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Abstract. Mobility is a fundamental aspect of human life, and mobility data of-
fers valuable insights into user behavior. Yet, this data also exposes users to
privacy risks given the singularity in their trajectories. To address these con-
cerns, techniques to quantify users’ vulnerability have been proposed. However,
these techniques often focus on the users spatial-temporal vulnerability, and
leave aside the behavioral vulnerability of the users. Thus, we introduce the
Hypercube, a novel interpretable metric for quantifying user vulnerability. This
metric leverages features extracted from trajectories, modeling user behavior in
a multidimensional space, to provide a comprehensive and intuitive assessment.
Results shows that the hypercube effectively captures vulnerability within the
behavioral space, identifying the singularity in such behavior.

Resumo. A mobilidade é um aspecto fundamental da vida humana, e os dados
de mobilidade oferecem insights sobre o comportamento dos usuários. Con-
tudo, esses dados também expõem os usuários a riscos de privacidade, dado a
singularidade em suas trajetórias. Na literatura, técnicas foram desenvolvidas
para quantificar a vulnerabilidade dos usuários. Porém, essas técnicas, no ge-
ral, focam na singularidade espaço-temporal dos usuários, deixando de lado
a singularidade do comportamento dos usuários. Neste contexto, esse artigo
introduz o hipercubo, uma nova métrica interpretável para quantificar a vulne-
rabilidade dos usuários. Para tal, o hipercubo explora métricas extraı́das de tra-
jetórias modelando o comportamento dos usuários em um espaço multidimen-
sional. Nossos resultados mostram que o hipercubo captura a vulnerabilidade
dentro do espaço das métricas comportamentais, identificando a singularidade
nesse comportamento.

1. Introdução
A mobilidade urbana é um aspecto fundamental da vida humana que influencia diversas
dimensões do bem-estar individual e social [Recchi and Tittel 2023]. A mobilidade de
uma pessoa funciona como uma assinatura do seu comportamento e, por meio de dados
de mobilidade extraı́dos de telefones celulares, GPS e redes sociais é possı́vel modelar



esse comportamento. Ao identificar os padrões de mobilidade de um indivı́duo ou grupo,
é possı́vel obter insights sobre vários aspectos de suas vidas diárias, como os lugares
que visitam, onde vivem e trabalham. Esse entendimento, quando exposto, também pode
tornar os usuários vulneráveis quanto a possı́veis violações de privacidade.

Na literatura, o conceito de unicidade (em inglês, unicity) é utilizado para repre-
sentar a singularidade nos padrões de deslocamento de usuários. Este fenômeno pode
ser facilmente observado em conjuntos de dados de mobilidade [Zang and Bolot 2011,
Farzanehfar et al. 2021], expondo a vulnerabilidade dos usuários. Corroborando essa
visão, um estudo de [De Montjoye et al. 2013] demonstrou que apenas quatro pontos
espaço-temporais em um conjunto de dados de mobilidade celular são suficientes para
identificar unicamente 95% dos indivı́duos em uma população de 1,5 milhão de usuários.

Contudo, medir a vulnerabilidade de um usuário não é uma tarefa fácil, uma
vez que seus padrões de mobilidade podem ser analisados sob diferentes perspectivas,
cada uma com o potencial de revelar aspectos singulares distintos que podem colocar
em risco (ou tornar vulnerável) a privacidade do usuário. Uma das técnicas mais ampla-
mente usadas para estimar a vulnerabilidade em padrões de mobilidade foi proposta em
[De Montjoye et al. 2013]. Os autores propuseram uma métrica chamada uniqueness, que
mede o número de sequências únicas de lugares visitados por um usuário, ordenadas tem-
poralmente, com base em suas trajetórias. Quanto mais singular forem os movimentos de
um usuário, maior será sua propensão à exposição. Apesar de amplamente usada (e.g.,
[Pyrgelis et al. 2017]), a uniqueness tem alto custo computacional (para computar todas
as possı́veis combinações de pontos em uma trajetória) e oferece uma perspectiva única
da vulnerabilidade do usuário, baseada apenas nas sequências de lugares visitados.

Entretanto, a mobilidade de um usuário, do ponto de vista do seus padrões
de comportamento, é fundamentalmente multifacetada e, portanto, deve ser analisada
sob múltiplas perspectivas. De fato, estudos anteriores modelaram a mobilidade hu-
mana utilizando diferentes métricas de mobilidade, como raio de giro (do inglês radius
of gyration), diversidade, regularidade, estacionaridade, entre outras [Esper et al. 2024,
Gonzalez et al. 2008]. Essas métricas capturam diferentes perspectivas da mobilidade e
podem revelar padrões únicos de usuários que não são explicitamente capturados pela
métrica de uniqueness. Por exemplo, o raio de giro mede a mobilidade caracterı́stica
de um usuário, enquanto a diversidade avalia o quão variadas são as subsequências de
lugares visitados. Ao considerar múltiplas métricas conjuntamente, é possı́vel represen-
tar o comportamento de um usuário em um espaço multidimensional. A análise de tal
representação pode revelar padrões de mobilidade bem distintos que, por sua vez, podem
expor um usuário à medida em que ele se destaca dos demais.

