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Abstract. In smart cities, designing intelligent spaces incorporating Internet of
Things (IoT) applications is crucial for enhancing urban efficiency and quality
of life. However, developing these applications requires real data at scale, which
can be complex and non-trivial to obtain. A real traffic generator aids in mod-
eling unpredictable traffic, validating IoT configurations, evaluating network
performance, and improving cybersecurity and privacy solutions. In this sense,
we introduce the MQTTProvider, an adaptable IoT traffic generator for simu-
lating various smart spaces and supporting time-driven, event-driven, mobile,
actuators, and complex devices. It was designed to integrate with IoT Middle-
ware, such as FIWARE. Experiments indicate that MQTTProvider can be used
to assess the scalability of IoT platforms.

1. Introduction
The rapid evolution of Internet of Things (IoT) and support technologies (e.g., edge de-
vices, storage) has caused an increase in the development of smart space ecosystems in
many domains, including home and industrial automation, smart cities, healthcare, agri-
culture, connected vehicles, and more. Furthermore, there is a large diversity of IoT de-
vices for many purposes (actuators, environment sensors, etc.), and these new uses con-
siderably impact the network’s performance [Chio et al. 2023]. According to Statista1,
the number of connected IoT devices nearly doubled between 2019 and 2023, rising from
8.6 million to 15.14 million. Furthermore, it is estimated that there will be more than 29
billion connected IoT devices in 2030, generating zettabytes of data.

In this scenario, designing smart spaces that provide safety, security, reliabil-
ity, and sustainability for IoT applications requires real data at scale, and such data
can be complex and non-trivial to obtain. The problem is related to the cost and com-
plexity of getting such data, which generally involves purchasing and deploying de-
vices [Chio et al. 2023]. In this context, depending on the size of the domain, the
project becomes unfeasible. Moreover, sensor data has limitations. It might not cap-
ture all relevant scenarios, especially those involving dynamic changes like fluctuat-
ing occupancy, adaptable spaces, or unprecedented events like pandemics. These are
difficult to replicate in controlled settings, hindering our understanding of human be-
havior in such situations. Finally, privacy considerations complicate the use of sen-
sor data. Individuals and organizations may be hesitant to share sensitive, personal
data, especially when it requires long-term storage or collection from many people
[Martı́nez-Ballesté et al. 2013, Pappachan et al. 2017]. One powerful approach to tackle
these challenges involves leveraging the capabilities of an IoT real traffic generator.

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/



There are many benefits to using a real traffic generator, including model-
ing unpredicted traffic behavior, validating configurations in IoT platforms (perfor-
mance tuning), evaluating the network’s performance, and validating new solutions re-
garding cyber security and privacy. Moreover, it empowers the development of so-
phisticated machine learning-based anomaly detection systems by facilitating compre-
hensive IoT traffic characterization. This involves creating detailed IoT device be-
havior profiles, providing the foundation for effective identification and classification
[Nguyen-An et al. 2020a, Nguyen-An et al. 2020b].

We found several IoT traffic generators in the literature. Based on these studies,
we established a set of functional requirements for these generators. These requirements
include the capability to simulate time-driven, event-driven, and mobile sensors; actuator
simulation; the ability to evaluate large-scale distributed systems; and the creation of
complex devices that integrate various sensors and actuators. However, we observed that
existing approaches have limitations in generating realistic workloads for IoT platforms.
Furthermore, to the best of our knowledge, no existing studies have comprehensively
addressed the simulation of actuators and complex devices.

This paper presents the MQTTProvider, an IoT traffic generator for large-scale
distributed systems that aims to simulate different types of smart spaces. It enables the
simulation of various categories of sensors, which send messages simultaneously using an
Message Queuing Telemetry Transport (MQTT) protocol. MQTTProvider also supports
the simulation of actuators, which process commands and send status information. Such
commands change the state of the actuator and can be sent manually or automatically
from datasets. Furthermore, our tool allows the creation of complex devices, which may
encompass different sensors and actuators. Finally, MQTTProvider was developed to be
adaptable to the main existing IoT Middlewares. Therefore, its topic and data format were
designed to be consumed directly by FIWARE [FIWARE 2024], one of the most used IoT
Middlewares globally. However, it is worth highlighting that the format is generic enough
to be adapted for any new consumer.

