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Abstract. Network anomaly detection based on Deep Learning has already
achieved outstanding performance results. However, the performance obtained
by deep learning solutions is partially explained by the large scale of such un-
derlying models. This paper studies the energy and performance trade-offs for
deep learning models and their hyperparameter configurations when applied to
network anomaly detection. The paper proposes an energy and performance
profiling mechanism to observe the results obtained from different configura-
tions of a given model, using a combination of statistical and instrumented pro-

filing.

Resumo. A deteccdo de anomalias em redes baseada em aprendizado profundo
Jjd atingiu resultados impressionantes. No entanto, a performance obtida por
modelos de aprendizado profundo é parcialmente explicada pela grande escala
de tais modelos basilares. Este artigo estuda as compensacoes entre energia
e performance para modelos de aprendizado profundo e suas configuracoes de
hiperparametros, quando aplicados em detec¢do de anomalias em redes. O
artigo propoe um mecanismo de perfilacdo de energia e performance para ob-
servar os resultados obtidos de cada configuracdo diferente de um determinado
modelo, usando uma combinagdo de perfilacdo estatistica e instrumentada.

1. Introduction

According to Forbes [Ene 2023], the cost of cyber-crime is projected to hit an annual
USD 10.5 trillion by 2025. In search of a solution to security problems, machine learn-
ing (ML) and deep learning (DL) have been widely used and explored for the task
[Wang et al. 2021]. For example, Vikram and Mohana [Vikram and Mohana 2020] use
an unsupervised model to provide anomaly detection with an AUC score of 99.9%. This
kind of accuracy and modeling for anomaly detection has been reproduced many times.
For example, Kostas [Kostas 2018] discusses, proposes, and tests seven different ML and
DL models for anomaly detection. In all models, great performance results were achieved,
with F-measures of 0.99 during the testing cycle.

Although great performance standards have already been achieved, machine learn-
ing solutions demand significant computing power, especially using complex models such
as deep neural networks [Bianco et al. 2020]. The computing resource cost applied in
training and inference for these DL network anomaly detection solutions contradicts sus-
tainable and renewable energy trends. As estimated previously, a neural network model
can generate approximately five times the average carbon dioxide emissions in the lifetime



of a car [Candelieri et al. 2021]. Fortunately, the evolution of ML and DL has already

led to research efforts on green ML [Saeed et al. 2022] and green artificial intelligence
[Yang et al. 2020].

This paper proposes a comparative analysis of performance and energy for deep
learning-based network anomaly detection systems, using instrumentation profiling based
on performance counters combined with an exploration of hyperparameters of the under-
lying model. The objective is to explore the trade-offs between performance and energy
consumption, detailing the intrinsic relationship of a hyperparameter adjustment with its
respective gain or loss in performance or energy consumption. The profiling approach
used is a combination of statistical profiling and instrumentation profiling, utilizing Hard-
ware Performance Counters (HPC) to extract the energy consumption and also deep learn-
ing libraries for the performance metrics. The different hyperparameter configurations
profiled are provided by a grid search algorithm that explores a pre-defined range of val-
ues. The paper’s main contributions are: (i) combining hardware performance counters
with specialized deep learning software to provide precise energy and performance met-
rics; (ii) exploring energy and performance trade-offs of different hyperparameter config-
urations for deep learning, utilizing a grid search algorithm; and (iii) providing a compar-
ative analysis for various deep learning models in terms of energy and performance.

The remainder of this paper is organized as follows. Section 2 discusses the theo-
retical background required for this paper. Section 3 presents an overview of the related
work. Section 4 describes the framework proposed to evaluate the trade-offs between en-
ergy consumption and performance. Section 5 discusses the prototype and experimental
evaluation. Finally, Section 6 presents the concluding remarks and future work.

2. Background

This section presents a brief overview of network anomaly detection based on DL and
energy consumption measurement.

2.1. Deep Learning for Network Anomaly Detection

Deep Learning is a subset of Machine Learning, where all models present a representation
learning stage (also called feature learning stage) and multiple layers [LeCun et al. 2015].
More recently, ML and DL for network anomaly detection have received significant at-
tention [Boutaba et al. 2018]. This is mainly due to the autonomy and robustness offered.
ML and DL techniques tend to extract the subtle pattern of the general anomaly (e.g., a
network attack), which means that these models have the capability of detecting previ-
ously unknown anomalies [Marnerides et al. 2014, Santos da Silva et al. 2016].

