
A Partition-Aware VNF Placement Methodology for
FPGA-Equipped NFVIs

Victor S. Guerra, Gabriel L. Nazar

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{vsguerra,glnazar}@inf.ufrgs.br

Abstract. In the context of Network Function Virtualization (NFV), Field Pro-
grammable Gate Arrays (FPGAs) can be used to reduce bottlenecks introduced
by the substitution of dedicated hardware middleboxes by virtualized imple-
mentations. The problem of placing Virtualized Network Functions (VNFs) on
FPGA-equipped NFV infrastructures, however, imposes additional challenges
that require an accurate modeling of the FPGA fabric. More specifically, si-
multaneous sharing of the FPGA requires careful partitioning of its resources
into fixed regions that can be dynamically reconfigure and to which functions
can be mapped. In this work, we will demonstrate that accurate modeling of the
FPGA partitions into the placement solution is crucial to achieve solutions that
are guaranteed to be viable. Experimental results obtained through two Integer
Liner Programming models will be used to demonstrate that partition awareness
can avoid invalid solutions caused by overestimation of the device capabilities,
with a small impact on the number of allocated user requisitions.

1. Introduction
The Network Function Virtualization (NFV) paradigm has seen a significant increase in
popularity over recent years, primarily focusing on substituting specialized hardware,
known as middleboxes, with general-purpose hardware. These middleboxes, tradition-
ally implemented with Application-Specific Integrated Circuits (ASICs) and designed for
high-performance execution of specific network functions (NFs), are now replaced by
more versatile hardware. A shift from specialized to generic hardware typically implies
a performance trade-off. To mitigate this, Field-Programmable Gate Arrays (FPGAs) can
be employed to offer both high performance and reconfigurability, essential features for
NFV. FPGAs demonstrate improved performance compared to general-purpose proces-
sors (GPPs) for many relevant NFV applications, primarily due to their ability to im-
plement dedicated acceleration architectures at the hardware level. This feature enables
their efficient application in many NFs, such as firewalls, Deep Packet Inspection (DPI),
Advanced Encryption Standard (AES), and load balancing.

However, the shared use of FPGAs in an NFV Infrastructure (NFVI) still poses
significant challenges [Niemiec et al. 2020]. The placement of Virtualized Network Func-
tions (VNFs), organized as Service Function Chains (SFCs), consists of deciding in which
NFVI Point of Presence (NFVI-PoP) each VNF will be executed [Li and Qian 2016,
Laghrissi and Taleb 2019, Sun et al. 2022]. Function placement must, therefore consider
available resources in each NFVI-PoP and available bandwidth in each link to place mul-
tiple SFCs, aiming at maximizing the efficient use of the infrastructure while meeting user

requirements. As will be shown in this work, for FPGA-equipped NFVIs, careful mod-
eling of device resources and their organization is fundamental to enable their efficient
use.

Traditional FPGA designs assume the whole device will be used by a single ap-
plication during its entire lifetime, which is reasonable for many FPGA use cases. This
assumption hides the long latency of FPGA reconfiguration since the device is seldom
reprogrammed. On the other hand, in a typical NFVI in which the number of applica-
tions and users potentially exceeds the number of devices, device sharing becomes crucial
for cost reduction, in line with the expected benefits of NFV. Due to the long program-
ming latencies, relying solely on time sharing is not practical for continuously operating
functions, which are commonly found in NFV, as it introduces long and frequent ser-
vice interruptions. Fortunately, current FPGAs support Dynamic Partial Reconfiguration
(DPR), which allows reprogramming parts of the device while the remaining resources
stay operational [Xilinx 2021]. This functionality is very attractive for NFV, as it allows
NF instances to be quickly combined on the fly in a single FPGA, with no interruption to
other instantiated functions. DPR, however, demands a priori partitioning of the devices’
resources into dynamically reconfigurable regions. These regions dictate how many func-
tions can be simultaneously allocated in each device and how many resources will be
available for each of them, a limitation that is often not accurately modeled in previous
work.