We performed experiments in two machine configurations to validate using
MQTTProvider to assess an IoT platform’s scalability properties. To do so, we defined
some performance metrics and ran the tool, varying the number of devices. The results
allowed us to identify performance bottlenecks at the software and hardware levels.

The remainder of the article is organized as follows. Section 2 presents work
related to this research. Section 3 describes the MQTTProvider architecture and details
how different types of devices are implemented. Section 4 describes the experiments
performed to evaluate the MQTTProvider. Finally, Section 5 concludes the article.

2. Related Work
IoT and Smart city benchmarks like RIoTBench [Shukla et al. 2017] and CityBench
[Ali et al. 2015], built from real device data, stress-test the distributed processing systems
that power these complex ecosystems. RIoTBench offers four simulated city and fitness
data streams, mimicking real-world sensor bursts from 500 to 10,000 messages per second
with diverse arrival patterns. CityBench, in turn, dives deep into RDF stream processing
with real-time sensor data, painting a vivid picture of Aarhus’s smart city pulse. However,
although they have taken an essential step toward the evaluation of smart domains on a



large scale, these tools are limited to simple sensors that follow a particular frequency dis-
tribution or a dataset, not corresponding to the real scenario, which encompasses actuators
and devices that monitor the behavior of citizens in the environment.

SenSE (Sensor Simulation Environment) [Zyrianoff et al. 2017] is an open-source
platform that simulates complex smart city environments, generating massive amounts of
diverse sensor data from thousands of virtual devices. SenSE generates synthetic MQTT
data simulating a sensor network. The user can choose the types (Time or Event-driven)
and the number of sensors. Each type of sensor sends the data in a fixed time interval.
Regarding data, in time-driven sensors, the data varies randomly, while in event-driven
sensors, the data varies according to a probabilistic distribution (e.g., Poisson). However,
even though it offers event-driven sensors, the data does not simulate the movement of
vehicles and people in different routes. Besides, it does not simulate actuators or complex
devices, which may encompass various sensors and actuators.

The IoT-Flock [Ghazanfar et al. 2020] is a freely available framework designed
for generating IoT traffic, providing support for two commonly utilized IoT application
layer protocols—MQTT and CoAP. This innovative framework empowers users to con-
struct an IoT use case, integrate personalized IoT devices, and generate regular and mali-
cious IoT traffic within a real-time network environment. However, IoT-Flock is limited
to simple sensors that send the data in a fixed time interval, and the data varies randomly.

InterSCSimulator [de M. Del Esposte et al. 2019], developed within the InterSC-
ity project, is a scalable and open-source simulation tool designed for large-scale smart
city scenarios. It replicates the mobility patterns of cars and individuals across various
routes, encompassing bus and subway systems. The simulator includes diverse mobility
models for vehicles, pedestrians, buses, and subways. InterSCSimulator can simulate en-
tire cities, like São Paulo, featuring over 10 million virtual software agents navigating tens
of thousands of streets. The simulator took an essential step towards simulating the move-
ment of vehicles and people in different routes; however, it does not simulate actuators or
complex devices.

It is worth highlighting that only some approaches focus on both topic and mes-
sage formats. It is essential to focus on the format of both so that the generator is easily
adaptable to different types of IoT middleware and reduces error-prone tasks as the sce-
nario inflates. For example, SenSE and IoT-Flock leave it up to the user to define the
topic name. SenSE is the only solution that defines the format of the message. Inside
the message, in addition to the payload, we have the sensor type, ID, and timestamp,
which can provoke an overhead. In MQTTProvider, device identification is done in the
topic, which follows the specific FIWARE format. Furthermore, the message body trans-
mits only the payload. Also, it follows a FIWARE-specific format, the Ultralight (UL)
[FIWARE 2024], a lightweight text-based protocol for constrained devices and commu-
nications with limited bandwidth and memory resources.

Finally, to the best of our knowledge, no previous work explores the simulation
of actuators and complex devices (may encompass different sensors and actuators). We
propose to solve this problem by providing all the needed devices. In the next section, we
will describe our solution.



