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Abstract. Planning a tourist trip is a challenging task as it involves reconciling
the user’s personal interests with financial, logistical, and categorical cons-
traints. This problem is formally known as the Tourist Problem and is often
addressed as an optimization problem. Exact methods often fail to find optimal
solutions within a reasonable time for this problem, making metaheuristics a
viable alternative. In this study, we propose a GRASP-based approach to solve
the Tourist Problem. Our technique stands out by considering not only the utility
of the visited locations but also their geographic proximity, encouraging the ex-
ploration of neighboring areas. Besides, our approach was evaluated using real
data from the city of Rio de Janeiro, achieving superior performance compared
to other techniques in the literature, with up to a 60% improvement in utility and
low computational cost, generating routes in less than 1 second.

Resumo. Planejar uma viagem turı́stica é uma tarefa desafiadora, pois envolve
conciliar os interesses pessoais do usuário com restrições financeiras, logı́sticas
e categóricas. Esse problema é formalmente conhecido como o Problema do
Turista e é frequentemente tratado como um problema de otimização. Métodos
exatos frequentemente falham em encontrar soluções ótimas em tempo hábil
para este problema, o que torna meta-heurı́sticas uma alternativa viável. Neste
trabalho, propomos uma abordagem baseada em GRASP para solucionar o Pro-
blema do Turista. Nossa técnica se diferencia por considerar não apenas a uti-
lidade dos locais visitados, mas também a proximidade geográfica, promovendo
a exploração de áreas vizinhas. Além disso, nossa abordagem foi avaliada com
dados reais da cidade do Rio de Janeiro, alcançando um desempenho superior
a outras técnicas da literatura, com melhoria de até 60% em utilidade, e um
baixo custo computacional, gerando rotas em menos de 1 segundo.

1. Introdução
Com a expansão da internet, a indústria do turismo passou por uma revitalização, permi-
tindo que os usuários se conectassem por meio de comunidades online, como blogs de
viagens e redes sociais, facilitando tanto a busca por pontos de interesse (POIs) quanto
a troca de informações sobre locais e experiências [Kotiloglu et al. 2017]. Embora essas
plataformas concentrem um volume significativo de informações relevantes para o plane-
jamento de viagens, é comum que usuários encontrem dificuldades decorrentes da vasta
quantidade de dados disponı́veis, o que dificulta a seleção da opção mais adequada, um



fenômeno conhecido como sobrecarga de informação [Pang et al. 2008]. Uma das manei-
ras de lidar com esse problema é via sistemas de recomendação (SRs), os quais oferecem
sugestões personalizadas baseadas no histórico de visitas dos usuários. Contudo, esses
sistemas geralmente não abrangem aspectos fundamentais de uma viagem turı́stica, como
restrições de preço, horário de funcionamento e distância, que são igualmente cruciais
para uma experiência satisfatória do usuário [Kotiloglu et al. 2017].

Para simplificar o planejamento de viagens, muitos estudos buscam automati-
zar esse processo, abordando-o como um problema de otimização. No geral, este pro-
blema turı́stico é mapeado como uma instância do Problema de Orientação (PO), o qual
é descrito como uma combinação do problema do caixeiro-viajante e o problema da mo-
chila [Gavalas et al. 2014]. De maneira geral, o PO busca encontrar uma rota em um grafo
que maximize a utilidade, respeitando uma restrição de distância [Gavalas et al. 2014].
Neste cenário, a utilidade é dada pelo benefı́cio do usuário visitar um certo local, e.g. a
nota que um usuário deu ao local1. Entretanto, ao considerar cenários reais de turismo,
apenas essas restrições não são capazes de satisfazer os requisitos de usuários visto a
simplicidade de sua modelagem, considerando apenas uma restrição de distância. As-
sim, diversos trabalhos na literatura expandem essa modelagem considerando restrições
de tempo [Vansteenwegen et al. 2011], disponibilidade (ou não) de múltiplos dias de vi-
sitas [Vansteenwegen et al. 2011], e categorias de atrações [Sarkar and Majumder 2021].

Outro fator que torna mais difı́cil a construção de soluções para turistas é que o
PO é um problema NP-difı́cil [Ruiz-Meza and Montoya-Torres 2022], o que faz encontrar
boas soluções em tempo polinomial uma tarefa não-trivial. Além disso, estudos mostram
que usuários estão dispostos a aguardar no máximo 1 segundo para terem respostas em
aplicações em tempo real [Headspin 2023] (e.g. sistemas de recomendação veiculares).
Assim, técnicas que possuem um bom desempenho computacional são essenciais, mesmo
que isso signifique prescindir (até certo ponto) da qualidade da solução gerada.

Na literatura, Heurı́sticas e Meta-heurı́sticas (HMs) têm sido bastante utiliza-
das para resolver o PO visto que HMs otimizam o custo-benefı́cio entre o tempo de
execução e qualidade das soluções. Neste cenário, diferentes técnicas foram aplica-
das para resolver o problema como Algoritmos Genéticos (AG), Colônia de Formi-
gas (CF), e Busca Tabu [Ruiz-Meza and Montoya-Torres 2022]. Contudo, as soluções
e técnicas existentes falham em (i) considerar aspectos importantes de uma viagem
turı́stica como a seleção de hotéis e múltiplos dias de viagem em suas modelagens
[Sarkar and Majumder 2021], tendo pouco uso prático, visto que, no geral, viagens
turı́sticas duram múltiplos dias [Friggstad et al. 2018], (ii) avaliar suas propostas em
cenários realistas, com base de dados que refletem a experiências turı́sticas reais.