Thus, in this work we propose a partition-aware VNF placement approach, able to
place VNF instances not only on NFVI-PoP but also in specific FPGA partitions within
each NFVI-PoP. Additionally, we demonstrate that a simplified modeling of FPGA re-
sources, which is often employed, can lead to function allocations that are not feasible
when the device-specific partitioning restrictions are taken into account. The main con-
tributions of this work can be summarized as follows:

• An Integer Linear Programming (ILP) model for SFC placement that takes into
account individual FPGA partitions, aiming at maximizing the instances’ total
value, which is related to their use of resources, used by the placed SFCs in a
network with FPGA-equipped NFVI-PoPs.

• A novel optimistic algorithm to determine whether sets of allocated VNFs can
possibly fit within a certain FPGA model. With this algorithm, one can deter-
mine if allocations made by partition-unaware approaches are possibly viable or
certainly not feasible.

• An experimental evaluation of the proposed ILP-based approach with diverse net-
work sizes, FPGA models, and NFs, demonstrating its applicability and scala-
bility. Experimental results are also compared to those obtained by optimistic
partition-unaware models, indicating that partition awareness is not only neces-
sary, but has a small impact on the total value of allocated SFCs.

The remainder of this work is structured as follows. Section 2 presents related
work on FPGA use in NFV, with emphasis on function placement. Section 4 presents
the proposed ILP model for partition-aware placement. Section 5 describes the algorithm
used to detect invalid function allocations in FPGAs. Section 6 presents and discusses the
experimental results. Finally, section 7 concludes this work.

2. Related Work

Works that focus on network function placement in PoPs are well described in the litera-
ture. The approaches are different and emphasize diverse ways to achieve the objectives,
which usually aim to minimize the amount of resources used or place a higher number
of functions in a network. The usage of FPGAs in these works is not so well explored
because of the variety of distinct hardware components in heterogeneous infrastructures
in which the VNFs can be deployed.

There are works that aim to reduce latency, like [Xu et al. 2018], which introduces
CoNFV, a framework that combines the cloud and end-hosts to achieve low latency, low
cost, and high flexibility simultaneously, or [Zhang et al. 2017] that focuses on efficiently
placing VNF chains across the network and effectively scheduling requests to service
instances to minimize average response latency.

Numerous techniques have been developed to address complex problems and yield
satisfactory results. However, for the problem at hand, the most popular and effective ap-
proach is the use of Integer Linear Programming (ILP) and its variations. Researchers
such as [Paganelli et al. 2021], [Dong et al. 2021], and [Sharma et al. 2020] have suc-
cessfully employed ILP and its variations to solve similar problems. Simple heuristics are
often used, as [Qi et al. 2019] applying greedy and multi-stage graph algorithms. Some
works use more complex approaches like [Solozabal et al. 2020] using Neural Combina-
torial Optimization theory for VNF placement, demonstrating competitive results.

Observing the majority of works in the area focuses on improving the deployment
of functions to mobile network infrastructure. Mobile context is mainly focused as its
demand is expanding uninterruptedly and is strictly constrained, keeping low latency and
high throughput. Some works that target this objective are [Leivadeas et al. 2019] and
[Doan et al. 2023].

Given all the possible hardware combinations that can be used in a heteroge-
neous infrastructure, there are some authors who have chosen FPGA, using its flexibil-
ity and high efficiency as motivation. [Niemiec et al. 2020], [Sharma et al. 2020] and
[Lopes et al. 2023] demonstrate good examples of how it can be employed, extracting the
best of this type of hardware and justifying the reason it is a feasible solution.

Surveys in this area cover a wide range of approaches to NFV placement, cov-
ering more topics about it, such as recent network function orchestration frameworks,
highlighting the advantages and disadvantages of different placement strategies, as shown
by [Li and Qian 2016], [Laghrissi and Taleb 2019] and [Santos et al. 2021].

As can be noted, previous works on VNF and SFC placement have addressed
important variations of the problem. However, the use of FPGA devices demands place-
ment algorithms that are aware of their specificities, most notably of the DPR partition
structure, as DPR is a key feature to enable device sharing. Previous work that ad-
dressed function placement in FPGA-equipped NFVIs, such as [Sharma et al. 2020] and
[Draxler and Karl 2019], have typically used simplified models that do not fully capture
the limitations of DPR partitioning. Thus, in this work, we provide a model that considers
DPR regions, and we also demonstrate that approaches that are unaware of this concept
may lead to unfeasible allocations.

