
round in FL training significantly affects both training efficiency and the ultimate perfor-
mance of the model. In the context of heterogeneous clients experiencing varying degrees
of training failure, their research defined the client selection problem by simultaneously
considering effective participation and fairness. Seeking to balance training efficiency
with reduced bias, the authors introduced E3CS, a stochastic client selection strategy.
The experimental results using a public dataset showed that E3CS leads to quicker con-
vergence towards a predetermined model accuracy while retaining the same level of final
model accuracy compared to leading-edge selection methods.

Upon reviewing the challenges faced by previous FL environments’ client selec-
tion mechanisms, it becomes clear that understanding and investigating the impact of
client failures is crucial for the robustness and reliability of FL in connected and au-
tonomous vehicles (CAVs). Client failures disrupt the learning process and skew model
performance, degrading performance and affecting the viability of client selection meth-



ods; thus, an analysis of these FL systems under special conditions becomes important.

3. System Model
This section outlines a common CAV-based FL scenario involving client failures, where
clients may fail for various reasons and at different frequencies. We then detail an entropy-
based client selection method and its operational mode. This method assesses the data
entropy of each CAV and selects the top-ranked clients for the next training round based
on their local data. Subsequently, we present the system model and the operations of the
entropy-based mechanism.

3.1. FL over CAVs Environment

We envisage a scenario involving a set of n CAVs navigating an urban environment.
Each CAV, denoted by an index i within the range [1, n] and represented as C =
{c1, c2, c3, ..., cn}. Every CAV ci moves in a specific direction and maintains a speed
si within the range of the minimum speed (smin) and maximum speed (smax). Each
CAV ci is equipped with onboard sensors and collects data crucial for ML applications,
such as recognition or image classification. In this way, each CAV ci has local dataset
Di ∈ {D1, . . . , Dn} distributed in a non-IID manner, which contains a set of features xk,i

with k ∈ {1, . . . , ∥Di∥} associated with a label yk,i.

Furthermore, each CAV ci is equipped with a Vehicle-to-Infrastructure (V2I) com-
munication interface, such as, Dedicated Short Range Communication (DSRC) or 5G,
which is used to communicate with the edge server ES through the core network. The
edge server ES that plays a pivotal role in distributing ML parameters for the initial or
updated global model ω to all CAVs during each communication round µ. Moreover, the
edge server ES assumes responsibility for collecting and analyzing entropy data, and also
for model aggregation.

We considered the typical FL architecture, where the process starts with the ini-
tialization of a global model Mg on a central server. At each communication round µ,
a subset of k CAVs denoted as V = {v1, v2, v3, ..., vk} is selected to receive the global
model Mg and perform the training based on its Dataset Di. Each selected client vi is able
to train a model architecture A to obtain the local model Wi based on the local dataset
Di. In this way, each client vi trains the local model Wi to minimize a loss function l
for better convergence with a minimum accuracy value across users. Specifically, the lo-
cal loss l(Wi, Di) is defined as the average loss based on the prediction error, across all
predictions for the dataset Di using the weights Wi, which is computed based on Eq. 1.

l(Wi, Di) =
1

∥Di∥

∥Di∥∑
k=1

f(Wi, xk,i, yk,i) (1)

In the aggregation phase, the model updates, i.e., learned parameters or gradients
Wi, are sent periodically to the edge server ES, which applies a given aggregation policy,
such as, FedAVG. Specifically, FedAVG computes an average of the shared local models
Wi at edge server ES to produce an accurate global model Mg, which is transmitted
back to the participating CAVs. In addition, the edge server ES defines the number of k
selected clients based on a client selection mechanism, such as, Entropy-Based.



3.2. Client Failure Model

Client failure in FL over CAVs refers to clients’ cessation of active participation in the
collaborative model training process [Wang and Xu 2023]. This phenomenon could re-
sult from different factors, such as vehicle mobility due to intermittent connectivity issues
during transitions between Roadside Units(RSU); connectivity problems caused by tem-
porary or permanent disconnection due to network disruptions; intentional withdrawal,
where clients opt out voluntarily due to privacy concerns or limited resources; and re-
source limitations, as seen in devices with constrained battery life choosing to drop out
strategically.