Nesse contexto, este trabalho propõe uma meta-heurı́stica voltada para a resolução
do problema do turista, com ênfase em cenários realistas e priorizando um baixo custo
computacional. Assim, propomos uma modelagem condizente com as demandas dos
usuários, que no geral, são negligenciadas na literatura, considerando restrições de
múltiplos dias de viagens, seleção de hotéis, restrições monetárias, de distância diária, ca-
tegorias, e múltiplas visitas. Para tratar o problema propomos uma heurı́stica de solução
única baseada no GRASP (Greedy Randomized Adaptive Search Procedure), que, ao
contrário de técnicas populacionais, como Algoritmos Genéticos (AGs) e Colônia de
Formigas (CF), que exploram múltiplas soluções simultaneamente, apresenta um custo

1Mais formalmente, a utilidade de um roteiro é medida pelo somatório das utilidades dos locais visita-
dos, onde a utilidade de um local é dado pela nota que um usuário atribui àquele local.



computacional menor, tornando-a mais eficiente em comparação com outras abordagens
exploradas na literatura. Além disso, o GRASP se caracteriza por sua simplicidade, o
qual funciona por meio de dois passos principais: (i) uma seleção gulosa aleatorizada de
locais para compor o roteiro, (ii) busca local a qual tenta substituir partes da trajetória
gerada, por outros POIs mais interessantes ao usuário. A seleção gulosa aleatorizada, é
no geral guiada por um critério baseado na utilidade dos locais visitados, que por sua
vez é pouco viável em cenários reais, visto que os locais de utilidade mais alta podem
estar muito longe. Nesse cenário, introduzimos uma seleção baseada no custo-benefı́cio
dos locais ponderando a distância e a utilidade desses locais. Ao fazer tal, a seleção gu-
losa aleatorizada é guiada para locais geograficamente próximos que possuem utilidade
altas, simulando turistas que visitam os melhores locais de regiões de uma cidade. Por
fim, avaliamos nossa proposta com dados reais coletados da plataforma TripAdvisor para
a cidade do Rio de Janeiro. A escolha do TripAdvisor é motivada por esta ser uma das
maiores plataformas de turismo da atualidade, contendo uma vasta gama de informações
contextuais dos locais visitados (e.g. preço, categoria, serviços oferecidos), o que per-
mite avaliar melhor nossa proposta em cenários realistas. Por fim, nós comparamos a
nossa proposta com diferentes técnicas propostas na literatura, incluindo a proposta de
[Kotiloglu et al. 2017].

Nossos resultados experimentais mostram que nossa proposta permite gerar bons
roteiros, superando em 60% em termos de utilidade outras técnicas consideradas em nossa
avaliação experimental. Além disso, nossa proposta apresenta, no pior cenário, um tempo
de execução de 0.84 segundos, indicando, portanto, um baixo custo computacional. Por
fim, disponibilizamos tanto o conjunto de dados utilizados quanto o código das técnicas
implementadas 2 para garantir a reprodutibilidade dos resultados aqui apresentados.

2. Revisão da Literatura
Conforme discutido anteriormente, este trabalho propõe uma técnica para a resolução do
problema do turista. Nesta seção, apresentamos os trabalhos relacionados, organizando-
os em três partes: (i) Problema do turista, mostrando como é feita a modelagem deste
problema na literatura, (ii) fundamentos em heurı́sticas e meta-heurı́sticas, as quais justi-
ficam as técnicas que utilizamos neste trabalho, e por último (iii) estudos que abordam o
mesmo problema analisado neste trabalho.

2.1. Problema do Turista
Neste trabalho, nós focamos na resolução de uma instância do Problema de Orientação
(PO), o qual visa sugerir roteiros que maximizem a utilidade, respeitando as restrições
dos usuários e locais.

Formalmente, PO pode ser modelado como a seguir: seja G = (V,E) um grafo
no qual cada vértice v ∈ V possui associado um peso wv ∈ R+ de utilidade, onde W =
{w0, w1, ..., wv}. Dado um nó inicial s, um nó terminal f , onde s, f ∈ V , e um orçamento
de tempo positivo B, o objetivo é encontrar um caminho de s para f com comprimento
máximo B, de modo que a utilidade total dos nós visitados seja maximizado.

Como mostrado no trabalho de [Ruiz-Meza and Montoya-Torres 2022], o PO é
um problema NP-difı́cil, o que torna a resolução deste problema em um tempo hábil não
trivial. Neste cenário, na literatura, este problema foi tratado utilizando heurı́sticas e
meta-heurı́sticas, as quais nós discutimos a seguir.

2Código Github

https://github.com/lucasgsfelix/Gera-o-de-Roteiros-Tur-sticos---Planet-Caravan


2.2. Heurı́sticas e Meta-heurı́sticas
Em cenários em que a identificação de soluções ótimas em tempo hábil é impossı́vel,
heurı́sticas e meta-heurı́sticas viabilizam alcançar resultados aceitáveis minimizando o
tempo de espera para alcançar esses. Essas técnicas, por sua vez, podem ser categorizadas
em: Meta-heurı́sticas de solução única, e meta-heurı́sticas populacionais.

Meta-heurı́sticas de solução única operam com apenas uma solução, que é ite-
rativamente refinada pelo algoritmo ao explorar uma parte limitada do espaço de busca.
No entanto, essas técnicas podem sofrer com a estagnação em ótimos locais. Exemplos
incluem GRASP, Busca Tabu (BT) e Busca Local Iteradas (BLI).

Em contraste, as soluções baseadas em população geram diferentes soluções
candidatas iniciais e realizam operações combinatórias sobre essas soluções, visando
criar uma solução final que seja melhor que as soluções iniciais [Talbi 2009]. Exem-
plos incluem, Algoritmo Genético (AG) e Colônia de Formigas. Por iniciarem a partir de
múltiplas soluções, as técnicas baseadas em população apresentam maior diversidade e
podem alcançar resultados promissores. Contudo, algumas das soluções geradas podem
ser inviáveis, resultando em avaliações desnecessárias e um aumento do custo computa-
cional. Além disso, o alto custo computacional dessas técnicas dificulta sua aplicação em
cenários de tempo real. Dado que este trabalho busca soluções de baixo custo computa-
cional, focamos em técnicas de solução única, cuja aplicação ao problema do turista será
discutida na próxima seção.