De fato, indo além da perspectiva única oferecida pela métrica de unique-
ness, outros trabalhos exploraram conjuntos de métricas de mobilidade para ava-
liar a vulnerabilidade do usuário considerando conjuntamente diferentes perspec-
tivas [Pellungrini et al. 2017, Naretto et al. 2020]. Porém estes trabalhos vinculam
a definição de vulnerabilidade a modelos de ataque especı́ficos (e.g., ataque de
reidentificação), e tratam a tarefa de estimar a vulnerabilidade de um usuário como uma
tarefa de classificação supervisionada baseada em aprendizado de máquina, a qual exige
dados rotulados [Pellungrini et al. 2017, Naretto et al. 2020]. Assim, esses métodos são
inerentemente limitados, pois dependem do conhecimento adversário, e não se adequam



a tipos de ataques imprevistos. Como resultado, a métrica de uniqueness, que independe
de modelos especı́ficos, permanece a mais utilizada na literatura.

Neste contexto, nossa pesquisa investiga como estimar a vulnerabilidade de um
usuário em dados de mobilidade, considerando múltiplas perspectivas capturadas por
diferentes métricas de mobilidade, mas sem a vinculação com modelos adversários es-
pecı́ficos. Buscamos explorar como uma assinatura do comportamento em dados de mo-
bilidade pode representar uma nova dimensão da exposição da privacidade, amplamente
negligenciada. Por exemplo, considere um usuário com o seguinte padrão de mobilidade:
(i) Nos dias de semana, desloca entre casa ao trabalho e, (ii) Aos fins de semana, fica em
casa. Mesmo que esse usuário resida em um prédio densamente populado e compartilhe
um local de trabalho com diversos colegas, o que torna sua sequência de locais visitados
não única, seu padrão de mobilidade altamente previsı́vel ainda poderia expô-lo. O co-
nhecimento dessa assinatura de comportamento, que distingue o usuário dos demais que
visitam os mesmos locais, poderia comprometer a sua privacidade.

Especificamente, nós propomos uma nova técnica para estimar a vulnerabilidade
de usuários em conjuntos de dados de mobilidade chamada hipercubo. O hipercubo atua
sobre um espaço genérico de |M | dimensões, definido a partir de um conjunto de M
métricas de mobilidade urbana. Este espaço visa capturar a assinatura de comportamento
nos padrões de mobilidade dos usuários, representados pelo conjunto de M métricas. Es-
pecificamente, a assinatura de um usuário é representada por uma região (um hipercubo)
neste espaço multi-dimensional. O hipercubo de um usuário é centrado no ponto defi-
nido pelos valores das M métricas computados sobre a sua trajetória, e tem o tamanho
definido por uma variação máxima v em todas as dimensões. Quanto mais vizinhos um
usuário tiver dentro do seu hipercubo, mais usuários têm comportamentos similares ao
seu, logo menos vulnerável ele estará. Ressaltamos que o hipercubo apresenta uma alta
interpretabilidade pois permite identificar as métricas que mais contribuem para que um
usuário esteja mais longe de seus vizinhos (logo mais vulnerável). Além disto, comparado
com a literatura, nossa técnica apresenta um baixo custo computacional, pois não explora
combinações espaço-temporais (como a uniqueness), mas sim, um conjunto definido de
métricas. Ela também não exige dados de treinamento (rotulado) nem está atrelada a
modelos especı́ficos de ataques (como [Pellungrini et al. 2017, Naretto et al. 2020]).

Nós avaliamos nossa proposta usando dois conjuntos de dados anonimizados de
redes celulares com diferentes propriedades espaço-temporais e populacionais, coletados
por operadores de telecomunicações nas áreas metropolitanas de Shanghai e Shenzhen,
na China. Comparamos os resultados alcançados pelo hipercubo com a métrica mais
usada na literatura, a uniqueness. Nossa análise revela usuários que, apesar de não serem
únicos em termos das sequências de lugares visitados, exibem padrões comportamentais
de mobilidade bastante distintos dos outros e, como tal, podem ser facilmente expostos.
Estes resultados mostram como o hipercubo contribui para o estado da arte ao oferecer
uma nova análise da exposição de um usuário em dados de mobilidade.

O artigo está organizado da seguinte forma: a Seção 2 apresenta a
contextualização e os trabalhos relacionados. A técnica de hipercubo é descrita na
Seção 3. Os conjuntos de dados e a avaliação da técnica proposta, em comparação com o
estado da arte, estão nas Seções 4 e 5. Por fim, a Seção 6 traz as conclusões.



2. Contextualização
O uso de dados de mobilidade urbana tem o potencial de trazer grandes be-

nefı́cios para a rotina diária das pessoas, apoiando o planejamento urbano, a avaliação
da ocupação do espaço e o projeto de serviços de recomendação [Sojahrood et al. 2023,
Blondel et al. 2015, Cui et al. 2016]. Neste trabalho, focamos em dados de trajetórias,
onde a trajetória de um usuário é constituı́da por uma sequência temporalmente ordenada
de locais visitados por ele.

Vale ressaltar que, os dados de mobilidade também podem revelar hábitos e inte-
resses dos indivı́duos, como estilos de vida, visitas a lugares importantes ou sensı́veis (por
exemplo, casa, trabalho, hospitais), filiações polı́ticas ou religiosas. A possibilidade de
exposição dessas informações sensı́veis levanta preocupações significativas sobre a pri-
vacidade dos indivı́duos, representando uma grande barreira para compartilhamento de
conjuntos de dados de mobilidade [Pyrgelis et al. 2020].