3. MQTTProvider

This section presents MQTTProvider, an MQTT traffic generator aimed at large-scale IoT
domains. MQTTProvider is a better alternative to other generators because it supports the
simulation of:

• A larger set of sensor types, including those that send random values within a
range and at a fixed interval (Time-driven sensors), such as those whose data is
generated from events caused by the movement of people in different spaces par-
ticipating in different events (Event-driven sensors) or the movement of vehicles
on a given route (Mobile sensors);

• Actuators: devices that receive commands and send state information. Such com-
mands change the state of the actuator and can be sent manually or automatically.
On the other hand, status information is sent periodically. For example, a smart
door lock always reports whether its status is locked or unlocked. Furthermore,
command traffic is automatically generated by a dataset. Upon receiving a com-
mand, our actuator will change its state. More details are presented in the subsec-
tion 3.3;

• Complex devices: devices that can encompass a set of sensors and actuators. Such
devices are increasingly present in our daily lives. For example, smart light bulbs
can have brightness sensors, light intensity, and color controls. Another example
would be a smartphone, a complex device with sensors such as an accelerometer,
gyroscope, magnetometer, GPS, and biometric sensors.

Moreover, different IoT middlewares must support the traffic generated. There-
fore, our tool sends messages using MQTT, the most used communication protocol in
IoT environments. Besides, we designed the topic and data format (Ultralight) to be con-
sumed directly by FIWARE. In this case, devices must publish (measures) and subscribe
(commands) to data on specific topics. Measures are sent on the /apiKey/deviceID/attrs
topic. On the other hand, Commands are received on the /apiKey/deviceID/cmd topic.
In this scenario, apiKey must be replaced by a code that describes a group of devices, and
deviceID must be replaced by a unique device identification.

Furthermore, MQTT message data must follow the Ultralight (UL) format. UL
is a lightweight text-based protocol for constrained devices and communications with
limited bandwidth and memory resources. The payload consists of a list of key-value
pairs separated by the pipe | character, as shown below.

<key>|<va lue >|<key>|<va lue >|<key>|<va lue> . . .

The formatting described above enables the validation of configurations on an IoT
platform (performance tuning). It reduces the probability of errors (i.e., the definition of
topics) in building a large-scale simulated infrastructure. It is worth highlighting that this
format is generic enough to be adapted for any new consumer, unlike FIWARE.

Creating applications that seamlessly interact with databases is crucial in the ever-
evolving software development landscape. Databases provide a structured way to orga-
nize and store data. Information is stored in tables with predefined columns, ensuring
a consistent and organized format. This structure simplifies data retrieval and analysis.
Of the related works, the only one that used a database to save sensor information was



IoT-Flock [Ghazanfar et al. 2020]. For MQTTProvider, we decided to turn to a power-
ful combination of Java programming language and PostgreSQL database management
system.

Figure 1(a) shows the MQTTProvider Graphical User Interface (GUI). It consists
of a Web Application that uses Java Vaadin2. In Java Vaadin, “View” and “Service” are
fundamental for effectively creating and managing web applications. These concepts help
separate the concerns within the application, with Views primarily handling the user in-
terface (frontend) and Services (backend) managing the business logic and data access.
Concerning our application, Services are injected into Views using Spring-based depen-
dency injection. This allows Views to directly call methods defined in Services. On the
other hand, our Services use Spring Data JPA (repositories) to manage entities in the Post-
gres Database component. Since all interactions between MQTTrovider and Postgres are
initiated by JDBC (Java Database Connectivity), the entities can be containerized and run
from exposed ports. To keep things simple, both components run using Docker3. Docker
is a container technology that isolates different components into their respective envi-
ronments. The associated “docker-compose.yml” file shows the necessary configuration
information.

(a) Graphical User Interface
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Scenario
Execution

MQTT Broker

Device Groups

Commands

Device Templates
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(b) Architecture

Figure 1. The MQTTProvider.

Figure 1(b) illustrates the MQTTProvider architecture. It has a two-component
architecture involving Scenario Definition and Scenario Execution. The Scenario Def-
inition component serves as the foundation of the traffic generator, where the devices
and traffic scenarios are conceptualized, specified, and configured by the user. On the
other hand, the Scenario Execution component executes a defined scenario by gener-
ating MQTT traffic or processing the actuator’s commands. The following subsections
detail how the tool’s main features are implemented.

3.1. Time-Driven Sensors

Time-driven sensors send data periodically to report a certain state. This state information
consists of a value that varies randomly within a range (e.g., temperature, humidity, and
light sensors, for example). In MQTTProvider, the implementation of time-driven sensors
is similar to that of SenSE [Zyrianoff et al. 2017] and IoT-Flock [Ghazanfar et al. 2020].