2.3. Trabalhos relacionados
Na literatura, diferentes propostas atacaram o problema de PO utilizando de técnicas ba-
seadas em solução única. A preferência por esse tipo de técnica se dá principalmente
pelo baixo custo computacional. Neste cenário, técnicas como GRASP, BT, e BLI fo-
ram utilizadas. Podemos categorizar esses trabalhos em 2 tipos: aqueles que realizam
avaliações com usuários reais através de uma aplicação web e aqueles avaliam sua meto-
dologia apenas por meio da utilidade dos roteiros recomendados.

Os trabalhos [Ruiz-Meza et al. 2021, Vansteenwegen et al. 2011], propõem uma
abordagem baseada no GRASP para o problema do turista, tendo como principal foco a
avaliação com usuários reais. O primeiro trabalho foca na recomendação de roteiros para
grupos de turistas, enquanto o segundo avalia sua solução através de diferentes usuários
reais por meio de uma aplicação web. Em ambos cenários, os autores confirmam a qua-
lidade do GRASP para a resolução do problema, atingindo soluções com boa utilidade e
bom desempenho computacional, conforme avaliação dos usuários.

Os trabalhos de [Gavalas et al. 2017, Ghobadi et al. 2023,
Aliano Filho and Morabito 2024] utilizam técnicas baseadas em BLI para re-
solver o problema do turista. Em [Gavalas et al. 2017], os autores focam
em aspectos da interação do usuário com aplicações para análise. Já em
[Ghobadi et al. 2023, Aliano Filho and Morabito 2024] focam em comparar as rotas
recomendadas automaticamente para os usuários com rotas feitas previamente por esses
turistas. Vale ressaltar que, em geral, os usuários não realizam escolhas ótimas, o que
faz com que a rotas recomendadas sejam melhores que as rotas feitas pelos usuários sem
auxı́lio de ferramentas [Kotiloglu et al. 2017].

Por último, listamos a proposta de [Kotiloglu et al. 2017], a qual utilizamos como
baseline comparativo. Neste trabalho, os autores usam técnicas de BT com um foco seme-
lhante ao nosso: maximizar concomitantemente a utilidade para o usuário e o desempenho



computacional. O trabalho oferece porém uma modelagem aprofundada dos requisitos
dos turistas, considerando aspectos como horários de funcionamento de locais, seleção
de hotéis e viagens de múltiplos dias, avaliando a metodologia proposta com dados do
Foursquare. Ressaltamos, porém, que embora abrangentes, esses dados não apresentam
informações contextuais o suficiente, o que levou os autores a usarem parcialmente dados
sintéticos em suas avaliações. A seleção deste trabalho como baseline é motivada por esse
ser um dos poucos trabalhos que possui uma modelagem abrangente dos requisitos de um
usuário. Neste cenário, para realizar uma comparação justa, evitando avaliações que não
são consideradas em nossa modelagem, removemos restrições que não estão presentes nas
nossa, mas estão presentes na modelagem original de [Kotiloglu et al. 2017], incluindo a
restrição de horário de funcionamento de locais, e restrição de locais obrigatórios.

Em suma, diferentemente das propostas anteriores, nosso trabalho foca na
recomendação de roteiros turı́sticos preenchendo três principais lacunas deixadas na li-
teratura: (i) a geração de soluções em tempo real, (ii) restrições necessárias para turistas
em uma viagem real, e (iii) avaliação em cenários realistas. Nos endereçamos cada um
desses problemas da seguinte forma: (i) proposta de uma técnica GRASP, a qual possui
menor custo computacional que outras técnicas propostas na literatura, visto que foca em
uma única solução, e (ii) modelagem do problema baseado em demandas reais de turistas,
por fim, (iii) avaliação da proposta com um conjunto de dados da cidade do Rio de Ja-
neiro, coletado da plataforma TripAdvisor, a qual oferece um conjunto único de atributos,
e permite uma avaliação realista da nossa proposta .

3. Metodologia

3.1. Modelagem e Restrições do problema
Considere que um turista (usuário) está viajando, por uma cidade, por p dias,

visando visitar o máximo de m atrações turı́sticas todos os dias. O objetivo desse
usuário é criar passeios diários em locais que podem ser visitados durante os p dias.
Cada local i está associado a uma utilidade Ri ∈ R+. Em nosso cenário a utilidade
pode ser vista como a nota que aquele usuário deu ao local. Assim, o objetivo do
modelo é encontrar o subconjunto de locais disponı́veis que maximize a utilidade
dos locais visitados, enquanto respeitando as restrições do usuário. Sendo assim, a
função objetivo é maximizar a utilidade do turista por meio da seleção de locais ótimos
para visita. Neste trabalho seguimos restrições similares às consideradas no trabalho
de [Kotiloglu et al. 2017]. Assim, consideramos restrições Monetária a qual define o
quanto o usuário pode gastar ao longo de todos os dias, Distância Diária a qual define
o quanto o usuário pode andar, em quilômetros, por dia, Quantidade de Atividades
Diárias a qual define a quantidade máxima de atividades a serem realizadas em um dia,
Categórica a qual define a quantidade máxima de locais de uma mesma categoria podem
ser visitados sequencialmente por dia, e Múltiplas Visitas: a qual define que nenhum
local, com exceção do hotel, pode ser visitado mais de uma vez ao dia.

3.2. Solução proposta

O GRASP é uma meta-heurı́stica [Feo and Resende 1995], que combina elemen-
tos de construção gulosa com busca local para resolver problemas de otimização com-
binatória [Talbi 2009], gerando uma solução viável ao final de seu processo. O GRASP
se destaca entre outras técnicas por ter uma natureza aleatória que permite a geração de
soluções mais diversificadas que outras técnicas de solução única que não possuem ne-
nhum princı́pio estocástico. De maneira geral, o GRASP opera da seguinte forma:



Construção Gulosa Aleatorizada: A partir de solução vazia, é adicionado de maneira
gulosa aleatorizada, elementos ao conjunto de soluções. Neste cenário, esses elementos
são locais que irão compor a rota. Para que sejam selecionados estes elementos, é feita
uma seleção em duas partes: (i) Etapa Gulosa: a qual pré-seleciona elementos de acordo
com um critério guloso (usualmente a utilidade), criando uma Lista de Candidatos Res-
tritos (LCR). A seleção destes elementos é controlada por um parâmetro α, que quanto
menor mais guloso é algoritmo, e quanto maior mais aleatório. Atuando de forma dife-
renciada, valores menores de α restringem o tamanho da LCR, favorecendo soluções de
maior utilidade, mas com menor diversidade. Por outro lado, valores maiores de α pro-
movem maior diversidade, visto que permitem uma LCR menos restritiva, às custas de
uma possı́vel redução na qualidade das soluções. Portanto, ajustar adequadamente esse
parâmetro é crucial para alcançar um equilı́brio que permita a geração de soluções ótimas.
Por fim, (ii) Etapa Aleatória: A qual seleciona um elemento aleatoriamente dentre a LCR.
Busca Local: Após a construção de uma solução inicial, aplica-se uma busca local para
melhorar a solução encontrada na etapa anterior. A busca local explora soluções vizinhas
em busca de melhorias. Em nosso cenário, essa busca visa alterar locais que não possuam
a melhor utilidade possı́vel e ainda tornam a solução viável. Para isso, selecionamos
para substituir locais que possuem a mesma categoria e que são próximos ao local que
será substituı́do, e que tenham uma alta utilidade. Neste caso, ordenamos as melhores
soluções pela utilidade do local, testando novos locais que podem ser atribuı́dos. Este
processo é repetido até que um novo local, que melhora a utilidade da solução, seja en-
contrado. Caso nenhum dos candidatos selecionados melhore a solução e ainda a deixa
viável, então passamos para o próximo local em ordem de utilidade.
Iterações: Repete as etapas de construção e busca local por um número definido de
iterações, mantendo a melhor solução encontrada.

Propostas prévias presentes na literatura que tratam o problema do tu-
rista utilizando a meta-heurı́stica GRASP [Brito et al. 2017, Expósito et al. 2019,
Ruiz-Meza et al. 2022], no geral baseiam sua polı́tica de construção da LCR em sua
função objetivo, ou seja, as soluções são selecionadas apenas com base na utilidade dos
locais visitados. Entretanto, em alguns cenários, essa pode não ser a melhor solução, visto
que além de maximizar a utilidade da solução, é necessário respeitar as restrições. Em
particular, em cenários reais de aplicação, a distância entre os pontos de interesse pode
ser significativa, o que frequentemente resulta na geração de soluções candidatas inviáveis
pelas heurı́sticas, visto que o usuário possui restrições de tempo e limite de quilômetros
deslocados em um dia. Para resolver esse problema, propomos neste trabalho uma abor-
dagem que seleciona os elementos da LCR considerando não apenas a utilidade, denotada
como R, mas também a distância percorrida. Essa distância é calculada a partir de uma
matriz quadrática de distância D, que contém as distâncias reais entre todos os pontos do
conjunto de dados. Neste caso, dado a distância percorrida (Di,j) e a utilidade (Rj) que o
local possui, o local é selecionado para compor a LCR baseado no custo de deslocamento
pela utilidade (c) calculado na Equação[ 1], onde i é o local imediatamente anterior vi-
sitado a j. Neste cenário, os locais que são mais próximos e possuem maior utilidade
possuem maior chance de serem escolhidos dentro da solução. Quanto menor o valor de
c, melhor é o custo de se visitar aquele local. Por fim, os elementos que compõe a LCR
são selecionados caso eles pertençam ao intervalo [cmin, β], sendo β o custo máximo
aceito para um elemento ser selecionado, sendo este calculado pela Equação[ 2].

Note que a Equação [2], possui como parâmetro o valor α, o qual, como discutido,
possui um grande impacto na qualidade das soluções geradas. Como definir o valor de



α pode ser uma tarefa árdua, realizamos a seleção de α de maneira adaptativa, seguinte
a proposta de [Talbi 2009]. Neste cenário, nas m primeiras iterações, o α é selecionado
de conjunto de valores possı́veis A = {α1, ..., αm}. Inicialmente, a probabilidade de
associar com cada αi é de pi = 1/m, i ∈ [1, ...,m]. Depois das m primeiras iterações
a probabilidade de cada α é atualizada de acordo com a qualidade das soluções obtidas.
Considere que r∗ seja a utilidade de solução encontrada e AV G(αi) a média de todas as
soluções encontradas usando α = αi. Então, a probabilidade pi para cada valor de α é
atualizado da seguinte maneira:

cij =
Di,j

Rj

(1)

β = cmin + α(cmax − cmin) (2)

pi =
qi∑m
j=1 qj

, i ∈ [1, ...,m] (3)

Onde qj = r∗/AV G(αi). Assim, valores maiores de pi correspondem a valores
melhores para o parâmetro αi.

Estrutura da solução: A solução gerada pelo GRASP é representada por um vetor S =
[h, p0, ..., pn], onde h corresponde ao hotel, fixo na posição inicial do vetor, e pi representa
os pontos de interesse. Os locais visitados pelo usuário devem ser percorridos na ordem
especificada em S. Caso algum local não possa ser visitado em um dia devido à violação
de alguma restrição, o dia atual é finalizado com uma visita ao hotel, e um novo dia é
iniciado, sendo o ponto de partida de cada dia novamente o hotel.

Busca Local: Na etapa de busca local, utilizamos operações baseadas no problema da
mochila, visando substituir locais que possuem utilidade mais baixas. Neste caso, o
critério para substituição é baseado na utilidade do local. Para locais que possuem uma
utilidade menor que a maior utilidade possı́vel, verificamos locais de mesma categoria
(respeitando a restrição de categoria), que possui uma nota melhor e que são próximos ao
último local visitado (respeitando a restrição de distância), garantindo assim a viabilidade
da nova solução gerada.