To better illustrate the concept, we consider a standard FL algorithm with clients
working together to train the same global model. In a scenario of client failure, only a
random subset of selected clients will be trained in each round due to a failure event. This
failure affects the training process of a FL system, causing reduced accuracy, increased
bias, and compromised fairness. They impede model convergence, and client mobility
leads to inconsistent data contributions. Reliable and robust FL algorithms must adjust
to sporadic client participation caused by failures. Strategies that accommodate intermit-
tent client presence and optimize model aggregation under varying network conditions
enhance stability in dynamic FL environments.

Figure 1 depicts a representation of a typical FL over CAV environment with client
failures. In this scenario, a given client vi has a probability P (vi) to be selected for
participation in the FL process, which depends on the metric used to select the client.
For instance, the probability P (vi) can be a random number in a random selection, can
be proportional to the entropy that represents the data randomness or unpredictability in
an entropy-based mechanism [Sousa et al. 2023] or can be clients with accuracy lower
than the average of all participating clients [Souza et al. 2023]. Furthermore, let Q(vi)
represents the probability of a client vi being disconnected from the training process,
which can be influenced by different factors, such as network stability, device power, or
communication issues.

c1

c2

c3

cn

RSUCloud Server

Figure 1. Representation of client failures in a FL over CAV environment

The overall probability of a client vi being selected and then dropping out during
training is given by the product of the selection and failure probabilities:



Pfailure(vi) = P (vi)×Q(vi) (2)

If we want to consider multiple clients potentially failing independently, we can
define an overall failure probability for the entire set of clients:

Ptotalfailure(V ) = Πk
i=1Pfailure(vi) (3)

3.3. Entropy-Based Client Selection Mechanism

FL for CAV applications presents unique challenges due to the ever-changing nature of
CAV mobility and the critical objectives of enhanced privacy and reduced server load.
The issues of client failure and varying data diversity can significantly impact the FL
process. To tackle these challenges effectively, it is worth considering the adoption of
entropy as a promising criterion for client selection. Specifically, entropy plays a vital
role in information theory, serving as a crucial measure for quantifying a system’s level
of randomness or disorder. The use of entropy in evaluating FL algorithms holds the
potential to identify the most relevant and diverse data, contributing to the development
of models that effectively encapsulate the heterogeneity in the context of FL over CAVs.

In the context of CAVs, data diversity is crucial due to the inherent variability
in driving behavior and network conditions. Entropy directly measures this uncertainty,
providing a more comprehensive view than metrics like the Gini index, which focuses on
specific aspects like class imbalance. Unlike clustering techniques that require predefined
clusters, entropy facilitates efficient client selection based on data randomness. This com-
putational efficiency aligns well with the resource limitations of CAV environments and
the need to minimize server load.

In this context, an entropy-based client selection mechanism gives preference to
select clients based on the entropy of their data, using it as an indicator of data diversity
and representativeness. By selecting clients with high entropy, FL algorithms can ensure
that the learned models represent the entire network and capture the variations in driving
behavior, traffic patterns, and network connectivity. This approach also has the potential
to enhance the model’s robustness in the face of unpredictability in vehicular networks.
Hence, the entropy-based client selection mechanism has shown promise in significantly
reducing the data variability contributions and managing the challenges associated with
uncertain client availability.

Figure 2 depicts the entropy-based client selection workflow, encompassing en-
tropy calculation, local model training and testing, as well as global model aggregation
and update. The communication round involves five steps: 1) the edge server ES sends
the current global model Mg to all CAVs C; 2) Each CAV ci sends its calculated data
entropy H(dn) to the edge server ES; 3) the edge server ES selects a set of clients C
from the set of CAVs U that meets a specified threshold θ based on entropy ranking, de-
scribed as H(dn) ≥ θ. These clients will be selected to perform local model training; 4)
the trained local models Wi are sent to the edge server ES for aggregation; 5) the edge
server ES generates an updated global model Mg based on the aggregated local models,
which is then sent back to all participants. We consider the Shannon Entropy to calculate



the data entropy H(x), while P(x) denotes the probability of observing a particular value
x in the dataset, and log is the natural logarithm, which is described in Eq. 4.

H(X) = −
∑
x

P (x) logP (x) (4)

Clients whose datasets have a high level of entropy are selected because they con-
tain diverse and informative data that can improve the performance of the FL model, such
as described in Eq. 5. km refers to the class of the data point dni, which represents an
individual data point in dn.