2https://vaadin.com/
3https://www.docker.com/



Therefore, when creating a new device (“Device Templates > Random Sensors”), the
user must define the following parameters:

• The sensor name and description;
• Object ID: consists of the parameter to which the value will be associated in the

MQTT payload. FIWARE maps this parameter to a context attribute. All devices
registered in FIWARE have context attributes, such as the “temperature” attribute
on a UHT sensor that stores temperature values. Suppose we define the object
id “t” for this attribute. When reading from an MQTT broker, the IoT Agent
will search the payloads for object IDs. Once it finds the payload a “t” with an
associated value (e.g.,“t|30”), it will store this value (“30”) in the “temperature”
attribute;

• Data type: the type of data that will be sent by the sensor, which can be chosen
between basic types (int, float, boolean, and char);

• Periodicity: the frequency (in seconds) with which sensors send data (e.g., every
10 seconds);

• Minimum and maximum range values.

This kind of sensor is the simplest type and is the most implemented. It is suitable
for carrying out performance tests. However, it presents limitations in generating realistic
workloads for IoT platforms. For this, other types of sensors are necessary.

3.2. Mobile Devices

Simulation of Urban MObility (SUMO) is an open-source multimodal traffic simulation
package capable of handling complex scenarios with different vehicles. SUMO also al-
lows entities other than vehicles, such as pedestrians, and interfaces with tools for creating
scenarios. After completing the Scenario, it is possible to carry out the simulation, which
can generate a dataset (Extensible Markup Language (XML) file) that describes the posi-
tion of each vehicle at each time point in the simulation.

Once the dataset is available, the MQTTProvider user must create an instance of
a SUMO trace (table sumo trace) in “Datasets > SUMO”. Next, the user must import the
XML file by clicking the “Upload File” button. Each dataset can be associated with one
or more instances of Mobile sensors.

A Vehicle class was developed to monitor a specific vehicle based on its ID in the
simulation to implement the Mobile sensor operation. It stores the vehicle’s coordinates at
a given instant and has the logic to update its position. Moreover, a MobileSensorDevice
class plays the role of the sensor present in the vehicle. It receives simulated data from the
corresponding Vehicle class and builds and publishes the message on the specific topic.

3.3. Event-Driven Devices and Actuators

Event-driven sensors and Actuators pave the way to generate realistic workloads for IoT
platforms. In MQTTProvider, they simulate people’s interaction with devices while mov-
ing along different routes. Event-driven sensors send data when a state changes caused
by the occurrence of an event. For example, people’s entry into space changes the state
of motion and temperature sensors. On the other hand, Actuators are devices that convert
energy into motion or mechanical force.



To simulate Event-driven sensors (e.g., Radio Frequency Identification (RFID),
Passive Infrared Sensor (PIR), temperature, pressure, door/window contact, motion, and
more) and actuators, MQTTProvider allows one to import data from the dataset generated
by the SmartSPEC tool. SmartSPEC [Chio et al. 2023] employs an event-driven method-
ology to produce realistic and customizable datasets for smart spaces, encompassing el-
ements such as occupancy, trajectories, and sensor data within real-world environments
at both building and city scales. The framework adopts a versatile semantic model repre-
senting a smart space ecosystem, including spaces, individuals, events, and sensors. To
streamline model definition, SmartSPEC utilizes available sensor data (e.g., WiFi/Blue-
tooth) as input, employing machine learning algorithms to derive higher-level metamodels
that outline the characteristics of a smart space. Subsequently, these metamodels harness
semantics to generate synthetic datasets, capturing space occupancy, occupant trajecto-
ries, and corresponding sensor observations.

Once the dataset is available, in MQTTProvider, the user must create an instance
of a SmartSPEC dataset (table smart spec dataset) in “Datasets > SmartSPEC”, provid-
ing only a name and a description. Next, the user must import some files from the dataset
by clicking the “Add Files” button and then “Upload Files...”). The following files must
be imported:

• MetaSensors.json: Defined by the SmartSPEC user. This file contains a list of
sensor categories (e.g., Temperature, Door, WiFi APs, etc.);

• Sensors.json: Defined by the SmartSPEC user. This file contains a list of sensors,
each one with its coordinate and being part of a category defined in “MetaSen-
sors.json”;

• Spaces.json: Defined by the SmartSPEC user. This file contains a list of spaces in
the Scenario that will be simulated. Each space contains a description, capacity,
coordinates, and a list of other neighboring spaces;

• obs msid x.csv: Dataset file generated by SmartSPEC. Based on the data pro-
vided by users, SmartSPEC will generate a file for each sensor category (we will
have a file (“x”) for each id of “MetaSensors.json”). In each of these files, we will
have a list of data sent by the sensors of the same category, organized in time.