4. Procedimentos Experimentais
4.1. Coleta de dados

Categoria # de Pontos Preço Nota
Hotéis 648 339.63 (± 59.88) 3.89 (± 0.10)

Atrações 954 0 (± 0.0) 3.28 (± 0.22)
Restaurantes 564 124.47 (± 24.26) 4.19 (± 0.07)

Tabela 1. Distribuição dos valores nas colunas

Para realização da avaliação experimental escolhemos a cidade do Rio de Janeiro,
uma metrópole com uma vasta gama de pontos turı́sticos. Para aquisição dos dados foi
desenvolvido um crawler para coletar dados do TripAdvisor, incluindo informações de
nota média e nota dada pelo usuário (sendo a nota média a utilidade dada a cada local
- os valores de notas variam entre 1-5), preço mı́nimo e máximo de cada local dado em
reais (utilizamos neste trabalho sempre o preço máximo, considerando o pior cenário),
categoria, e geo-coordenadas (latitude e longitude). Vale ressaltar que outros atributos
como avaliações escritas, tempo recomendado no local, atributos de restaurantes (e.g. tipo



de comida oferecida, tipo de serviço) também foram coletados, contudo, esses atributos
não foram explorados neste trabalho, porém pretendemos utilizá-los em trabalhos futuros.
Os foram coletados para hotéis, restaurantes e atrações (e.g. praias, teatros e pontos de
interesse). A Tabela 1, mostra o valor médio dos atributos coletados juntamente com
o Intervalo de Confiança (IC) de 95 %. Um ponto que é possı́vel perceber é que não
há valores para as atrações, isso ocorre devido a uma limitação da plataforma, o qual não
permite aos usuários colocarem preços de atrações. Além disso, dada a grande quantidade
de atrações públicas no Rio de Janeiro como praias (34), igrejas (32), museus (71), e
pontos de interesse (e.g. Morro da Urca, Praça Mauá) (73), muitas dessas atrações teriam
um preço pequeno ou irrisório ao considerar o valor da viagem.

A coleta resultou num total de 2166 pontos de interesse distintos. Esses dados,
inicialmente, não-estruturados foram convertidos em um formato semi-estruturado (e.g.
CSV) após o parsing e pré-processamento das páginas coletadas. Nossa coleta de dados
possui dados de fevereiro de 2004 à agosto de 2020, porém, neste trabalho, não utili-
zamos os dados no nı́vel de usuário, mas sim no nı́vel de local, o que significa que, ao
invés de utilizarmos a nota individual do usuário para definir Ri (utilidade de cada local),
utilizamos a média das notas dadas aos locais.

Por fim, foi calculada de maneira offline a distâncias entre esses locais, afim de
construir a matriz de distâncias D. Para cada par de pontos de interesse foi calculada a
distância entre eles utilizando a biblioteca OpenStreet Maps, que considera rotas reais em
vez de distâncias geodésicas, trazendo assim maior realismo para os cenários avaliados.
Em média, a distância entre os pontos é de cerca de 27 quilômetros.

4.2. Baselines
A seguir, apresentamos os baselines utilizados para comparação com a técnica

proposta. Além dessas abordagens, incluı́mos também um limite superior teórico para as
instâncias avaliadas. Os baselines testados são:

• Aleatório (Random): O algoritmo aleatório gera soluções de forma estocástica
até encontrar uma solução viável. O algoritmo gera uma solução aleatória consi-
derando todos os hotéis e locais disponı́veis. Desses hotéis, 1 é selecionado. Dos
locais, são selecionados de maneira aleatória a quantidade máxima de locais que
podem ser visitados pelo usuário a cada dia. Em seguida a nova solução é avali-
ada, caso ela não seja viável, são removidos para cada um dos dias inviáveis os
últimos locais a serem visitados. Esse processo se repete enquanto a solução não
for viável. Embora essa abordagem seja eficiente, é considerada ingênua, pois
não garante a geração de boas soluções, e estabelece um limite inferior para a
qualidade das soluções produzidas.

• Guloso (Greedy): O algoritmo guloso segue a lógica de um turista se pergun-
tando “Qual é o melhor lugar viável que posso visitar agora?”. Sendo assim, o
algoritmo guloso é uma abordagem construtiva que seleciona a melhor solução
candidata viável disponı́vel no momento. No momento em que ao adicionar um
local a solução deixa de ser viável, então o turista volta para o hotel. Assim como
o algoritmo aleatório, essa abordagem também é considerada ingênua e oferece
um limite comparativo para a qualidade da solução gerada.

• Busca Tabu (BT): Por fim, implementamos a busca tabu iterada proposta no tra-
balho [Kotiloglu et al. 2017]. Neste trabalho implementamos uma versão que re-
move as restrições de janela de tempo, e locais obrigatórios proposta no BT, visto
que não consideramos tais restrições em nosso problema.



Ressaltamos também que modelamos o nosso problema também no solver co-
mercial CPLEX 3, contudo, este não foi apto de encontrar soluções dentro de um limite
de tempo computacional de 30 minutos. Em nossa avaliação foi possı́vel identificar que
com uma quantidade de locais máxima de 400, ainda é possı́vel gerar roteiros, contudo,
ao passar disso o tempo de execução se torna inviável, motivando ainda mais o uso de
meta-heurı́sticas.

Por fim, apresentamos um baseline teórico, o qual permite calcular um limite
superior para qualidade de soluções, dado pela Função (4). Nela temos que o limite
teórico para a rota gerada é dada se o usuário visita a quantidade máxima de locais (q)
em um dia ao longo de todos seus dias de viagem (d), e que todos os locais que o mesmo
visitou tivessem utilidade máxima (nota 5). Esse valor é acrescido de 5, sendo esta a
utilidade do hotel que é contado apenas uma vez.

t = (5× d× q) + 5 (4)

4.3. Perfis de usuários

Dado que neste trabalho não são realizadas avaliações com usuários reais, para realização
da avaliação experimental foram criados cenários fictı́cios representando possı́veis perfis
de usuários definidos a partir de parâmetros usados na solução. Os parâmetros podem
ser categorizados em 2: fixos e variáveis. Os fixos incluem a duração da viagem (2
dias), número máximo de locais diários (5 locais) e visitas consecutivas por categoria (3
visitas). Já as variáveis são os quilômetros por dia e o orçamento (em reais), criando
diferentes perfis de usuário, os quais são apresentados na Tabela 2. O valor de orçamento
monetário foi baseado no custo médio de hotéis de restaurantes, o qual somados dão um
valor aproximado de 450 reais, neste caso, para o perfil mais econômico (A), o usuário
teria que optar por locais mais baratos para que consiga fazer uma viagem dentro do
orçamento planejado. Além disso, o usuário teria que encontrar restaurantes e atrações
que estejam próximos a seu hotel visto que não pode caminhar muito para evitar extrapolar
a restrição de distância.