3. FPGA
Field Programmable Gate Array is a semiconductor device that stands out for its pro-
grammability, aiming to merge ASICs’ low latency and high processing capability with
the flexibility of GPPs. Current its hardware-based design enables fast and efficient data
processing. Current FPGAs comprise heterogeneous resources such as: Configurable
Logic Blocks (CLBs), that include Look Up Tables (LUTs) and Flip-Flops (FFs); Block
RAM (BRAM) to implement internal memories; Digital Signal Processing (DSP) blocks
for efficient arithmetic operations; and Input/Output Blocks (IOBs), for communication
with external devices. These resources are distributed along the hardware as columns that
form a matrix. The definition of partitions, which is a requirement for DPR, must follow
specific rules and consider minimum resource requirements, allowing efficient component
allocation.

Reprogramming an FPGA can either be complete or partial, depending on the re-
quirements and availability of resources. A total reconfiguration is necessary when the
current functions are no longer needed or when a new function requiring substantial re-
sources becomes a priority. During this process, the FPGA’s operation is temporarily
halted. On the other hand, partial reconfiguration involves updating just one partition’s
configuration, allowing the rest of the device to continue functioning normally. This ap-
proach enables better management of ongoing activities within the FPGA. This study uses
Xilinx FPGAs, which feature Dynamic Function eXchange (DFX) for partial reconfigu-
ration. The details for using DFX can be found in [Xilinx 2021].

4. Model and approach
The main goal of this work is to provide an approach for adequate placement of functions
in FPGA devices in NFVIs and to demonstrate the crucial role of accurate modeling re-
sources and partitions. For this purpose, ILP models will be presented in the following
subsections.

4.1. Definition

This work first establishes the problem’s context, which revolves around virtualizing
network functions. To do this, we define a connected and weighted graph, denoted by
Gnet = (N,L), where N represents the network’s nodes, and L represents its links. Each
node has limited computing resources, denoted by r(n) = (CLB,BRAM,DSP), com-
prising the main hardware components employed by VNFs. We use the Python library
networkX, [NetworkX 2014], to simulate the graph, ensuring it is connected and mod-
eling various network functions that can be virtualized and run by this system. Each
network function has a set of different implementations, occupying different points in
the design space that include resource use and performance. Each implementation is de-
fined by a resource requirement tuple, including CLBs, BRAMs, DSP blocks, maximum
latency, and minimum data throughput.

Constructing partitions is a crucial aspect of this work, as it involves allocating
resources to implement all supported functions with minimal wasted resources. The par-
tition should be rectangular and follow specific rules considering the physical character-
istics of the FPGA. The smallest possible resource unit for a partition is a column of re-
sources delimited by configuration rows along the device, which can vary for each FPGA

model. For the FPGA family used in this work, the partition height must be a multiple of
the column size, and the width can be delimited as needed. The allocation of resources
should consider the non-uniform distribution of resource columns and routing problems,
which hamper the complete utilization of any given partition. To avoid such issues, we
allocate 25% more CLBs than indicated by the synthesis tool and reserve at least 10% of
the device area for the static area, which is responsible for communicating partitions with
external components.

4.2. Model

When it comes to optimizing the placement of virtualized network functions in an in-
frastructure, there are different approaches that can be taken. The focus of this work is
not to create a new heuristic, but instead to model the hardware in a realistic way, and
evaluate the impact of such a model on function allocation. We present two approaches
to modeling FPGAs for VNF allocation: one is partition aware, i.e., it includes the ex-
plicit modeling of the reconfigurable partitions of the FPGA fabric, which are defined
beforehand by designers and impose restrictions on how resources can be used for mul-
tiple functions; the other, deemed partition unaware, uses the simplified view of FPGA
resources as a collection of blocks that can be freely assigned to functions as necessary
as [Sharma et al. 2020] and [Draxler and Karl 2019]. As will be seen in this work, the
partition unaware approach is simpler and uses fewer computational resources, but may
lead to impossible allocations. Thus, it is recommended mainly for the early stages of the
project and evaluation of NFVIs.