• data.csv: Dataset file generated by SmartSPEC. This file reports the start and
end times of people’s participation in certain events in certain spaces. In other
words, it tells us the story of people’s interaction with the spaces in the setting.
In SmartSPEC, this data is used to generate the data reported by the sensors.
MQTTProvider will be used to simulate the triggering of commands to the ac-
tuators.

Once these files have been uploaded, the next step will be to import the data into
the database and generate the necessary files to create the event-driven sensor and actuator
templates. In this case, on the “Datasets > SmartSPEC” screen, the user must click on
the “Generate Data” button for the respective dataset and then click on “Generate Data”.
Once this is done, MQTTProvider will perform two macro-activities. Are they:

• Creating instances in the Database: MQTTProvider will create instances in
the tables smart spec meta sensor, smart spec sensor and smart spec space ,
according to the records in the files “MetaSensors.json”, “Sensors.json” and
“Spaces.json”, respectively. Such data will be used to create files in the next
macro-activity and create new templates for event-driven sensors and actuators.



obs_msid_3.csv

SensorID DateTime Temperature
21 2020-01-06 00:00:00 70
21 2020-01-06 00:15:00 71
22 2020-01-06 00:00:00 72
22 2020-01-06 00:15:00 82
23 2020-01-06 00:00:00 70
23 2020-01-06 00:15:00 72.4

sensor_21.csv

DateTime Value
1578279600000 70
1578280500000 71

sensor_22.csv

DateTime Value
1578279600000 72
1578280500000 82

sensor_23.csv

DateTime Value
1578279600000 70
1578280500000 72.4

Figure 2. Generating Event-driven sensors dataset

• Creation of new files in the dataset repository: From the dataset files
“obs msid x.csv” and “data.csv”, MQTTProvider will derive other CSV files nec-
essary to simulate the data generated by the event-driven sensors and the trigger-
ing of commands to the actuators, respectively. Figura 2 illustrates the first case.
Each “obs msid x.csv” derives a “sensor x.csv” file for each sensor ID X. In each
of these new CSVs, we will have two columns. The first consists of the timestamp
in which the sensor generated the data, while the second column consists of the
generated value (e.g., temperature, person ID, and more). Each dataset can be
associated with one or more instances of Event-driven sensors. We will detail the
process of creating actuator datasets later.

To simulate the commands for the actuators, we use data from the “data.csv” file.
The general idea is that, for each event in space, the first person to arrive activates the
actuators (e.g., unlock a door, turn on the lights and air conditioning). The last person to
leave also activates them (e.g., lock a door, turn off the lights and air conditioning). In
this sense, the MQTT Provider generates a CSV file for each space ID from “data.csv”.
This organization enables the association of actuators to a given space and the simulation
of commands. Figure 3 shows how the algorithm works.

data.csv

SpaceID EventID PersonID StartDateTime EndDateTime
398 23 50 2024-01-06 08:00:00 2024-01-06 09:50:00
398 23 18 2024-01-06 08:10:00 2024-01-06 09:55:00
398 86 20 2024-01-06 10:06:00 2024-01-06 12:00:00
398 86 35 2024-01-06 10:15:00 2024-01-06 11:50:00
592 12 3 2024-01-07 16:00:00 2024-01-07 17:50:00
592 12 5 2024-01-07 16:10:00 2024-01-06 17:30:00
592 8 10 2024-01-08 08:00:00 2024-01-08 10:00:00
592 8 8 2024-01-08 08:00:00 2024-01-08 09:50:00

Space ID: 398

EventID PersonID StartDateTime EndDateTime
23 50 2024-01-06 08:00:00 2024-01-06 09:50:00
23 18 2024-01-06 08:10:00 2024-01-06 09:55:00
86 20 2024-01-06 10:06:00 2024-01-06 12:00:00
86 35 2024-01-06 10:15:00 2024-01-06 11:50:00

space_398.csv

EventID StartDateTime EndDateTime
23 1704528000000 1704534900000
86 1704535560000 1704542400000

Space ID: 592

EventID PersonID StartDateTime EndDateTime
12 3 2024-01-07 16:00:00 2024-01-07 17:50:00
12 5 2024-01-07 16:10:00 2024-01-06 17:30:00
8 10 2024-01-08 08:00:00 2024-01-08 10:00:00
8 8 2024-01-08 08:00:00 2024-01-08 09:50:00

space_592.csv

EventID StartDateTime EndDateTime
12 1704643200000 1704649800000
8 1704700800000 1704708000000

Figure 3. Generating actuators dataset.