H(dn) = −
m∑
j=1

P (km) logP (km) (5)

By focusing on clients with higher entropy values, the client selection mechanism
benefits from including varied data. Consequently, this approach enhances the model’s
accuracy and applicability across different FL over CAV scenarios, with client failures for
various reasons and in different frequency levels.

Server

Client 1

Client n

...

Data Entropy Selected Clients

Local Model

1 2

3

4 5

1 2 3

4 5

Send Global Model Collect Entropy Data Local Training
Best-ranked clients
sends the model

Aggregate and update
global model

Figure 2. Entropy-Based Client Selection Mechanism

4. Evaluation

This section provides an overview of the evaluation environment and presents the results
obtained. The discussion of the results revolves around analyzing the following metrics:
training loss, accuracy, and Area Under the Curve (AUC).



4.1. Simulation Environment
We conducted a comprehensive simulation study using the PFLib, which is a flexible
framework presented by [Zhang et al. 2023a] and available on GitHub 1. The framework
runs on a server with the following specs: i9-13900K(32), 128 GB RAM, and Dual RTX
4090 on a Ubuntu Server operating system. We consider a widely used public dataset,
FMNIST, to train and test model validations. The CNN model used in the experiment has
two convolutional layers with filter sizes of 5x5. A 2x2 max-pooling operation succeeds
each convolutional layer. Furthermore, it is essential to consider that the data employed
in this experiment follows a non-IID arrangement, resembling a realistic data distribution
scenario, and is modeled using a Dirichlet distribution. This non-iid configuration was
generated by a tool in PFLib, which defined the rate of the Dirichlet distribution at 0.1.

We consider a grid scenario with one km² composed of 58 clients as proposed by
[Pannu et al. 2021] and use the Luxembourg SUMO Traffic (LuST) environment. Since
those vehicular environments generate heterogeneous data due to the diverse behaviors of
vehicles, varying speeds, and different routes, this diversity and complexity of data make
the entropy-based client selection method particularly suitable. We consider a built-in
feature within the framework to simulate client failures, as introduced in Section 3.2. This
feature randomly selects a client to avoid sending updates and receiving models during a
particular round. This capability allows us to explore the consequences of client failure on
the reliability and robustness of client selection mechanisms in FL over CAV scenarios.
It is worth noting that the failure rate is adjustable, providing the flexibility to control the
extent of simulated failure events. We evaluate the impact of various failure rates in the
scenario, considering scenarios with no failure, 16%, 33%, and 50% client failure rates.
Table 1 summarizes the main simulation parameters used in our evaluation.

Table 1. Simulation parameters for experiment
Parameters Value

Total Participant Clients 58 vehicles
Number of Rounds 100 Rounds

Learning Rate 0.001
Client Failure Rate 16%, 33%, 50%

Number of Epochs per Round 1
Network Model CNN

Batch Size 10

We compared the three client selection methods: i) Normal selection is a base-
line method that does not consider the quality or diversity of clients’ data. It simply
selects a random subset of clients to participate in each round of training; ii) DEEV se-
lects clients that have lower accuracy than the average accuracy of all participating clients
[Souza et al. 2023]; iii) Entropy-based client selection leverages data entropy to choose
clients that contain diverse and informative data, such as introduced in Section 3.3.

The client selection mechanisms’ performance was assessed using standard FL
classification metrics: accuracy and loss. Accuracy is calculated by dividing correct pre-
dictions by total examples and quantifying correct predictions’ proportion. All classes

1https://github.com/TsingZ0/PFLlib



have the same hit penalties to prevent misleadingly positive assessments, especially in
imbalanced class proportions. The loss metric compares target and predicted values, eval-
uating the model’s training data representation.

The AUC score, derived from the Receiver Operating Characteristic (ROC) curve,
is significant in FL classification, measuring the model’s ability to differentiate between
positive and negative instances. It is valuable in imbalanced class distributions, offering
nuanced evaluation and insight into discriminatory ability across threshold values.

4.2. Results

(a) Without client failures (b) 16% of client failures

(c) 33% of client failures (d) 50% of client failures

Figure 3. Train Loss for different client selection mechanisms

Figure 3 shows the training loss for different client selection mechanisms under
different client failure rates. By analyzing Figure 3 a), we can conclude that the entropy-
based mechanism exhibits faster convergence than the other client selection mechanisms.
As the client failure rate increases, all methods experience a decline in performance. How-
ever, the entropy-based mechanism maintains a slight advantage over the others. On the
other hand, the DEEV strategy deteriorates to the extent that it exhibits slightly inferior
performance compared to random selection, as shown in Figure 3 d).