Each approach aims to maximize the value that can be achieved in an NFVI con-
figuration, which is the sum of the value defined for each requisition allocated to the
NFVI-PoPs. The approaches differ since partition awareness enforces that each partition
can fit only one function, even if it has remaining resources. The partition-unaware model
does not have partitions. Thus, the functions can take resources as needed.

Sets and Indices

• N : Set of nodes in the graph.
• R: Set of requisitions.
• P : Set of paths between nodes.
• F : Set of functions for each requisition.
• Sn: Set of resource sets for node n.

Parameters

• Latencyn1,n2
: Latency between nodes n1 and n2.

• Throughputn1,n2
: Throughput between nodes n1 and n2.

• Resourcesn,s: Resources available in resource set s at node n.
• Reqr: Tuple containing source node, destination node, maximum latency, mini-

mum throughput, function chain, and value for requisition r.

Decision Variables

• xn,s,r,f,p: Binary variable indicating if function f of requisition r is allocated in
resource set s at node n along path p.

• yr: Binary variable indicating if requisition r is selected.

Objective Function
Maximize the total value of allocated requisitions:

Maximize Z =
∑
r∈R

yr × Valuer (1)

Constraints
• Resource Constraints: Ensure that the resource set has enough resources to allo-

cate the requisition.

∀n ∈ N, s ∈ Sn, r ∈ R, f ∈ F, p ∈ P : xn,s,r,f,p×ReqResourcer,f ≤ Resourcesn,s
• Latency and Throughput Constraints: For each path of each requisition, ensure

that the total latency does not exceed the maximum allowed and the minimum
throughput is achieved.

∀r ∈ R, p ∈ P : TotalLatencyp ≤ MaxLatencyr

∀r ∈ R, p ∈ P : TotalThroughputp ≥ MinThroughputr
• Link Throughput Constraint: For each link between nodes, the total throughput

used by all requisitions traversing this link must not exceed the link’s throughput
capacity.

∀s node, d node ∈ N :
∑
r∈R,
p∈P,
f∈F,

i∈{1,...,|p|−1}

xpath[i],set idx,r,f,p×MinThror ≤ LinkThros node,d node

• Function Allocation Constraint: Ensure all functions of an allocated requisition
are allocated along the same chosen path.

∀r ∈ R : yr × |Fr| ≤
∑

n∈N,s∈Sn,f∈F,p∈P

xn,s,r,f,p

• Unique Allocation of Node-Resource Set Pair: Ensure that each node-resource
set pair is allocated to at most one function of one requisition.

∀n ∈ N, s ∈ Sn :
∑

r∈R,f∈F,p∈P

xn,s,r,f,p ≤ 1

• Allocation Limit: Limit the allocation for each function of each requisition to at
most one resource set.

∀r ∈ R, f ∈ F :
∑

n∈N,s∈Sn,p∈P

xn,s,r,f,p ≤ 1

For the partition-unaware model, instead of using the constraint Allocation Limit
above, we used the constraint Resource Capacity Constraint below.

• Resource Capacity Constraint: Ensure that the total allocation of resources at
each node does not exceed its available capacity.

∀node ∈ N, set idx ∈ Snode :
∑
r∈R,
p∈P,
f∈F

xnode,set idx,r,f,p×ReqResourcer,f ≤ Resourcesnode,set idx

5. Invalid allocation detection

The algorithm proposed in this work aims to find invalid allocation in an FPGA. It takes
into consideration some hardware particularities, such as how the resources are distributed
physically. The distribution along the chip can be seen as an example in Figure 1.

Rows

Tile

BRAM
Column

DSP
Column

CLB
Column

R
ec

o
n

fi
gu

ra
ti

o
n

Fr
am

e
Figure 1. Reconfiguration Block Illustration.