De fato, já foi mostrado que 50% das trajetórias extraı́das de um conjunto de dados
de telefonia móvel de 25 milhões de usuários eram únicas ao considerar os três lugares
mais frequentemente visitados [Zang and Bolot 2011]. Por outro lado, em um conjunto de
dados de 60 milhões de usuários, o risco de exposição individual estimado chegou a 93%
usando 4 pontos espaço-temporais diferentes [Farzanehfar et al. 2021]. Na prática, estes
resultados sugerem que um conhecimento mı́nimo sobre a mobilidade de um indivı́duo é
suficiente para expor dados sensı́veis de um usuário em dados de mobilidade. Esta vul-
nerabilidade à exposição se deve à singularidade ou unicidade intrı́nseca da mobilidade
humana, geralmente influenciada por diversos fatores de natureza geográfica, temporal e
social [Recchi and Tittel 2023].

Vulnerabilidade em mobilidade é um conceito que não é bem estabelecido, po-
dendo admitir múltiplas definições. Neste trabalho, vinculamos a definição de vulnera-
bilidade ao conceito de singularidade de padrões (como em [De Montjoye et al. 2013])
e definimos: um usuário é considerado vulnerável se ele tiver um comportamento dis-
tinto (i.e., único) dos outros usuários ao seu redor, de forma que possa ser facilmente
destacado do grupo. Isto é, neste trabalho, vulnerabilidade refere-se ao grau com que os
padrões de mobilidade individuais, extraı́dos das trajetórias dos usuários, podem ajudar
a distinguir um indivı́duo do resto. A seguir discutimos esforços anteriores de avaliar a
vulnerabilidade individual em dados de mobilidade.

Abordagens prévias: No trabalho [De Montjoye et al. 2013], os autores introduziram a
métrica uniqueness, que estima a vulnerabilidade à exposição de um usuário a partir do
cálculo de todas as possı́veis subsequências ordenadas de locais visitados extraı́das da sua
trajetória. Ela é calculada em janelas de tempo |tw|: uma trajetória é considerada única se
a subsequência associada a qualquer janela for única. Uniqueness é dada pela frequência
com que uma subsequência ordenada de lugares aparece; valores mais baixos indicam
maior exposição. Usuários com uniqueness igual a 1 são os mais vulneráveis. Neste
sentido, a noção de vulnerabilidade por trás do conceito de uniqueness é o mesmo adotado
neste trabalho. Porém, medir todas as subsequências existentes é computacionalmente
caro. Estratégias para reduzir custos consideram apenas uma parte das subsequências
possı́veis [Pyrgelis et al. 2017]. Como definido, a uniqueness e suas adaptações estimam
a vulnerabilidade do usuário à exposição a partir dos dados brutos de trajetória, os quais
mapeiam a mobilidade do usuário em um espaço bidimensional de espaço versus tempo.



Por sua vez, outros trabalhos propuseram avaliar a exposição do usuário extraindo
um conjunto de métricas a partir das visitas espaço-temporais [Pellungrini et al. 2017,
Naretto et al. 2020], capturando assim uma perspectiva multidimensional da mobilidade.
Em comum, esses estudos mapearam o problema em uma tarefa de classificação base-
ada em aprendizado de máquina supervisionado, a qual exige dados rotulados para o
treinamento do modelo. A rotulação de dados quanto à vulnerabilidade é uma tarefa cus-
tosa. Para lidar com isto, os autores definiram a vulnerabilidade de um usuário como
a probabilidade dele ser re-identificado por um modelo de ataque. Especificamente,
em [Pellungrini et al. 2017], os autores mediram a vulnerabilidade de um usuário em
relação a 9 tipos de ataque. Eles treinaram um modelo de aprendizado de máquina ba-
seado em árvores, usando um conjunto de métricas de mobilidade como atributos de en-
trada, para prever a probabilidade de re-identificação por um desses modelos. Quanto
maior a probabilidade, maior a vulnerabilidade do usuário. Já em [Naretto et al. 2020],
os autores propõem EXPERT, um arcabouço que explora métricas de mobilidade para
classificar um usuário em vulnerabilidade alta ou baixa com relação a um ataque de
sequência de localizações. Em comum, estas estratégias vinculam o conceito de vulne-
rabilidade a modelos adversários especı́ficos, que, por sua vez, dependem do cenário ou
aplicação [Gadotti et al. 2024, Wagner and Eckhoff 2018]. Tal dependência pode ofere-
cer uma perspectiva distorcida de proteção do usuário, pois ataques no mundo real podem
ser diferentes daqueles modelados. Além disso, assim como o uniqueness, estas aborda-
gens têm alto custo computacional.

Em comparação, a estratégia aqui proposta tem baixo custo computacional, alta
interpretabilidade, além de independência de modelos de ataques especı́ficos e de dados
rotulados. Mais ainda, a proposta é genérica e, ao considerar simultaneamente múltiplas
métricas derivadas da trajetória do usuário, captura conjuntamente múltiplas perspectivas
dos padrões de mobilidade, Por fim, a proposta pode ser adaptada facilmente aos dados
disponı́veis, a partir da introdução de diferentes conjuntos de métricas deles derivados.