Some of the predominant DL models for network anomaly detection in the litera-
ture are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Convolu-
tional Neural Network (CNN) [Boutaba et al. 2018]. These are briefly discussed below:

Multi-layer Perceptron is a machine learning technique based on a feed-forward
deep network, in which each layer is a collection of independent perceptron’s, with all
units of a layer connected to all units of the next layer, forming the feed-forward condition.
Data is passed from the first layer (input layer), which propagates to the following layer,
and so on [Teoh et al. 2018]. After the input is propagated throughout the network, a
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final result is generated and compared to an answer with an error function. Then, a back-
propagation system will adjust all perceptron’s weights and biases aiming for a better
answer in the next iteration (Figure 1(a)).

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network. An
RNN is an MLP with cyclic connections on each unit [Kim et al. 2016]. Those cyclic
connections enable the network to mimic the memory process of humans. The major
limitation of simple RNNs is their difficulty in training due to vanishing or exploding
gradients [Bengio et al. 1994]. To address this issue, Hochreiter and Schmidhuber in-
troduced the LSTM architecture [Hochreiter and Schmidhuber 1997]. Unlike traditional
RNNs, LSTMs include a forget gate that controls if the previous state is remembered.
This mechanism helps prevent gradients from vanishing or exploding, allowing LSTMs
to learn long-term dependencies more effectively (Figure 1(b)).

Convolutional Neural Network is a DL architecture designed for handling high-
dimensional data with spatial correlation. The main component of a CNN is the convo-
lutional layer. A convolutional layer takes the input and convolves it with a set of filters,
called kernels, to produce an output. Mathematically, the convolution process is per-
formed by sliding the set of filters over the input and applying the dot product between
input and filter [Naseer et al. 2018]. The secondary main component of a CNN is the
pooling layer, designed to control the overfitting. The pooling layers act by decreasing
the size of the input representation with a sampling technique. These are combined in a
Deep Neural Network structure to generate CNN architectures (Figure 1(c)).

2.2. Energy Consumption Measurement

There is a diverse range of methodologies to quantify energy consumption
[Goel et al. 2012]. Traditional approaches, such as outlet watt meters, precisely measure
the total energy consumption of a computer but are often inaccessible. Alternatively, soft-
ware estimation correlates energy consumption with the frequency of function or module
calls, representing the primary contributors to a program’s energy usage. While this ap-
proach is much more accessible, its results are often unclear and imprecise.

A precise and easily accessible methodology is to measure energy con-
sumption using hardware performance counters. HPC are special purpose registers
that measure micro-architectural events and record values at native execution speed
[Demme and Sethumadhavan 2011]. Thus, they offer an excellent compromise between
accessibility and precision. However, to access the information stored in those registers at
the user level, a vendor-specific interface is required. The most established interfaces for



HPC are the Intel Running Average Power Limit (RAPL) and the NVIDIA Management
Library (NVML).

Running Average Power Limit is a platform-specific power management inter-
face for the Intel Sandy Bridge architecture and onwards. Inside RAPL-compatible chips,
the internal circuitry is responsible for registering the HPC information on Model Specific
Registers (MSRs) [Weaver et al. 2012]. For example, access to those registers in Linux is
done via a directory called /dev/cpu/N/msr (where N is the number of the core), and it
requires ring-0 permission. However, the Linux “MSR driver” enables read-only access
to the file, without the ring-0 permission.

RAPL interface exposes power domains, each representing the energy consump-
tion of a section. The Package N domain measures the consumption of the /V entire pro-
cessor socket (including all Powerplanes, last-level cache, and the memory controller).
The Powerplane 0 domain measures consumption of all cores, while Powerplane 1 mea-
sures consumption of the embedded GPU (if available). The DRAM domain measures
the energy consumption of all DRAM DIMM’s. Lastly, the Psys domain measures the
consumption of all systems on the chip, including the Platform HUB Controller (PCH)
and even peripheral components (embedded DRAM - eDRAM - for bus management).