The FPGA configuration memory, which stores the configuration bitstream, is di-
vided into frames, which are organized in columns and rows. The configuration frame is
minimum addressable unit of the configuration memory. Each FPGA family is designed
with a unique frame size, which accommodates a predetermined number of resources,
such as CLBs or BRAMs, with variations existing between models. The minimum par-
tition size, with regard to computational resources, is defined by the frame height. This
characteristic determines the lowest number of resources that can form a functional par-
tition. For example, in the KU040, a model used in this work, the height of the configu-
ration frame is 60 CLBs, or 12 BRAMs, or 24 DSPs. Therefore, a partition that requires
only 5 CLBs will have to physically occupy 60 CLBs, as it needs to reserve a value that
is a multiple of 60, even if not all are used.

The system partitions are composed of multiple configuration blocks. As each
column in the resource matrix represents a unique resource type, it is advisable to con-
struct taller rather than wider partitions when dealing with large partitions. This method
ensures that resources are allocated wisely. For a detailed understanding of the algorithm
employed, please refer to Algorithm 1.

Algorithm 1 Invalid allocation detection algorithm
Input: List of requisitions allocated using unaware approach R
Output: A list of requisitions that were not allocated (invalid) I

1 I ← ∅
2 for each requisition r in R do
3 V alid← False
4 min Tile CLB ← ⌈r.CLB/60⌉
5 min Tile BRAM ← ⌈r.BRAM/12⌉
6 Check for the FPGA model to get total rows, total columns, and resource distribution
7 for column← 1 to total columns do
8 for row ← 1 to total rows do
9 if min Tile CLB <= row × column then

10 min BRAM ← row × column
min Tile

11 if min BRAM >= min Tile BRAM then
12 V alid← True
13 Remove the used resources from the FPGA
14 break
15 for column← 1 to total columns do
16 for row ← 1 to total rows do
17 if min Tile BRAM <= row × column then
18 min CLB ← row × column

min Tile
19 if min CLB >= min Tile CLB then
20 V alid← True
21 Remove the used resources from the FPGA
22 break
23 if V alid ̸= True then
24 I ← I ∪ {r}

The algorithm idea is to check the requisitions that were previously allocated by
the and verify their validity, giving an optimistic view of the hardware. For each requisi-
tion in the list the minimum number of tiles of each computational resource is calculated.
Tile here is a single column from a reconfiguration block, as seen in Figure 1, being the
minimal unit of resources that can be allocated. From the requisition list, we get the node
and FPGA to which the function was allocated. For each FPGA, there is a different re-
source distribution along the hardware. This information is important because it defines
the min Tile value that represents the gap between two different resources, like for every
4 CLBs columns, there is a column of BRAM. The for loops are responsible for iterating
over the number of columns and rows till the number of tiles of each resource inside this
area fits the required amount. We focus on CLBs and BRAMs, which are the resources
most heavily used by the evaluated VNFs, although the algorithm could be extended to
cover other resource types. This logic is used to find the best aspect ratio that minimizes
the amount of resources that the requisition needs to use. Thus, we assume each func-
tion is allocated to an actual partition of optimal dimensions. If the requisition does not
fit these constraints, it is not valid, then it will be appended to the invalid list, and this
instance of solution is considered invalid.

The purpose of this approach is to verify the validity of allocations performed by
the solver by detecting any invalid requisitions. Furthermore, this method enforces the
minimum area of usage and subsequently expands the rectangular shape as the counter
increases. The algorithm works by commencing with a thin and tall partition, which is
then horizontally expanded. The partition’s height-to-width ratio is used to determine

the quantity of a given resource it contains. The method is particularly beneficial when
dealing with functions that require an uneven distribution of resources since it aids in the
efficient partitioning of the device, minimizing resource and space wastage.

6. Experimental Results
The purpose of this section is to evaluate the scalability and efficiency of the ILP model
by conducting simulation experiments. We will start by explaining the simulation envi-
ronment used in our assessment and then proceed to present the results we obtained from
running experiments on the ILP model.

6.1. Experimental Setup
The ILP model was constructed using the Gurobi solver API for Python version 11. The
solver ran on an AMD Ryzen 5 5600 6-Core Processor @ 3.5 GHz with 32GB of RAM.