For each space ID, select all entries grouped by event ID and order them by start
date time. The order by start date time aims to create a timeline of people ingressing in



a specific event and space. The result consists of a Map in which each key represents an
event id, and each value is a list of filtered and ordered entries.

Based on the above result, create the entries for the specific “space x.csv”, where x
is a space id. Each entry in the CSV consists of an event that happens in that space, as well
as the timestamp when the first person arrives and the last person leaves. Furthermore,
such events are ordered in time, from the first to the last, that occurs in a given space.
Each dataset can be associated with one or more instances of actuators. Furthermore,
MQTTProvider also allows the creation of commands, which can be associated with one
or more actuators. Every command has a name and a state that it generates. For example,
the “on” command generates the “ON” state in the actuator.

It is worth mentioning that for both event-driven sensors and actuators, times-
tamps are used by the MQTTProvider to determine when to send MQTT messages. Fur-
thermore, to create instances (“Device Templates > ED Sensors” and “Device Templates
> Actuators”), the user must provide a name, description, object ID (even the time-
driven one), and dataset that will be used. In the case of actuators, we will still have to
fill in the periodicity field, which indicates the frequency in seconds at which it will send
the current state, and the default state field, which means the initial state of the actuator.
Finally, actuators can also be created without a dataset, i.e., commands must be triggered
manually from an IoT platform.

3.4. Complex Devices and Scenarios

To start the traffic generator (“Experiments > Run Generator”), the user must specify the
MQTT broker address, the port to establish the connection, the execution time in seconds,
and, most importantly, the Scenario. The Scenario is nothing more than a representation
of the IoT infrastructure, which encompasses all devices with their sensors and actuators,
which in turn send and process MQTT messages.

device

device_group
device_actuators

device_ed_sensors

device_mobile_sensors

device_td_sensors

actuator

edsensor

mobile_sensor

tdsensor

scenario

scenario_devices

Figure 4. Complex Devices and Scenarios

In this context, Figure 4 shows the Entity Relationship (ER) Diagram that illus-
trates how MQTTProvider defines a traffic scenario. In MQTTProvider, a Scenario (“Ex-
periments > Scenarios”) instance contains one or more Device instances. The Device
(“Experiments > Devices”) represents a complex device, encompassing one more in-
stance of the sensors and actuators described previously. For FIWARE compatibility,
each Device instance must be associated with a Device Group. A Device Group defines a
group of devices of the same category, such as a set of UHT sensors, WiFi APs, and more.
Each Device Group instance contains a name, a description, and an API Key, which must
be unique for each instance. The API Key will be used to form the topic, as described at
the beginning of this section.



4. Experiments
This section presents our experiments for generating synthetic MQTT traffic for Smart
Campus environments using our packet-level traffic generator. In this sense, we validate
MQTTProvider through its use to assess the scalability properties of the FIWARE plat-
form [FIWARE 2024].

Orion Broker IoT Agent
MQTT

Broker
MQTT

(Mosquitto)

Quantum
Leap 8668

4041

MongoDB
27017

CrateDB 1883

27017

Redis

6379
1026

5432
1883

MQTTProvider

Grafana
Postgres

5432 5432

System Under Test (SUT) Traffic Generator

Figure 5. Test System

To conduct the experiments, a production-like instance of the FIWARE platform
pre-populated with the resources (devices) available on the Campus and their initial states
is required. For this, we set up an infrastructure capable of collecting and storing sensor
data in a time series database and provide a visualization tool to retrieve time-based ag-
gregations of such data. Figure 5 shows our Test System. In one machine, we configure
the MQTTProvider that publishes its data using the Ultralight 2.0 format over MQTT.
On another machine, we deploy our System Under Test (SUT). It consists of Eclipse
Mosquitto, which will process messages published from MQTTProvider and three FI-
WARE Generic Enablers: (i) the Orion Context Broker, which will receive requests
using NGSI-v2 and manage context data; (ii) the IoT Agent which will receive north-
bound measurements from Mosquitto in Ultralight 2.0 format and convert them to NGSI-
v2 requests for the Orion; and (iii) the QuantumLeap that subscribes to context changes
and persisting them into a CrateDB4 database. Then, we use Grafana5 as a time series
analytics tool. It is worth mentioning that since HTTP requests initiate all interactions
between the elements, those entities can be containerized and run from exposed ports.
Therefore, to keep things simple, all components run using Docker6.