Perfil Orçamento
Monetário

#
KMs diário Descrição

A R$ 500 10 Gasto pouco, anda pouco
B R$ 500 20 Gasto pouco, anda muito
C R$ 1000 10 Gasto médio, anda pouco
D R$ 1000 20 Gasto médio, anda muito
E R$ 2500 10 Gasto muito, anda pouco
F R$ 2500 20 Gasto muito, anda muito

Tabela 2. Diferentes perfis testados

4.4. Avaliação experimental

Nós avaliamos as técnicas nos orientando por duas métricas principais: a qualidade das
soluções geradas por cada uma das técnicas em termos de utilidade da solução, e pelo
custo computacional dado pelo tempo de execução para gerar cada uma das técnicas. Para
realizar a avaliação, cada um dos algoritmos foi executados 100 vezes, e são comparados
utilizando um teste-t pareado com 95% de confiança, além da correção de Bonferroni
devido à comparação de múltiplos algoritmos [Cunha et al. 2021, Cunha et al. 2025]. Ao
realizarmos as comparações, todos os resultados foram avaliados dentro de uma máquina
com as especificações apresentadas na Tabela 3, sendo a máquina isolada ao realizar a

3https://www.ibm.com/products/ilog-cplex-optimization-studio



avaliação. Estes testes foram realizados para cada um dos perfis descritos acima em todas
as técnicas avaliadas. Por fim, ressaltamos que algoritmo Greedy, por ser um algoritmo
determinı́stico, não temos variação na utilidade, apenas no tempo de execução.

Sistema Operacional Memória RAM CPU Threads
Ubuntu 18 94 GB Intel(R) Xeon(R) CPU E5620 2.40GHz 16

Tabela 3. Configuração de computador utilizado

5. Parametrização das técnicas
Nesta seção, discutimos o processo de parametrização das técnicas avaliadas. Conforme
mencionado anteriormente, este trabalho busca resolver o problema do turista por meio
da aplicação de diferentes abordagens. Entretanto, destacamos que, entre as técnicas
analisadas, apenas o GRASP e a Busca Tabu possuem parâmetros que influenciam di-
retamente seu funcionamento. Assim, apresentamos, a seguir, os resultados obtidos na
parametrização dessas duas técnicas.

5.1. GRASP
A técnica GRASP possui como parâmetros o α, e a quantidade de iterações. Visto que o
α é calculado de maneira adaptativa, a quantidade de iterações é o único parâmetro que
impacta em nossa proposta. Para quantidade de iterações foram testados com 10, 50, e 100
iterações, porém, caso tenhamos 10 iterações seguidas onde não há melhoria na qualidade
da melhor solução, o algoritmo é finalizado.

A Tabela 4, apresenta o impacto da quantidade de iterações nos resultados
alcançados no perfil A e F , visto que são os dois perfis mais distintos dentre os avali-
ados. É possı́vel perceber que ao aumentar a quantidade de iterações temos um aumento
na utilidade, mas também no tempo de execução do algoritmo. O aumento da utilidade é
justificada pela partida múltipla do GRASP, que, devido à maior quantidade de iterações,
consegue avaliar melhor o espaço de busca e encontrar melhores soluções. Consequente-
mente, o tempo de execução aumenta visto que o processo é repetido uma maior quanti-
dade de vezes. Como os resultados obtidos possuem tempos de execução menores que o
estipulado como ideal (1 segundo), em todos os cenários, utilizamos como parâmetro em
nossas próximas avaliações a quantidade de iterações igual a 100.

Perfil A F
# Iterações 10 50 100 10 50 100
Utilidade 39.97 (± 0.80) 42.015 (± 0.35) 42.57 (± 0.3) 42.42 (± 0.34) 43.45 (± 0.22) 43.67 (± 0.16)
Tempo (s) 0.06 (± 0.0) 0.31 (± 0.001) 0.63 (± 0.01) 0.08 (± 0.0) 0.41 (± 0.0) 0.83 (± 0.0)

Tabela 4. Utilidade e tempo de execução para diferentes parâmetros do GRASP

5.2. Busca Tabu
No método proposto por [Kotiloglu et al. 2017], a busca tabu utiliza dois parâmetros prin-
cipais: o tamanho da lista tabu e o mecanismo de perturbação. O tamanho da lista tabu
evita revisitar locais já visitados por um número fixo de iterações, enquanto o mecanismo
de perturbação remove aleatoriamente um subconjunto de locais com base em uma pro-
babilidade. O estudo de [Kotiloglu et al. 2017] sugere valores padrão de tamanho da lista
tabu igual a 40 e probabilidade de remoção igual a 0.5. Para este trabalho, além desses va-
lores padrão, foram utilizados um tamanho de lista tabu de 20 e probabilidade de remoção
de 0.25. Estes valores, em teoria, dão a BT vantagem em tempo computacional, dado que
as alterações nessa busca são menores.