Table 1 shows the network functions considered in the simulations with their re-
quired resources. Different types of functions have varying resource numbers, allowing
for various possibilities. Some latency values were not provided by authors, and for those
cases, we consider random numbers drawn from the range of latencies of functions of the
same type. Table 2 displays the FPGA models that were considered in the simulations,
along with their corresponding specifications and the number of partitions that were used
to run the tests. They were chosen by modeling three different sizes of partitions, to av-
erage fit the size of the network function chosen. Large has around 20.000 CLBs and
500 BRAMs, medium has around 10.000 CLBs and 300 BRAMs, and last, the small one
has around 3.000 CLBs and 80 BRAMs, which may vary slightly from each model. Ta-
ble 2 also lists how many of each partition size were placed in each FPGA model. For
the KU040, the smallest FPGA, two different randomly assigned partition schemes were
used, one with only one large partition, and one with one medium and two small parti-
tions.

Function Type CLB BRAM Throughput (Gbps) Latency (µs) Reference
Firewall 1150 5 2.9 - 6.6 1.84 - 4.2 [Ajami and Dinh 2011]
Firewall 8537 1 2 23 - 212 [Lopes et al. 2021]
Firewall 8123 241 92.16 73 [Fiessler et al. 2017]

DPI 8377 37 0.8 278 [Lopes et al. 2021]
DPI 8612 438 0.8 2778 [Lopes et al. 2021]
DPI 15206 36 14.4 - [Yang et al. 2008]
DPI 713 96 90 - [Jiang and Prasanna 2009b]
DPI 5154 407 80 - [Jiang and Prasanna 2009a]
DPI 6048 399 102.6 - [Fong et al. 2012]
AES 2532 0 49.38 - [Smekal et al. 2018]
AES 4095 0 59.3 2 [Zodpe and Sapkal 2020]
AES 2304 0 45 - [Soliman and Abozaid 2011]
AES 9561 450 119.3 - [Henzen and Fichtner 2010]
AES 486 0 3.44 - [Liu et al. 2015]

Table 1. Network Function Used

The system generates a unique network topology for every instance, with the size
of the topology based on the number of network nodes. The number of nodes gradually
increases by increments of 5 until it reaches a maximum of 30. Each size is run through

multiple instances with entirely fresh topologies that accurately reflect their corresponding
number of nodes. The number of links is a multiple of nodes, using 30% more, and
creates a list of requisitions 5 to 7 times the number of nodes. To generate values for
the creation of different network topologies, a range of values is employed to achieve
specific variations. For instance, values ranging from 20µs to 200µs are utilized to define
latency, while data throughput values are drawn from four fundamental values: 40 Gbps,
100 Gbps, and 200 Gbps. The total value achieved for each instance is the sum of values
from each requisition, which is a function value calculated based on the resources used
by it, i.e., we assume higher fees are charged for more resource-intensive functions. This
approach can create a diverse range of network topologies with varying characteristics
that cater to specific requirements.

Table 2. Product specifications
KU040 KU095 VU190

CLB Blocks 30.300 67.200 134.280
Block RAM Blocks 600 1.680 3.780
I/O DLLs 40 64 120
DSP Slices 1.920 768 1.800
150G Interlaken 0 2 9
100G Ethernet 0 2 9
Large Partition 0/1 2 4
Medium Partition 1/0 1 2
Small Partition 2/0 3 3

6.2. Experiments

Figure 2 compares the mean value achieved by each size of topology, where each row
represents a version of the model. The red one is the approach unaware of partitions, and
the green represents the awareness. The bars in each dot are the standard deviation values
from each size of topology. As expected, the mean value is always lower in the partition
aware as it follows the hardware constraints, allocating some resources that will not be
used. The mean value follows a linear rate as the number of nodes in the topology grows.
Nonetheless, we note that, on average, the partition-aware approach is able to allocate
78.9% of the requisitions allocated by the partition-unaware model. It should be noted,
however, as will be seen next, that using a partition-unaware model may lead to unfeasible
allocations.