NVIDIA Management Library is a C-based API for monitoring NVIDIA GPU
devices. It allows developers to query GPU device states, such as utilization, clock rates,
etc. More importantly, it provides access to the power draw by reading the onboard sen-
sors. NVML has been available since CUDA V4.1, released in 2011. Also, NVIDIA has
the NVIDIA System Management Interface (nvidia-smi), a dedicated command line ap-
plication. It is designed to be a utility tool, built upon the NVML API [Arafa et al. 2020].

3. Related Work

This section discusses studies on hyperparameter tuning oriented by performance and
resource consumption, energy-constrained DL models for network anomaly detection,
and general ML model energy analysis and modeling. These are summarized in Table 1.

Preuveneers et al. [Preuveneers et al. 2020] propose a two-stage framework for
ML model hyperparameter tuning that considers resource usage. The first stage generates
different possible configurations of hyperparameters that obtain similar F1 scores. The
second stage simulated a test environment, while the resource usage was recorded. In
the paper, the authors considered only one ML model each time; the F1 score was the
sole performance metric considered, and the resources monitored were execution memory
usage, execution elapsed time, and model size (in memory).

Hsu et al. [Hsu et al. 2018] propose a framework for multi-objective hyperparam-
eter optimization of CNNs. The demonstration complemented accuracy with energy con-
sumption optimization. The first stage employs an RNN with a reward system to generate
different configurations of hyperparameters. The second stage simulates the training pro-
cess of a CNN, measuring the desired metrics. The work considered two different types
of CNN models in the experiments (AlexNet and CondenseNet), and the metrics observed
were accuracy, energy (per 1,000 inferences), and peak power (in Watts).

Sedjelmaci et al. [Sedjelmaci et al. 2016] propose an anomaly detection approach,
specialized for low-resource Internet of Things devices. The authors combined game the-



Table 1. Related Work on Energy-Aware Machine Learning Model Development.

‘ Reference

ML techniques

‘ Metrics

‘ Description

Preuveneers et al. 2020

Support Vector Machine,
Random Forest.

Memory (MB), Wall Clock
Time (ms), Object Size (MB),
CPU time (ms).

Hyperparameter tuning using
resource usage and F1-score.

Hsu et al. 2018

AlexNet, CondenseNet,
ResNet.

Accuracy, Energy (Joule),
Peak Power (Watts).

Hyperparameter tuning using
accuracy and another user-
selected metric.

Sedjelmaci et al. 2016

MLP

Accuracy, and node general
energy consumption.

A tailored model for low-
resource Internet of Things
Networks

Tripp et al. 2024

MLP in different DL setups.

Loss, FLOPS, and energy

In-depth analysis of energy

consumption (with great pre- | consumption,  loss,  and

cision). FLOPS relationships.
Rodrigues et al. 2024 | AlexNet, GoogleNet, Non-energy related PMCs | Energy measurement and
and others and average execution time. | modeling for CNN in a

specific embedded platform.

ory, signature detection, and anomaly detection. The authors compiled several existing
models from the literature to benchmark and compare their novel approach. The bench-
mark simulated and recorded metrics using sensor networks simulation software. Evalu-
ation metrics included accuracy and per-node energy consumption across the network.

Tripp et al. [Tripp et al. 2024] executed an empirical benchmark of the energy
consumption and efficiency of deep neural networks. To measure the energy consump-
tion, node-level Watt-meters were used. The authors extracted measurements for many
different deep neural network configurations available in a DNN configuration dataset.
The energy consumption results were compiled against the respective hyperparameter
configurations, enabling the authors to analyze and model energy consumption.

Rodrigues et al. [Rodrigues et al. 2018] propose a framework for fine-grained
performance and energy measurement and prediction of CNN models in an embedded
platform. Their framework results from the integration of vendor-specific tools and a DL
framework. The testbed used for the framework was a group of different CNN models,
including AlexNet, GoogleNet, and others. The initial results derived from the framework
measurement enabled the creation of an energy prediction model based on processing-
related HPC (but not using energy-related HPC).

Most of the papers discussed above ignore or use imprecise metrics for energy
consumption, or are focused only on the comparison or tuning of a single ML model. That
is, most of the works do not use a precise method as HPC to measure energy (some do
not even consider energy consumption), and only choose one specific DL model at a time
(picking either MLP or CNN only). Differently, our approach aims to analyze different
DL models, varying their hyperparameter configurations in terms of performance and
energy consumption. The energy consumption methodology that we present is based on
precise measurements obtained from HPCs, and the set of performance metrics that we
discuss 1s more extensive than in the related work.