Parâmetros Perfil A Perfil F
Tamanho da Lista Prob. Remoção Utilidade Tempo (s) Utilidade Tempo (s)

20 0.25 33.23 (± 1.25) 36.06 (± 1.73) 37.43 (± 0.78) 41.11 (± 0.25)
40 0.25 32.85 (± 2.09) 40.07 (± 0.26) 37.77 (± 0.74) 41.1 (± 0.18)
20 0.50 33.42 (± 2.10) 39.72 (± 0.22) 37.52 (± 0.78) 40.51 (± 0.22)
40 0.50 32.56 (± 2.16) 39.72 (± 0.22) 37.7 (± 0.70) 40.45 (± 0.20)

Tabela 5. Parâmetros avaliados na técnica de Busca Tabu

A Tabela 5 apresenta a comparação dos resultados da parametrização para a
técnica BT. Neste cenário, temos que com relação à utilidade os resultados são estatis-
ticamente equivalentes com 95% de confiança. De maneira similar, é possı́vel ver pouca
variação com relação ao tempo de execução, apesar da diferença estatı́stica entre esses.
Logo, não podemos afirmar que os parâmetros possuem poucos resultados da Busca Tabu.
Acreditamos que este baixo impacto se deve ao fato das operações de busca local (e.g. in-
tra e inter 2-opt, 1-0 Relocate e 1-1 Exchange) terem um pouco efeito dentro da instância
que testamos. Isso ocorre porque técnicas como o 2-opt apenas realizam a redução no
custo de distância da rota, o que não é um objetivo de nossa proposta. A técnica de 1-0
Relocate remove um local da rota, o que apenas reduz a mesma em custo, distância e uti-
lidade. Por último, a técnica de 1-1 Exchange adiciona um ponto qualquer a rota, sendo a
única abordagem em pode haver um ganho em utilidade. Contudo, em um cenário como
o do Rio de Janeiro, essa pode não ser a melhor estratégia, visto que a maior distância
que consideramos é de 20 quilômetros por dia (Perfil F ), enquanto a distância média entre
todos os pontos disponı́veis é de 27 quilômetros, o que faz com que na grande maioria dos
casos os resultados sejam inviáveis. Por último, vale ressaltar que, dentro do contexto do
trabalho de [Kotiloglu et al. 2017] as técnicas de busca local fazem sentido, uma vez que
restrições de janela de tempo também são tratadas dentro da proposta. Visto que os resul-
tados são estatisticamente equivalentes, selecionamos como parâmetros padrão em nossas
próximas avaliações a lista tabu com tamanho 20 e a probabilidade de remoção igual a
0.25, dado que este cenário apresenta resultados melhores ou estaticamente equivalentes
em tempo computacional nos cenários avaliados.

6. Avaliação Experimental
Nesta seção apresentamos os resultados alcançados pela metodologia proposta.

Passamos primeiro pela etapa de avaliação das técnicas que utilizamos para resolver o
problema do turista, apresentando então resultados com relação ao tempo e à utilidade.
Por último realizamos uma breve discussão sobre os resultados alcançados.

Utilidade Tempo (s)
Perfil GRASP Greedy Busca Tabu Random GRASP Greedy Busca Tabu Random

A 42.57 (± 0.30) ▲ 18.50 (± 0.00) 33.23 (± 1.25) 12.40 (± 1.23) 0.63 (± 0.01) 0.05 (± 0.00) 36.06 (± 1.73) 0.02 (± 0.00) ▲
B 43.02 (± 0.25) ▲ 19.00 (± 0.00) 34.43 (± 1.47) 14.47 (± 1.92) 0.68 (± 0.01) 0.05 (± 0.00) 40.30 (± 0.26) 0.01 (± 0.00) ▲
C 43.17 (± 0.20) • 43.0 (± 0.00) 36.10 (± 1.11) 12.21 (± 1.06) 0.74 (± 0.01) 0.05 (± 0.00) 40.59 (± 0.27) 0.02 (± 0.01) ▲
D 43.54 (± 0.19) 44.5 (± 0.00) ▲ 36.65 (± 1.16) 16.12 (± 2.37) 0.77 (± 0.01) 0.05 (± 0.00) 40.75 (± 0.24) 0.00 (± 0.00) ▲
E 43.38 (± 0.21) ▲ 43.00 (± 0.00) 37.15 (± 0.98) 12.60 (± 1.37) 0.83 (± 0.01) 0.05 (± 0.00) 40.88 (± 0.21) 0.01 (± 0.00) ▲
F 43.67 (± 0.16) 44.5 (± 0.00) ▲ 37.43 (± 0.78) 17.66 (± 2.83) 0.84 (± 0.00) 0.05 (± 0.00) 41.11 (± 0.25) 0.00 (± 0.00) ▲

Tabela 6. Utilidade e tempo de execução das técnicas avaliadas por perfil.

A Tabela 6 mostra os IC em relação à utilidade, e tempo de execução, respec-
tivamente, para cada uma das técnicas avaliadas em nosso trabalho. São indicados nas
células da Tabela aqueles valores que são estatisticamente superiores (▲), e os que são
estatisticamente empatados (•).
6.1. Avaliação de Desempenho Computacional
Ao avaliarmos na Tabela 6 o tempo de execução gasto por cada um dos algoritmos, po-
demos ver que, com exceção da técnica Busca Tabu, todos os algoritmos possuem tempo



de execução menor que 1 segundo, podendo portanto serem utilizadas em uma aplicação
em tempo real. Dentre os fatores que levam a técnica Busca Tabu a ter um tempo de
execução superior estão o fato de ser uma técnica de inicialização múltipla, como pro-
posto em [Kotiloglu et al. 2017], mas também, o alto custo para as técnicas de busca lo-
cal, e o fato de termos que avaliar todas as restrições após feita a operação de busca local.
Isso faz com que o custo sob esta execução esteja mais associado a reavaliação da solução.
Isso poderia ser mitigado caso fosse feita a atualização dos atributos da rota (e.g. custos,
distância, quantidade de locais por categoria) ao longo da execução. Contudo, dentro de
nosso entendimento, isso não é apontado explicitamente pelos autores como algo feito ao
longo da busca local e, portanto, acreditamos ser um potencial trabalho futuro.