The validity of the allocation algorithm was tested through simulations to assess
the frequency of invalid allocations when implementing the unaware approach. The figure
3 shows the proportion of invalid solutions to the total number of instances, highlighting
the occurrence of faulty allocation. Thus, although an unaware model is able to allocate
more functions, there is a relevant probability that an invalid solution will be produced,
when designers actually try to fit the selected functions in the FPGA fabric. In other
words, neglecting to factor in partitions during FPGA modeling can lead to inaccurate
values, ultimately resulting in an inadequate computational resource for the network in-
frastructure.

Figure 2. Mean number of allocated requisitions achieved by each approach per
number of nodes in the topology

Figure 3. Mean ratio for invalid allocation

7. Conclusion
This paper presented an ILP-based VNF placement scheme for FPGA-equipped NFVIs.
Results highlighted the importance of considering hardware limitations and partition-
awareness while designing network infrastructures. The study’s simulations showed that

neglecting partitions can lead to inaccurate allocations and insufficient computational re-
sources. However, adopting a partition-aware approach can help the network achieve
more precise values and better resource allocation, resulting in a highly efficient and ef-
fective infrastructure.

Future works that are being targeted focus on trying to reduce the optimistic view
of the algorithm, not generalizing the number of different resource columns but using a
real distribution of the hardware instead.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001, the Fundação de Amparo à Pesquisa
do Estado do Rio Grande do Sul (FAPERGS), grant #21/2551-0002089-0, the Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), grant #305355/2023-6,
and the São Paulo Research Foundation (FAPESP), grant #2021/06947-6.

References

Ajami, R. and Dinh, A. (2011). Embedded network firewall on fpga. In 2011 Eighth
International Conference on Information Technology: New Generations, pages 1041–
1043.

Doan, T. V., Nguyen, G. T., Reisslein, M., and Fitzek, F. (2023). Sap: Subchain-aware nfv
service placement in mobile edge cloud. IEEE Transactions on Network and Service
Management, 20:319–341.

Dong, L., da Fonseca, N. L. S., and Zhu, Z. (2021). Application-driven provisioning
of service function chains over heterogeneous nfv platforms. IEEE Transactions on
Network and Service Management, 18(3):3037–3048.

Draxler, S. and Karl, H. (2019). Spring: Scaling, placement, and routing of heterogeneous
services with flexible structures. In Network Softwarization (NetSoft), pages 115–123.
2019 IEEE Conference.

Fiessler, A., Lorenz, C., Hager, S., Scheuermann, B., and Moore, A. W. (2017). Hy-
pafilter+: Enhanced hybrid packet filtering using hardware assisted classification and
header space analysis. IEEE/ACM Transactions on Networking, 25(6):3655–3669.

Fong, J., Wang, X., Qi, Y., Li, J., and Jiang, W. (2012). Parasplit: A scalable architecture
on fpga for terabit packet classification. In 2012 IEEE 20th Annual Symposium on
High-Performance Interconnects, pages 1–8.

Henzen, L. and Fichtner, W. (2010). Fpga parallel-pipelined aes-gcm core for 100g eth-
ernet applications. In 2010 Proceedings of ESSCIRC, pages 202–205.

Jiang, W. and Prasanna, V. (2009a). Large-scale wire-speed packet classification on fpgas.
pages 219–228.

Jiang, W. and Prasanna, V. K. (2009b). A fpga-based parallel architecture for scalable
high-speed packet classification. In 2009 20th IEEE International Conference on
Application-specific Systems, Architectures and Processors, pages 24–31.

Laghrissi, A. and Taleb, T. (2019). A survey on the placement of virtual resources and
virtual network functions. In Communications Surveys and Tutorials, pages 1409–
1434. IEEE.

Leivadeas, A., Kesidis, G., Ibnkahla, M., and Lambadaris, I. (2019). Vnf placement
optimization at the edge and cloud †. Future Internet, 11:69.

Li, X. and Qian, C. (2016). A survey of network function placement. In 2016 13th IEEE
Annual Consumer Communications Networking Conference (CCNC), pages 948–953.