3. Hipercubo de vulnerabilidade
Nesta seção nós apresentamos a nossa técnica, chamada hipercubo, para estimar a vulne-
rabilidade de usuários, considerando seus padrões de mobilidade e o de outros usuários
ao seu redor. Como em trabalhos anteriores, a técnica opera sobre dados de mobilidade
definidos por um conjunto de usuários U = {1, 2, . . . , i, . . . , N}, no qual cada usuário i
é associado a uma trajetória Φi. Cada trajetória Φi, por sua vez, é composta por tuplas
(i, t, l), onde i se refere ao identificador do usuário, t ao instante de observação e l à
localização (par latitude e longitude) do usuário i em t.

A técnica é instanciada a partir da seleção de um conjunto M de métricas,
M = {m1,m2, . . . ,mr, . . . ,m|M |}, que podem ser computadas nos dados de entrada
e que capturam diferentes perspectivas do comportamento de mobilidade dos usuários
expressas nos dados. O conjunto de métricas é usado para definir um espaço de |M | di-
mensões, em que cada métrica mr corresponde a uma dimensão. Assim, cada usuário
i ∈ U é representado por um vetor (mi

1,m
i
2, . . . ,m

i
|M |) ∈ R|M |, onde cada componente

do vetor corresponde ao valor da métrica mi
r daquele usuário, computado sobre sua tra-

jetória. Neste cenário, nossa hipótese é que usuários que possuem um comportamento dis-
tinto estarão isolados no espaço de métricas definido, podendo assim ser mais facilmente
distinguidos dos demais usuários em U e logo estarão mais vulneráveis à exposição.



Para estimar a vulnerabilidade de um usuário alvo i (e assim identificar os mais
vulneráveis), nós propomos uma técnica que mensura a quantidade de vizinhos a i no
espaço de métricas, considerando uma região de similaridade neste espaço definida por
um parâmetro v ∈ R+. O termo vizinho é usado para referenciar usuários com um com-
portamento muito similar (com relação às métricas M ) ao usuário i. A região de simi-
laridade de i é definida como um hipercubo centrado no ponto (mi

1,m
i
2, . . . ,m

i
|M |) (i.e.,

localização de i no espaço de métricas) e cujo lado na dimensão r é dado por mi
r±v×mi

r.
Ou seja, v pode ser interpretado como um limite na variação do comportamento de um
usuário (capturado por cada métrica em M ) e representa a diferença relativa máxima per-
mitida para que um outro usuário j seja considerado similar a i com relação a qualquer
métrica considerada.

Nosso objetivo é identificar para cada usuário i o número de vizinhos Ni ∈ Z+,
ou seja, usuários cuja representação no espaço de métricas esteja localizada dentro do
hipercubo de i. Tais usuários têm um comportamento muito similar (controlado por uma
diferença relativa máxima v) a i no que tange as métricas em M . Assim, quanto menor
Ni, mais vulnerável o usuário i está. A Figura 1 ilustra em um espaço de |M | = 3 (X, Y,
e Z) como a vizinhança é mensurada no hipercubo para um usuário alvo i. Em amarelo
temos os usuários que estão dentro do hipercubo de i, em verde caso contrário. Perceba
que o hipercubo é construı́do ao redor de um único parâmetro v, o qual é simples e in-
terpretativo, visto que pode ser visto como a variação aceita no comportamento para que
outros usuários façam parte da vizinhança do usuário.

Figura 1. Hipercubo de variação do usuário alvo i.

Para encontrar Ni, primeiramente, nós identificamos os vizinhos de i considerando
cada dimensão separadamente. Para tal, para cada métrica mr e cada outro usuário j ∈ U ,
definimos a variável binária Xr

i,j para indicar se j tem um comportamento muito similar
a i com relação à métrica mr, ou seja:

Xr
i,j =

{
1, se mr

i − v ×mr
i ≤ mr

j ≤ mr
i + v ×mr

i ∀ j ∈ U

0, caso contrário
(1)

Em seguida, nós identificamos os usuários que são vizinhos a i considerando todas
as dimensões conjuntamente, definindo a variável Ai,j como:



Ai,j =

{
1, se

∑|M |
r=0X

r
i,j = |M | ∀ j ∈ U

0, caso contrário
(2)

O número de vizinhos de i, Ni é definido como Ni =
∑|U |

j=0Ai,j − 1. Subtraı́mos
1 do somatório para não incluir o próprio i na contagem.

Considerando uma estimativa binária de vulnerabilidade, como em
[De Montjoye et al. 2013], usuários com Ni=0 seriam considerados vulneráveis,
enquanto usuários com pelo menos um vizinho já poderiam ser considerados protegido,
dado que seria difı́cil distinguir seus comportamentos dos vizinhos mais próximos.
Porém, a técnica proposta pode ser utilizada também para prover estimativas contı́nuas
de vulnerabilidade, as quais podem auxiliar a direcionar melhor técnicas de proteção,
permitindo assim uma maximização de proteção e utilidade dos conjuntos de dados.
Neste cenário, propomos estimar a vulnerabilidade do usuario i, Vi como inversamente
proporcional ao seu número de vizinhos, isto é:

Vi =
1

Ni + 1
(3)

Usuários totalmente isolados (i.e., Ni = 0), terão uma vulnerabilidade igual a 1.
A vulnerabilidade reduz à medida que o usuário possui mais vizinhos.