4. Energy Profiling Framework

This section describes the framework we propose to analyze the trade-offs between en-
ergy consumption and performance for network anomaly detection based on DL. The
following subsections describe details about the profiling framework.
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Figure 2. Energy Profiling for Network Anomaly Detection Framework.

4.1. Framework Overview

The fundamental objective of the profiling framework is to facilitate the analysis of re-
lationships between energy consumption, performance, and DL model hyperparameter
configurations. The primary input is a user-defined DL model for network anomaly de-
tection. The framework outputs a collection of energy and performance line plots for each
performance metric, hyperparameter, and different model configurations. The framework
focuses on the understanding of energy and performance trade-offs, thus a simple grid
search approach was selected to explore the hyperparameter configurations. This naive
yet extensive exploration is sufficient to cover the set of possible values for each hyperpa-
rameter.

The proposed framework comprises a set of key modules: an EnergyMonitor;
an ExecutionEngine; a Plotter, and a Manager'. In Figure 2, we show an
overview of the modules that comprise the framework and their interactions. In par-
ticular, the Intel RAPL energy consumption collection stack is illustrated. In summary,
the chip’s internal circuitry redirects the information from the HPC to control registers.
Then, the control registers write to the MSRs via a kernel driver.

After being available in the MSRs, our framework utilizes the pyRAPL library to
collect the MSR information, organized in domains. As our analysis is focused on the en-
ergy cost of inference and training for models, the most precise measurement for energy is
from the Package 0 domain, as it represents the energy cost of all cores, cache structures,
and memory controller. The pyRAPL implementation exposes the total consumed en-
ergy, during the execution of a code block (between the class pyRAPL.Measurement

'In this paper, due to space restrictions, the Plotter and Manager modules will not be described. The
Manager is summarized as a framework coordination unit.



.begin () and .end () methods). The total energy is represented in micro Joules (mJ).

The NVIDIA NVML and nvidia-smi energy consumption collection stack is also
displayed. Unfortunately, the internal details of the NVIDIA stack are not available. How-
ever, the GPU energy consumption information is propagated initially by the NVIDIA
driver (kernel space). Then, the NVML library (user space) reads the driver energy con-
sumption information, making it available through the nvidia-smi command line tool. The
NVIDIA stack only reads the current power consumption of the GPU, expressed in Watts.

To describe the novelty of the proposed approach, the Execut ionEngine and
EnergyMonitor modules will be briefly characterized below.

4.2. Execution Engine

The ExecutionEngine is instantiated by the Manager, receiving a list of all hyper-
parameter configurations that will be profiled, along with environmental parameters, and
a list of performance metrics requested by the user (e.g., ‘accuracy’, ‘precision’, ‘recall’,
‘Fl-score’). For each hyperparameter configuration, the ExecutionEngine config-
ures the environmental conditions requested, such as the computing platform, the batch
size, and the sampling rate. Then, it prepares and configures the user-provided base DL
model with the current hyperparameter configuration. Once the model is prepared, it
signals the EnergyMonitor to start recording the energy consumption values. The
ExecutionEngine then executes several training or testing iterations for statistical
validation.

Performance Metric Instrumentation (Training): The training process uses the
Keras? package function it (). The training utilizes 80% of the dataset and proceeds a
specified number of epochs. After each epoch, the model’s performance is evaluated on
the remaining 20% of the dataset. After training is complete, the ExecutionEngine
evaluates all performance metrics specified by the user and also saves a copy of the model
(and weights) to local storage.

Performance Metric Instrumentation (Inference): The ExecutionEngine
loads the trained model (and weights) from local storage. The model’s performance is
evaluated on the entire dataset with only one pass per statistical repetition (differently
from training, which performs repetitions according to the number of epochs), utiliz-
ing the Keras evaluate () function. When all statistical repetitions are completed,
the ExecutionEngine signals the EnergyMonitor to stop recording energy con-
sumption, retrieves the recorded energy consumption values, and aggregates them with
the runtime results (for performance and elapsed time). The results are summarized by
averages and saved to a consolidated results list.