Liu, Q., Xu, Z., and Yuan, Y. (2015). High throughput and secure advanced encryp-
tion standard on field programmable gate array with fine pipelining and enhanced key
expansion. IET Computers & Digital Techniques, 9(3):175–184.

Lopes, F. B., Nazar, G. L., and Schaeffer-Filho, A. E. (2021). Vnfaccel: An fpga-based
platform for modular vnf components acceleration. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 250–258.

Lopes, F. B., Schaeffer-Filho, A., and Nazar, G. (2023). Modular vnf components accel-
eration with fpga overlays. IEEE Transactions on Network and Service Management,
20:846–857.

NetworkX (2014). Networkx — networkx documentation. Accessed: 2024-01-28.

Niemiec, G. S., Batista, L. M. S., Filho, A. E. S., and Nazar, G. L. (2020). A survey on
fpga support for feasible execution of vnfs. In Communications Surveys & Tutorials,
pages 504–525. IEEE, VOL. 22, NO. 1, FIRST QUARTER 2020.

Paganelli, F., Cappanera, P., Brogi, A., and Falco, R. (2021). Profit-aware placement of
multi-flavoured vnf chains. In Cloud Networking (CloudNet), pages 48–55. 2021 IEEE
10th International Conference.

Qi, D., Shen, S., and Wang, G. (2019). Towards an efficient vnf placement in network
function virtualization. Computer Communications, 138:81–89.

Santos, G. L., Bezerra, D., Rocha, , Ferreira, L., Moreira, A., Gonçalves, G., Marquezini,
M., Recse, A., Mehta, A., Kelner, J., Sadok, D., and Endo, P. (2021). Service function
chain placement in distributed scenarios: A systematic review. Journal of Network and
Systems Management, 30.

Sharma, G. P., Tavernier, W., Colle, D., and Pickavet, M. (2020). Vnf-aapc: Accelerator-
aware vnf placement and chaining. In Computer Networks. Elsevier, Computer Net-
works 177 (2020), 107329.

Smekal, D., Hajny, J., and Martinasek, Z. (2018). Comparative analysis of different im-
plementations of encryption algorithms on fpga network cards. IFAC-PapersOnLine,
51(6):312–317. 15th IFAC Conference on Programmable Devices and Embedded Sys-
tems PDeS 2018.

Soliman, M. I. and Abozaid, G. Y. (2011). Fpga implementation and performance eval-
uation of a high throughput crypto coprocessor. Journal of Parallel and Distributed
Computing, 71(8):1075–1084.

Solozabal, R., Ceberio, J., Sanchoyerto, A., Zabala, L., Blanco, B., and Liberal, F. (2020).
Virtual network function placement optimization with deep reinforcement learning.
IEEE Journal on Selected Areas in Communications, 38:292–303.

Sun, J., Zhang, Y., Liu, F., Wang, H., Xu, X., and Li, Y. (2022). A survey on the place-
ment of virtual network functions. Journal of Network and Computer Applications,
202:103361.

Xilinx (2021). Vivado design suite user guide: Dynamic function
exchange (ug909). https://docs.xilinx.com/r/en-US/
ug909-vivado-partial-reconfiguration. [Online; accessed March
27, 2023].

Xu, Z., Cui, Y., and Jiang, Y. (2018). Confv: An endhost-cloud collaborated network
function virtualization framework. 2018 2nd IEEE Advanced Information Manage-
ment,Communicates,Electronic and Automation Control Conference (IMCEC), pages
1280–1284.

Yang, Y.-H. E., Jiang, W., and Prasanna, V. K. (2008). Compact architecture for high-
throughput regular expression matching on fpga. ANCS ’08, page 30–39, New York,
NY, USA. Association for Computing Machinery.

Zhang, Q., Xiao, Y., Liu, F., Lui, J. C., Guo, J., and Wang, T. (2017). Joint opti-
mization of chain placement and request scheduling for network function virtualiza-
tion. 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 731–741.

Zodpe, H. and Sapkal, A. (2020). An efficient aes implementation using fpga with en-
hanced security features. Journal of King Saud University - Engineering Sciences,
32(2):115–122.