Até então, nós não definimos o conjunto de métricas M . De fato, a técnica de hi-
percubo é genérica e pode ser aplicada para qualquer conjunto M . Especificamente neste
trabalho, nós consideramos |M | = 13 métricas amplamente utilizadas na literatura para
caracterizar os padrões de mobilidade de usuários de acordo com diferentes perspectivas
[Esper et al. 2024]. Elas são categorizadas em três grupos:

• Métricas espaciais: Raio de Giro (RG), 2-RG (RG dos dois locais mais
visitados), Distância Máxima (Maior deslocamento histórico), Média e
desvio padrão do tamanho dos saltos (i.e. distância entre locais
visitados sucessivamente), número de visitas e número de locais
distintos, as quais são dependentes apenas de informações geográficas.

• Métricas temporais: Média e desvio padrão do tempo de
espera (tempo médio entre registros); as quais dependem apenas do tempo.

• Métricas estruturais: diversidade, regularidade,
estacionariedade e entropia, as quais são dependente de informações
geográficas ordenadas no tempo

Note que essas métricas capturam rotinas espaço-temporais, preferências de mo-
bilidade, e incerteza no comportamento humano (vide definição em [Esper et al. 2024]),
assim, diferentes combinações de métricas podem capturar juntas usuários que estão iso-
lados.

Por fim, ressaltamos que uma das vantagens do hipercubo de vulnerabilidade é sua
alta interpretabilidade. Note que é possı́vel recuperar individualmente a diferença relativa
em cada métrica do usuário i para seu vizinho mais próximo. A análise destas diferenças
permite entender que padrão de comportamento (capturado por uma ou mais métricas)
está contribuindo mais para a vulnerabilidade de i.



Conjunto
de dados # Usuários # Locais # Dias Média de locais

por usuário

Média de locais
por usuário

por dia

Média
de locais
por hora
por dia

Média
de locais dif.
por usuário

Média
de locais dif.
por usuário

por dia
Shanghai 58500 6322 10 180,37 18,03 1 12,48 3,38
Shenzhen 41159 814 15 158,33 10,74 1,26 7,81 3,20

Tabela 1. Estatı́sticas dos dados após pré-processamento.

4. Estudo de caso - Conjuntos de Dados

Avaliamos a técnica de hipercubo em dois conjuntos de dados anonimizados de telefo-
nia móvel (Call Record Details - CDR), denominados Shanghai e Shenzhen. Eles foram
escolhidos por sua relevância na literatura e caracterı́sticas distintas. Shanghai contém tra-
jetórias individuais com granularidade temporal de cerca de uma hora, enquanto Shenzhen
registra posições apenas durante eventos, como chamadas ou mensagens, resultando em
maior esparsidade. A Tabela 1 mostra um sumário dos dois conjuntos de dados.

Diferentemente de Shanghai, Shenzhen não informa a data associada a cada
evento, apenas a hora. Assim, eventos no mesmo dia são identificados com base no
horário do último evento (como feito em [Esper et al. 2024]). Shanghai abrange 10
dias de dados, com a mesma quantidade de usuários ao longo dos dias. Em contraste,
Shenzhen contém trajetórias de até 949 dias, mas avaliamos apenas os primeiros 15 dias,
devido à grande redução de usuários após esse perı́odo. Ambos os conjuntos passaram
por pré-processamento para mitigar vieses causados pela esparsidade. Uma tesselação de
200 × 200 m baseada no OpenStreetMap foi aplicada, e usuários inativos (menos de 10
dias e 100 registros) foram removidos. Para preencher lacunas temporais, empregamos
uma estratégia de completude de dados que preenche lacunas em torno dos locais de casa
e trabalho [Esper et al. 2024].

Cidade Raio de
Giro (km)

2-Raio
de Giro (km)

Distância
Máxima (km) # de Visitas Média de

Saltos (km)
DP

Saltos (km)
# Locais
Distintos

Shanghai 3,52 ± 0,031 1,896 ± 0,026 17,309 ± 0,126 180,37 ± 0,058 1,131 ± 0,01 3,184 ± 0,026 12,484 ± 0,061
Shenzhen 1,557 ± 0,025 0,998 ± 0,021 4,906 ± 0,071 157,971 ± 0,423 0,948 ± 0,014 1,386 ± 0,022 7,816 ± 0,067

(a) Média e IC (95%) das métricas Espaciais,
Cidade Média de Tempo (H) DP Tempo (H)
Shanghai 1,332 ± 0,00 0,63 ± 0,001
Shenzhen 2,301 ± 0,005 4,071 ± 0,013

(b) Média e IC (95%) das métricas Temporais,
Cidade Entropia Estacionaridade Regularidade Diversidade

Shanghai 1,036 ± 0,004 0,725 ± 0,001 0,93 ± 0,0 0,852 ± 0,002
Shenzhen 1,083 ± 0,005 0,543 ± 0,002 0,95 ± 0,0 0,843 ± 0,002