Moreover, to enable service monitoring for collecting metrics, we raised
Prometheus (integrated with Grafana) and three (3) Prometheus exporters: (i) cAdvi-
sor (Container Advisor) to measure the resource usage and performance characteristics
of the running containers; (ii) Node Exporter to collect hardware and OS metrics; and
(iii) SQL Exporter to exposes metrics gathered from CrateDB.

In this scenario, we evaluated the scalability of our SUT using two machines.
The first, referred to as “Desktop”, simulates a device operating at the network’s edge,
featuring a Dell Desktop with a 1x Intel Core i7-2600 3.40GHz 8MB (4-core), 8GB RAM,
a 500GB SATA-III hard drive, a Gigabit Ethernet NIC, and Debian 11.6 (Bullseye). The
second, known as “Server”, is a high-capacity Dell R610 Power Edge server equipped

4https://cratedb.com/
5https://grafana.com/
6https://www.docker.com/



1000 2000 3000
Metric Target Mean Error Mean Error Mean Error

CPU Usage (%) Desktop 33.84 (32.41, 35.28) 36.14 (35.38, 36.90) 42.12 (41.15, 43.09)
Server 10.20 (9.46, 10.94) 12.14 (11.87, 12.41) 17.13 (16.79, 17.46)

RAM Usage (GiB) Desktop 3.568 (3.565, 3.571) 3.802 (3.792, 3.811) 3.958 (3.949, 3.967)
Server 17.013 (16.983, 17.042) 17.218 (17.202, 17.233) 17.347 (17.334, 17.360)

Table 1. Pyshical resources usage.

with 2x Intel Xeon E5645 (6-core) processors, 64GB RAM, a 500GB SATA-III SSD, a
Gigabit Ethernet NIC, and Debian 11.6 (Bullseye).

The MQTTProvider is a multithreaded application (one thread for each simulated
device) and requires a machine with high computational capacity to run thousands of
devices (> 1000). Therefore, we create one Virtual Machine with the following config-
urations: 15 vCPUs, 20 GB RAM, 70GB disk space, NIC Gigabit Ethernet, and Ubuntu
22.04. With this setup, we were able to simulate more than 3000 devices.

To generate traffic, we created ten (10) Device Groups in MQTTProvider divided
between sensors (UHT, Gas, Door Contact, Mobile, Current, WiFi, and NFC) and actu-
ators (Door Lock, Lamp, and Air Conditioner). It is worth mentioning that the devices
created for the WiFi and Door Contact groups are Event-driven sensors, while those made
for the Mobile group are Mobile Sensors; that is, their data comes from datasets gener-
ated by SmartSPEC and SUMO, respectively. Concerning SmartSPEC, we used one of
the datasets available that describes a Smart Campus scenario. In the case of SUMO,
we simulated a scenario describing the Federal University of Ceara bus routes. For the
other groups, we created complex devices composed of multiple time-driven sensors or
actuators with time-driven sensors. For example, a UHT device sends temperature (t) and
humidity (h) measurements, while a door lock listens for lock or unlock commands and
periodically sends information about its current state.

We performed three (3) rounds of the experiment for each SUT machine (Desktop
and Server). The first round simulates 1000, the second 2000, and the third 3000 devices.
It is worth mentioning that, for each simulation, we created the same number of devices
for each of the 10 Device Groups. For example, for 1000 devices, we simulate 100 devices
from each group. The idea of this workload composition is to generate different traffic
profiles to evaluate essential aspects of the system and to ensure that the observed results
are reasonable estimates for the general behavior of the system. Each round ran for 40
minutes and, from Grafana, we collected samples from the last 15 minutes, as we consider
that the first 25 minutes is the time for the steady state, given that we need to create
thousands of threads and the SUT needs to adapt to all the traffic generated.