4.3. Energy Monitor

The EnergyMonitor is initialized solely with communication interfaces to the
Manager and the ExecutionEngine. It operates passively, awaiting signals from
other units to initiate activity. Upon receiving a signal from the Execut ionEngine to
commence recording energy consumption, the EnergyMonitor also receives the tar-
get computing platform (CPU or GPU). Subsequently, it initiates the energy consumption
recording process.

*https://keras.io/



CPU profiling: The EnergyMonitor utilizes the Intel RAPL library to obtain
CPU energy consumption data. It records the initial energy consumption value at the
beginning of the profile and the final value at the conclusion. The difference between
these values represents the energy consumed during the number of repeated profiling
routines (for statistical validation), leading to the average energy consumed by the routine
executed (training or inference).

GPU profiling: The EnergyMonitor periodically polls the NVIDIA NVML
library to obtain the current power consumption of the GPU. These power readings are
collected throughout the profiling period (5 ms). Following the completion of the profiling
period, the EnergyMonitor calculates the average power consumption and transmits
this value to the ExecutionEngine.

5. Implementation and Experimental Results

This section will describe the implemented prototype, the experimental setup, and the
experimental results.

5.1. Prototype and Experimental Setup

For this paper, a prototype for the framework was developed in Python. The source code
is publicly available in GitHub’. The Python version used for development was 3.12.3.
The full list of Python dependencies is presented in the repository files. Additionally, the
repository contains unit tests for the framework modules and examples of usage. The
experiments were executed on a 13th Gen Intel i5-13400 CPU (16 cores with a 3.2 GHz
clock frequency), L1 Cache of 80 KB (performance cores), L2 Cache of 1.25 MB (per-
formance cores), with 16 GB RAM, and on a GPU NVIDIA GeForce RTX 3060 Ti, L1
Cache (per Stream Processor) of 128 KB, L2 Cache of 4 MB, Base Clock of 1410 MHz,
and Boost Clock of 1665 MHz.

The experiment consists of profiling three different DL models, and observing
energy consumption, over three different ML performance metrics. On top of that, the
training process runs on a GPU, and the testing process on a CPU. The observed metrics
for this experiment were precision, Fl-score, and recall. Table 2 summarizes the values
of hyperparameters considered for this experiment. The dataset used for this experiment
is the NSL-KDD dataset [Tavallaee et al. 2009]. The anomalies in the NSL-KDD dataset
include denial of service, probing, unauthorized access from remote machines, and unau-
thorized acquisition of superuser privileges. The total number of dataset entries available
is 125,973 [Dhanabal and Shantharajah 2015].

Table 2. Experiment Hyperparameters Values.

| Hyperparameter | Values |
Number of layers 1
Number of units 10, 100, 190
Number of epochs 100
Number of features 93

Due to space constraints, only the number of units hyperparameter was considered
to be explored, thus placing aside, in this work, the effects of other hyperparameters as

3https://github.com/tiagotschmidt/NAD_ML_models



learning rate, number of layers and activation function. The DL subject models were
a simple MLP model, an LSTM model, and a CNN model. The DL models differ in
unit types, repeated layer configurations, and final layer structures. All details of the
implementation of the DL subject model are available in the public repository.

5.2. Experimental Results

The results are visualized in line plots that display the average values for energy consump-
tion (y-axis) and performance metric (also y-axis) of different hyperparameter configura-
tions (x-axis). The average value for the performance metric is accompanied by error bars
that represent the standard error for that measurement. The error bar size is equivalent to
2 standard errors (with the average in the middle). Information about the remaining DL
model configuration snapshot is displayed in a hover box.

The average energy consumption value displayed is the average total energy con-
sumption of the ML life cycle executed. That is, for training profiles, the energy con-
sumption value plotted is the energy consumed to iterate over 80% (due to the train/test
split done in the ExecutionEngine) x sampling rate (S,.) x total dataset entries,
repeating number of epochs. In other words, the value displayed in the graphs represents
the average total energy cost to execute the full training routine. The same is applied to
the inference results, but consider that the test routine does not repeat number of epochs.

5.2.1. MLP
Figure 3 displays the (Precision, Energy Consumption) X Units results for the MLP

model. The other hyperparameters available were fixed, and their values are: 1 layer;
100 epochs; 100 statistical samples; 100% sampling rate.
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Figure 3. MLP - (Precision, Energy Consumption) X Units Results.