(c) Média e IC (95%) das métricas Estruturais,

Tabela 2. Média e IC (95%) das métricas por grupo

As Tabelas 2a, 2b e 2c, mostram a média e o Intervalo de Confiança (IC) de
95% para várias das métricas utilizadas dividas em três grupos: Métricas espacias, tem-
porais e estruturais, para os dois conjuntos de dados (as demais métricas foram omitidas
por restrições de espaço). Essas métricas caracterizam o comportamento dos usuários em
cada cenário. Por exemplo, em Shanghai, que é uma cidade maior, os usuários tendem
a se deslocar e visitar mais locais distintos, como é possı́vel observar pelas métricas es-
pacias (Raio de Giro, 2-Raio de Giro, Distância Máxima), possuindo



(a) hipercubo Shanghai (b) hipercubo - Shenzhen

(c) Uniqueness - Shanghai (d) Uniqueness - Shenzhen

Figura 2. As Figuras (a) e (b) mostram a distribuição e média (pontos coloridos)
da quantidade de vizinhos em diferentes valores de variação de comporta-
mento v. As Figuras (c) e (d) Uniqueness em diferentes janelas de tempo
de agregação (tw)

uma menor regularidade. Porém, os usuários de Shanghai são mais estacionários, o que
é parcialmente justificado por haver mais registros por usuário, o que permite capturar
mais o tempo desses usuários em locais de longa estadia (e.g., casa e trabalho). Neste
cenário, a coleta tem também um impacto na diversidade dos usuários, que apesar de visi-
tarem mais locais diferentes que os usuários de Shenzhen, são mais diversos em perı́odos
espacialmente mais distantes, enquanto os usuários de Shenzhen tendem a realizar mais
deslocamentos entre cada registro coletado. Isso se reflete também na Entropia obser-
vada, que captura a previsibilidade no movimento dos usuários. Estas diferenças entre os
dois conjuntos de dados permitem avaliar a técnica proposta em cenários diversos.

5. Resultados

5.1. Hipercubo
As Figuras 2a, 2b mostram a distribuição da quantidade de vizinhos dos usuários em
Shanghai e Shenzhen utilizando a técnica do hipercubo em diferentes valores de variação
do comportamento v. Vale destacar que, quanto menor a quantidade de vizinhos, mais
vulnerável é o usuário. Chamamos o conjunto de usuários com quantidade de vizinhos
igual a 0 de Hiper∗. Neste cenário, note que consideramos variações no comportamento
de 1%, o que significa uma pequena variação, 5%, a qual é consideramos uma variação
média, e 10% a qual considera vizinhos que estão mais distantes em seu comportamento.
Note que ao aumentar o valor de v há uma redução na porcentagem de usuários com o
número de vizinhos igual a 0, o que é é justificado pelo fato da variação igual a 1% ser
muito restritiva, o que muda ao realizar o relaxamento dessa variável.



As Figuras 3, 4, mostram para o conjunto de usuários vulneravéis (Hiper∗), a
variação média da métrica mais distante de cada usuário (Fig.3), e complementarmente,
a quantidade de vezes que cada métrica foi considerada a como a mais distante (Fig.4).
Neste cenário, quanto maior a quantidade de vezes que uma métrica foi considerada a mais
distante, mais importante ela é para caracterizar a vulnerabilidade observada no conjunto
de dados. Ao analisarmos as Figuras, o que notamos é que em Shanghai e Shenzhen
grande parte da população (mais de 80%) são capturados em diferentes valores de v. Isso
mostra que no geral os usuários possuem uma variação do comportamento maior que
10% para os vizinhos mais próximos, o que indica uma alta unicidade comportamental. É
notável que ao aumentar o valor de v a variação nas métricas aumenta, visto que usuários
capturados agora apresentam uma distância maior para seu vizinho mais próximo. Neste
cenário, as métricas apresentam uma variação média entorno de 16%, em Shanghai e 17%
em Shenzhen, sendo que essa diferença pode ser atribuı́da ao diferente método de coleta
realizado em cada um dos conjunto de dados. Shenzhen, a qual coleta dados por eventos,
acentua a diferença entre os usuários, visto que sua amostragem varia de acordo com a
utilização de serviços móveis por parte do usuário. Note que a Regularidade apresenta
importância nula em ambos cenários, o que é justificado pela sua baixı́ssima variação,
como observado na Tabela 2c.

Agora, observando as diferenças entre as cidades, notamos que em Shanghai as
métricas de Número de Locais Distintos, Distância Máxima, e 2-Raio
de Giro são as aquelas que estão mais distantes do vizinho mais próximo, enquanto
em Shenzhen, percebemos um padrão diferente, tendo métricas como Distância
Máxima, Entropia, e 2-Raio de Giro como aquelas que possuem mais vezes
a maior variação.

O Número de Locais Distintos, o qual visa capturar o quanto o usuário
explora novos locais é a variável mais afastada do vizinho mais próximo em Shanghai.
Isso pode ser justificado pelas diferentes caracterı́sticas apresentadas por usuários dentro
da mesma cidade. Enquanto alguns são mais rotineiros, outros preferem explorar mais
essas cidades. Essa variação por sua vez impacta em outras métricas como Distância
Máxima e 2-Raio de Giro, as quais justificadas também pelos diferentes padrões
de deslocamento espacial dos usuários. Neste cenário os vizinhos mais próximos, apesar
de ter um comportamento no geral semelhante, tendem a visitar locais mais afastados,
variando do padrão de visita casa-trabalho, consequentemente impactando na métrica de
2-Raio de Giro.