As técnicas ingênuas (Greedy, Random) possuem tempo de execução baixo em
comparação às outras técnicas. Isso se dá pelo fato de realizarem a exploração sobre
apenas uma solução. Já a nossa técnica GRASP, apesar de ter um custo um pouco mais
elevado que técnicas ingênuas, ainda possui tempo de execução dentro do esperado. Um
dos fatores que impactam em um maior tempo de execução do GRASP é o fato de ser
uma técnica de inicialização múltipla, que neste cenário faz com que 100 soluções sejam
avaliadas. Além disso, podemos perceber que a medida que a quantidade de quilômetros
deslocados por dia aumenta, o tempo de execução de nossa proposta também tem um
acréscimo. Isso ocorre, pois, a medida que aumentamos essa caracterı́stica do perfil, con-
sequentemente elevamos a lista de soluções candidatas, o que impacta no custo computa-
cional da técnica. Para evitarmos problemas de tempo de execução em cenários em que a
quantidade de quilômetros deslocados por dia aumenta, seria possı́vel realizar a avaliação
dentro do critério de seleção de locais para a LRC ser baseada também em custo, ou algum
fator de preferência do usuário. Vislumbramos essa estensão como um trabalho futuro.

6.2. Avaliação da Função Objetivo (Utilidade)

Na Tabela 6 também é possı́vel avaliar o IC da utilidade de cada técnica avaliada em nosso
trabalho. Neste cenário, apresentamos também como valor de referência para um ótimo
teórico o resultado da Equação 4, o qual é igual a 55. Vale ressaltar que este o valor para
uma solução ótima teórica, visto que não se sabe se há uma solução que satisfaça todas
as restrições e seja composta apenas de locais com nota igual a 5. Neste cenário, quanto
mais próxima é a utilidade dos algoritmos desse ótimo teórico, melhor é a técnica.

Ao avaliarmos os resultados é possı́vel ver que a técnica Random possui um baixo
valor de utilidade. Isto se deve ao fato da escolha aleatória de locais levar a distâncias
percorridas muito altas, dado a alta média de distância entre locais (27 quilômetros). O
mesmo ocorre com as buscas locais realizadas pela técnica de Busca Tabu, como discutido
na Subseção 5. A diferença é que a inicialização da meta-heurı́stica de Busca Tabu é
baseada em uma abordagem aleatorizada-gulosa, assim como o GRASP. Logo, a solução
inicial gerada já possui um resultado melhor que uma solução inicial totalmente aleatória.

A diferença entre os resultados da Busca Tabu e do GRASP se dá justamente pelo
fato da busca local aliada à seleção automática de α conseguirem gerar soluções viáveis,
as quais focam nos itens que possuem uma nota baixa, substituindo-os por candidatos
viáveis que possuem nota maior. Já a busca local do BT realiza seleções aleatorizadas, as
quais não levam necessariamente a substituição de locais de menor utilidade.

Por fim, o algoritmo Greedy, apesar de ser uma heurı́stica simples, apresenta bons
resultados para cenários em que o custo monetário não é um problema. Os resultados
ruins nos perfis A e B, que possuem um orçamento de 500 reais, estão relacionados a



seleção do hotel realizada pelo algoritmo. Nesse cenário, uma parcela significativa do
orçamento é destinada à seleção do hotel, com um gasto de 214 reais em duas diárias, re-
presentando 85.6% do total. Isso deixa recursos mı́nimos para serem alocados em atrações
e restaurantes. Contudo, em cenários menos restritivos monetariamente (budget ≥ 1000),
o algoritmo guloso consegue ter resultados um pouco superiores ao algoritmo GRASP
para os perfis E e F , considerando um teste-t pareado com 95% de confiança.

Por fim, ao compararmos com nossa proposta, observamos que, embora o
método Greedy apresente um bom desempenho em cenários menos restritivos e exce-
lente eficiência computacional, nossa abordagem também se destaca por sua eficiência
computacional e por alcançar resultados muito próximos aos melhores encontrados, além
de se aproximar consistentemente do ótimo. Além disso, por ser uma abordagem que
possui princı́pio aleatorizado, o GRASP traz ao usuário uma diversificação das soluções,
gerando diversas soluções que possuem qualidade, e não ficando restritas a apenas uma
solução, como acontece em técnicas determinı́stico (e.g. Greedy). Finalmente, ressalta-
mos que a técnica proposta pode ser facilmente modificada para executar em paralelo, o
que pode nos resultar em tempos de execução ainda menores.

7. Conclusões
Neste trabalho, propomos uma técnica baseada em meta-heurı́sticas para o Pro-

blema de Orientação, o qual é uma combinação do problema da mochila e do problema
do caixeiro-viajante, tendo sido amplamente estudado no contexto de Turismo. Neste
cenário, o objetivo é encontrar uma rota que maximize as preferências e respeite as
restrições dos turistas. Neste estudo propomos uma meta-heurı́stica GRASP e a com-
paramos com outras heurı́sticas (Greedy, Random, Busca Tabu).

Neste cenário, avaliamos a técnica proposta, juntamente com as abordagens da
literatura utilizando dados reais da cidade do Rio de Janeiro do TripAdvisor. Nos resulta-
dos obtidos com uma base de dados contendo mais de 2000 locais, ficou clara a falta de
escalabilidade de métodos determinı́sticos baseados em solvers comerciais para situações
com mais de 400 locais, motivando a necessidade de abordagens meta-heurı́sticas para
resolver eficientemente esse problema. As heurı́sticas testadas se destacaram com um
tempo de processamento viável – com exceção do baseline de Busca Tabu, todas as outras
três meta-heurı́sticas avaliadas produziram um desempenho computacional que respeita o
tempo de execução imposto para aplicações reais.

Além disso, os resultados mostram que a técnica GRASP proposta apresenta os
melhores resultados em 3 dos 5 cenários avaliados, mostrando grande potencial para
utilização em cenários reais por seu bom desempenho computacional, e resultados supe-
riores em cenários onde o orçamento é restrito. Outra técnica que se destaca é o algoritmo
Greedy, o qual possui melhores resultados em cenários com abundância de recursos. No
entanto, em situações com maior restrição financeira, o Greedy tende a não gerar rotas
eficientes, pois gasta grande parte do orçamento em hospedagem.

Como direções para trabalhos futuros iremos aprofundar os testes da heurı́stica
Greedy para identificar cenários onde essa técnica não é eficaz. Explorar novas restrições,
como restrições de janelas de tempo, também se mostra relevante. Por fim, avaliar nossa
proposta em diferentes cenários e com usuários reais.
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