It is worth noting that we collected data from the following metrics: (i) Physical
Resource Usage: CPU and RAM memory; (ii) Received Network Traffic Rate (kb/s)
per Container: the total rate (per second) of network bytes received over a 5-minute
interval; (iii) Queries per Second: the total per-second rate, over a 1-minute interval, of
different types of queries in CrateDB; (iv) Disk Writes Completed Rate (io/s): the rate
of disk write operations completed per second over a 1-minute interval; and (v) Average
Query Duration (ms): average query duration over the last 1 minute.

Table 1 shows the average physical resource usage. Regarding the CPU, we ob-



served a constant increase on both targets as we increased the number of devices. More-
over, on neither machine, we could not even remotely exhaust their processing capabilities
(maximum 42.12% on Desktop), which could cause instabilities in the SUT operation. We
observed the same situation with memory consumption. However, the variation from one
experiment to another is ridiculous, which shows that the SUT operates with minimal
RAM requirements. From this result, we could conclude that the system behaves well
with this variation in device demand. Nevertheless, we will see later that this is not the
case.
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Figure 6. Experiment results.

Figure 6(a) shows the rate (kb/s) of received network traffic per container. For
this metric, we only present the results for the Mosquitto, Quantum Leap, and CrateDB
containers, as we only want to visualize the beginning (data input) and the end (data avail-
able to Grafana) of the data flow in the SUT. The results indicate that as we increase the
number of devices, the traffic at Mosquitto increases but decreases in the other contain-
ers. Furthermore, the two machines present similar values, as shown in Figure 6(b). In
this case, the rate of Insert requests in CrateDB offers similar values on the Desktop and
Server. As the number of devices increases, the variation in this rate is ridiculous, giving
an idea of constancy. Such behavior may indicate a performance bottleneck in Orion Con-
text Broker, which sends notifications to Quantum Leap whenever updates to device data
occur. Such a bottleneck can cause a noticeable delay in making sensor data available to



Grafana.

In addition to the performance problem described above, which is caused by soft-
ware, we identified another whose cause is the difference in hardware on the two ma-
chines. From Figure 6(c), we can verify that the average query duration on the Desktop
is approximately 100 times greater than on the Server. From Figure 6(d), we can con-
clude that the problem lies in the disk storage technologies used, as the number of disk
write operations is always bigger on the Server. While the Desktop works with a Hard
Disk (HD), the Server uses a Solid-State Drive (SDD), which has proven to perform bet-
ter, even though both operate on SATA-III. This type of bottleneck will cause the delay
described above to be greater on the Desktop.

(a) Desktop (b) Server

Figure 7. Number of reported devices per Device Group (last 5 minutes).

Figure 7 shows the effect of this delay. It presents Grafana panels for the Desktop
(7(a)) and Server (7(b)) that indicate the number of devices that reported data to CrateDB
in the last 5 minutes, measured at the end of the experiment with 2000 devices. It is
possible to verify that both targets suffer from the FIWARE delay. However, the Server
reports a greater number of devices, as it operates with SSD.

Finally, after thorough experimentation and detailed performance assessments,
MQTTProvider has demonstrated its effectiveness in evaluating the scalability of IoT
platforms, pinpointing critical performance bottlenecks, and providing a powerful tool
for the development and testing of IoT systems. Our research primarily examines a Smart
Campus scenario. Yet, due to its versatile device creation capabilities, we argue that one
can broaden the use of this tool to include a range of applications such as smart city
planning, IoT network optimization, and the creation of intricate IoT solutions, thereby
making a significant impact on IoT research and development.

5. Conclusion
The MQTTProvider is a versatile and powerful IoT traffic generator designed for large-
scale distributed systems, capable of simulating a wide range of smart spaces with di-
verse sensor categories and actuators. Its compatibility with various IoT middlewares,
particularly FIWARE, enhances its adaptability for IoT ecosystems. We conducted ex-
periments on two different machine setups to verify the use of our tool in evaluating the
scalability characteristics of an FIWARE platform. The outcomes enabled us to pinpoint
performance bottlenecks at both the software and hardware levels. The MQTTProvider
source code can be found in GitHub7, as well as detailed guidance on system architecture,
minimal hardware requirements, installation, use, and experiment replication. For future
work, it would be beneficial to extend the MQTTProvider’s capabilities to include more

7https://github.com/SmartCampus-UFC/SmartUFC-MQTTProvider



advanced features, such as integrating AI and machine learning algorithms for predictive
analysis and adaptive traffic generation. This could involve developing models more ac-
curately mimicking real-world IoT traffic patterns based on historical data and real-time
analytics.
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