Já em Shenzhen, o que observamos é que a Distância Máxima, é a dimensão
que, no geral, está mais distante, juntamente com a Entropia e 2-Raio de Giro. A
primeira métrica, que captura outliers no deslocamento espacial dos usuários, é altamente
influenciada pelo comportamento espacial do usuário, sendo justificada pelo fato que por
mais que nas atividades cotidianas o vizinho mais próximo possua um comportamento se-
melhante, em perı́odos que fogem ao padrão (e.g. finais de semana, feriados) os usuários
possuem visitas únicas a locais mais distantes, a qual distancia o comportamento des-
ses usuários. Por sua vez, a Entropia e o 2-Raio de Giro são influenciados pela
coleta de dados realizado em Shenzhen. Neste cenário, a Entropia é altamente depen-
dente da regularidade em locais visitados, enquanto o 2-Raio de Giro é dependente
da regularidade da re-visitas em locais como casa e trabalho. Neste cenário, em casos



de coletas muitas variações nas coletas, tais locais podem ser erroneamente identificados
impactando assim no comportamento modelado.

(a) Métricas com maior variação - Shanghai (b) Métricas com maior variação - Shenzhen

Figura 3. # de usuários para cada métrica mais distante do vizinho

(a) Variação das métricas em Shanghai (b) Variação das métricas em Shenzhen

Figura 4. Média e IC para a métrica mais distante do vizinho

5.2. Uniqueness

As Figuras 2c, 2d mostram a distribuição da uniqueness dos usuários em Shanghai e
Shenzhen em diferentes janelas temporais de agregação. Vale destacar que, quanto menor
o valor de uniqueness, mais vulnerável é o usuário. Se o usuário tiver uma uniqueness
igual a 1, isso significa que, em algum momento, apenas esse usuário realizou aquela sub-
trajetória, sendo, portanto, é possı́vel reidentifica-lo. Chamamos o conjunto de usuários
com uniqueness igual a um de Uniq∗. Observe que em Shanghai (Fig 2c), quando tw = 1,
apenas 40% dos usuários são vulneravéis. Isso é justificado pela coleta de dados que é
realizada, em média, a cada hora, o que torna a quantidade pequena a quantidade de
combinações avaliadas quanto tw = 1, assim, reduzindo a probabilidade de identificar
usuários vulneravéis. Apesar de ser uma cidade consideravelmente menor, Shenzhen
(Fig. 2d) apresenta para tw = 1 uma alta vulnerabilidade dada a grande unicidade tem-
poral de seus usuários, dado a sua coleta que é gerada por eventos. Em ambos cenários,
é observável na Figura 2 que um platô é alcançado em ambas as distribuições quando



tw = 4, indicando que padrões semelhantes de vulnerabilidade são capturados quando
tw ≥ 4. Logo, para todas as nossas investigações subsequentes, utilizamos tw = 4.

5.3. hipercubo x Uniqueness

Shanghai Shenzhen
V Uniq∗ − Hiper∗ Uniq∗

⋂
Hiper∗ Hiper∗ − Uniq∗ Uniq∗ − Hiper∗ Uniq∗

⋂
Hiper∗ Hiper∗ − Uniq∗

1% 0,00 0,98 0,02 0,00 0,78 0,22
5% 0,00 0,98 0,02 0,00 0,79 0,21

10% 0,09 0,9 0,01 0,06 0,79 0,15

Tabela 3. % de usuários vulneráveis capturados em diferentes subconjuntos

Nesta seção comparamos a técnica proposta do hipercubo, com a técnica da
uniqueness. Neste cenário avaliamos os grupos de usuários capturados como vulne-
ravéis por ambas as técnicas por meio da análise de conjuntos. Os usuários captu-
rados apenas pela uniqueness (Unique∗ − Hiper∗), os usuários capturados por am-
bas as técnicas (Unique∗

⋂
Hiper∗) e os usuários capturados apenas pelo hipercubo

(Hiper∗ − Unique∗). A Tabela 3 mostra a porcentagem de usuários capturados nos dife-
rentes subgrupos em diferentes valores de variação, para Shanghai e Shenzhen.

Primeiramente, observe que a grande interseção entre os usuários capturados pelo
hipercubo e a uniqueness. O mı́nimo de interseção capturado para ambas as cidades é
de 79%, o que mostra que os usuários que possuem unicidade espaço-temporal, também
apresentam grande unicidade comportamental. Isso também corrobora para o fato que o
hipercubo consegue, de fato, capturar usuários que são vulneravéis.

Usuários capturados apenas pela uniqueness: Ao avaliarmos os usuários capturados
apenas pela uniqueness (Unique∗−Hiper∗), percebemos que a porcentagem de usuários
desse grupo é de no máximo 9% (Shanghai quando v = 10%). Avaliando esses usuários
no cenário de v = 10%, visto que este é o único cenário onde |Unique∗ −Hiper∗| ≠ 0,
percebemos que os usuários desse grupo em Shanghai apresentam em média 1, 6 vizi-
nhos, e 1, 2 vizinhos em Shenzhen. Isso mostra que mesmo usuários que possuem padrões
espaço-temporais únicos podem ter um padrão comportamental que o camufla em meio
a multidão em certos valores de v, logo a escolha do valor de v é crucial para captu-
rar os usuários que apresentam um comportamento vulnerável. Ilustrando este cenário,
vemos usuários que visitam apenas um local, i.e., são altamente estacionários, mas que
estão em locais isolados, que não são visitados por mais nenhum usuário. Neste cenário,
esse usuário possui uma uniqueness igual a 1, porém, eles não são vulneravéis pelo com-
portamento, visto que há outros usuários que possuem o mesmo comportamento de alta
estacionariedade. Logo, esses usuários de alta estacionariedade estão próximos uns aos
outros, fornecendo proteção comportamental.