The entropy-based client selection mechanism harnesses information entropy as
its guiding principle, prioritizing clients that contribute diverse and informative data, ul-
timately creating a more representative model. This way, the mechanism demonstrates
reduced instability in train loss metrics, exhibits faster convergence and maintains higher
accuracy levels than random selection and DEEV mechanisms. This adaptability of the



entropy-based mechanism to varying data distributions and the dynamic nature of FL over
CAV scenarios contributes to its effectiveness in mitigating the impact of client failure
with different levels of failure frequency, making it a valuable strategy for ensuring sta-
bility and top-notch performance in FL over CAV. Hence, the superiority of the entropy-
based client selection mechanism shines through when faced with challenges related to
client failure, as observed in [Wang and Xu 2023].

(a) Without client failures (b) 16% of client failures

(c) 33% of client failures (d) 50% of client failures

Figure 4. Accuracy for different client selection mechanisms

Figure 4 shows the accuracy results for different client selection mechanisms un-
der different client failure rates. By analyzing the accuracy results, we notice a similar
trend where the accuracy of all tested mechanisms deteriorates as the client failure rate in-
creases. The entropy-based method consistently outperforms the other two mechanisms,
even with high failure rates. In contrast, the DEEV mechanism exhibits a decline in per-
formance to the extent that it falls below the performance of random selection, reaching
its lowest point at a 0.5 client failure rate.

The entropy-based selection method consistently exhibited a performance advan-
tage, even in high failure rates. This remarkable reliability and robustness can be at-
tributed to its core principle of selecting clients with diverse datasets. Prioritizing clients
based on entropy ensures the selection of clients that offer a broad spectrum of data char-
acteristics, maintaining a robust and representative model. This mechanism proves to
be effective even in challenging scenarios with high failure rates. In such situations,
where clients’ participation may significantly decrease, potentially losing data diversity
and model accuracy, the entropy-based method shines through by preserving the model’s



performance and adaptability.

Figure 5 shows the AUC results for different client selection mechanisms under
different client failure rates. When examining the AUC Score results, we observe a similar
trend in metric degradation as observed with Accuracy and Train Loss. The entropy-based
strategy consistently outperforms the other two methods, while the DEEV method expe-
riences more significant performance degradation as client failure rates become increas-
ingly severe. The entropy-based method’s performance stability is further enhanced by its
capability to mitigate the challenges associated with data skewness, a prevalent issue in
non-IID data environments like those encountered in FL over CAV. In situations with high
client failure rates, where data skewness is likely to be exacerbated, the entropy-based se-
lection method ensures a well-balanced and comprehensive representation of the data. In
turn, it diminishes the risks of overfitting specific client data patterns and promotes more
efficient training, even when confronted with limited data resources.

(a) Without client failures (b) 16% of client failures

(c) 33% of client failures (d) 50% of client failures

Figure 5. AUC Score for different client selection mechanisms

5. Conclusion
This paper assessed the robustness and reliability of an entropy-based client selection
mechanism in scenarios where vehicle dropouts can occur due to various failure events.
The mechanism considers entropy to identify the most relevant and diverse data, con-
tributing to developing models that effectively encapsulate the heterogeneity in the context
of FL in CAV systems. The entropy-based client selection mechanism gives preference to
select clients based on data diversity and representativeness, creating a more representa-
tive model. Simulation results presented the significance of incorporating entropy-based



client selection when addressing the challenges presented by client failure events. This is
because the entropy-based client selection mechanism ensures the selection of clients that
offer a broad spectrum of data characteristics, resulting in the maintenance of a robust
and representative model. Entropy selection demonstrated faster convergence, reduced
instability, and high accuracy compared to the other mechanisms.

Our future research aims to explore adaptive client selection mechanisms capable
of dynamically responding to fluctuations in network conditions and vehicular mobil-
ity patterns. Such adaptability would enhance the overall robustness of FL over CAV
scenarios, ensuring their effectiveness even in dynamic and challenging environments.
Additionally, we intend to investigate the integration of privacy-preserving mechanisms
tailored for vehicular settings. This exploration will evaluate how such mechanisms influ-
ence the resilience of client selection strategies, contributing further to the development
of secure and reliable FL frameworks in dynamic and uncertain scenarios.
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