Usuários capturados apenas pelo hipercubo: A análise dos usuários capturados exclu-
sivamente pelo hipercubo (Hiper∗ − Unique∗) revela que o comportamento do usuário
é um indicativo mais robusto da vulnerabilidade, visto a capacidade de identificar um
maior número de usuários vulneráveis. De fato, o que percebemos ao avaliar os gráficos
de Shanghai e Shenzhen é que no cenário mais permissivo (v = 10%), o hipercubo é capaz
de capturar no mı́nimo 1% e 15%, em Shanghai e Shenzhen, respectivamente, de usuários
que não foram capturados pela uniqueness. Essa diferença na captura em cada conjunto
de dados é justificada pelo fato que Shanghai é uma cidade maior, onde usuários tendem



a ser mais ativos, tendo um deslocamento espaço-temporal maior e mais único. Conse-
quentemente, isso aumenta a interseção entre as duas técnicas, e reduz a porcentagem
capturada de maneira exclusiva. Já em Shenzhen, que é uma cidade espacialmente mais
restrita, os usuários possuem um comportamento espaço-temporal mais similar, visto que
há menos locais para serem visitados, consequentemente tendo menos padrões singula-
res de mobilidade, reduzindo a quantidade de usuários capturados pela uniqueness, e a
interseção entre ambas essas técnicas. Por sua vez, é possı́vel ver que esses usuários são
singulares em seu comportamento, o que consequentemente deixam eles expostos. Isso
corrobora para que o comportamento seja avaliado juntamente com os padrões espaço
temporais para a captura de padrões de vulnerabilidade. Ilustrando esse cenário, percebe-
mos que os usuários que são vulneravéis pelo comportamento mas não vulneravéis pela
uniqueness, são usuários mais estacionários que visam uma quantidade mais restrita de
locais, porém não são completamente estacionários. Ao visitar uma quantidade de lo-
cais reduzida, estes usuários se expõe menos a padrões espaço-temporais únicos, porém,
possuem um comportamento singular comparado aos seus vizinhos.

Em conclusão, o hipercubo é uma técnica que captura como uma perspectiva dife-
rente sobre a vulnerabilidade dos usuários, logo, a ideia pode ser vista como um comple-
mento de outras técnicas para mensurar a vulnerabilidade como a uniqueness. Em algum
cenários, como visto em Shanghai, é o comportamento espaço-temporal pode ser con-
siderado indicativo suficiente para mensurar a vulnerabilidade, visto que há no máximo
apenas 9% de usuários que não são capturados pela uniqueness. Porém, em cenários
como o de Shenzhen, onde os usuários se deslocam por locais similares, vemos que o
comportamento é um melhor indicativo da vulnerabilidade, visto que essa, por sua vez, é
capaz de capturar uma maior quantidade de usuários em um espaço multidimensional que
modela diferente caracterı́sticas da mobilidade do usuário.

6. Conclusões
Neste trabalho, propomos uma nova métrica para quantificar a vulnerabilidade em

conjuntos de dados de mobilidade chamada hipercubo. O hipercubo modela através
de um espaço de métricas de mobilidade, o comportamento de um usuário i para seus
vizinhos, quantificando essa variação comportamental v. Tais métricas permitem que o
hipercubo capture a unicidade no comportamento dos usuários sob diferentes perspecti-
vas das que são capturadas por outras métricas na literatura. O hipercubo possui como
caracterı́sticas a alta interpretabilidade, independência de conhecimento adversário,
baixo custo computacional, e a captura de diferentes perspectivas de vulnerabili-
dade. Assim, o hipercubo permite que pesquisadores quantifiquem a exposição geral em
seus conjuntos de dados e abordem adequadamente a vulnerabilidade de acordo com as
caracterı́sticas e o nı́vel de exposição.

Avalizamos o hipercubo com dois conjuntos de dados de CDR coletados nas ci-
dades de Shanghai e Shenzhen. Os usuários em ambos os conjuntos de dados apresentam
conjuntos diferentes de caracterı́sticas, o que nos permite analisar adequadamente o hi-
percubo em cenários distintos. Nessa avaliação, foi possı́vel perceber que os padrões
de alta vulnerabilidade são diferentes nessas cidades. Além disso, também realizamos
uma comparação entre o hipercubo e a uniqueness. Nossos resultados mostram que con-
seguimos capturar, não apenas, padrões semelhantes aos da uniqueness, com um custo
computacional menor, mas também capturar novos usuários que apresentam alta unici-



dade em seu comportamento, mas não em suas subsequências de visitas. Como trabalhos
futuros, pretendemos avaliar métricas distintas que sejam capazes de capturar perspecti-
vas adicionais do comportamento, avaliando também outras bases de dados, em especial
baseados em GPS, o que pode reduzir qualquer viés na coleta.
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