The results display a behavior that was observed in all model results. When-
ever the model complexity increases (more units) the energy consumption rises. Another
common aspect in all profiles generated is the difference, in terms of magnitude, for the
energy consumption values in training versus inference. This is due to the training routine
iterating epochs times over the original dataset.

In terms of performance and energy trade-offs, the profiles outline a complex re-
sult. For the training profile, an increase in units is not linearly related to an increase in



performance. Instead, the response to number of units increase is uncertain and can even
be considered a worse result in the medium-size configuration (100) units during training.
More specifically, during training, the average precision value for the medium-size model
(100 units) is worse than the small-size model (10 units). When the error is considered,
clearly the performance difference between the small-size model and the medium-size
model is uncertain. For the large configuration (190 units), the average precision in-
creases, and the error bars are shifted upwards. Meanwhile, the energy measurement for
the models during training is definitive: an increase of roughly 10 J per 90 units added.

For the inference profile, the precision contradicts training with consistent and
low-variance results. The medium-size configuration is better in terms of precision, and
the large-size configuration is still better than the small one. Additionally, the energy
consumption cost of this rise in precision, from the small size configuration to the large
size configuration, is only 1.6 J.

5.2.2. LSTM

Figure 4 displays the (Precision, Energy Consumption) X Units results for the LSTM
model. The configuration snapshot repeats the MLP setup described above. Again, the
linear relationship of energy consumption with units and differences in the order of mag-
nitude for energy values can also be observed in Figure 4. In the LSTM profiles, it is
possible to observe a great difference in the energy consumption values when compared
to the MLP profiles, both in training and testing. This is due to a difference in complexity
in the unit of the DL model: the perceptron when compared to the LSTM cell, is a far
simpler unit.
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During training, the performance in general improves with more units. However,
when the measurement errors are considered, the medium and large-size models have
performed equally. The only arguable improvement is from the small-size model to the
medium-size, as the average and error bars shift upwards.

During inference, the performance improvement is confirmed with low variance.
At the same time, the energy cost difference between the small and large models is con-
siderable: more than 80 J. This is even more expressive when compared to the energy
cost difference observed in the two models for MLP (1.6 J). In general, the LSTM model
performs better with a more complex model (more units). However, when the energy val-



ues are taken into account with precision, the trade-offs are costly: the increase of 0.7%
precision also led to an increase of about 80 J during inference.

5.2.3. CNN

Finally, Figure 5 displays the (Precision, Energy Consumption) X Units results for the
CNN model. The configuration snapshot repeats the MLP setup described earlier. Once
more, the linear relationship of energy and number of units and the difference in order of
magnitude for the testing and training energy values are present.
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A different aspect of the CNN profiles is that the high variance of the training
results repeats during inference. In particular, given that the CNN model is not particu-
larly targeted to the network anomaly detection problem, this led to much more uncertain
results (with higher error for the measurements). Another side effect was the energy
cost: given that the structure and premises of a CNN model were not ideal for a net-
work anomaly detection model, we observed an overall higher cost of energy (training
and inference) and common performance levels.

Although the high standard error remains, the general profile for testing and infer-
ence is the same. The best configuration, in terms of averages only, is the medium-size
configuration. Another advantage of the inference profile over the training one is the
greater measurement consistency, which increased as seen by the difference in the error
bars (with the training profile having larger error bars).

5.3. Discussion

The previous results provide important information to compare the three DL. models in
terms of performance and energy consumption. For example, an ML engineer that has a
requirement of 95% precision would probably choose the MLP model with 10 units, as
it consumes the least amount of energy (39.6 J) to perform inference (that is, to execute
inference 125,973 times). In comparison, the minimum number of units for the LSTM
model to reach 95% precision is also 10 units, but with an energy consumption of almost
160 J. Finally, the CNN model obtains a precision of 95% also with only 10 units, and an
energy consumption of about 60 J.



Finally, the last discussion provided by the profiles generated on the experiment is
the comparison of the recall, precision, and f1-score when the number of units is adjusted
in one model. Due to space constraints, we will only consider the values in the inference
cycle for the MLP model. Figure 6 displays the tendencies for precision, recall, and F1
score. Overall, the precision and F1 score values tend to positively respond to an increase
in the number of units. On the other hand, for the large model size, the recall value shows
signs of overfitting, leading to a minimal decrease in the recall value. However, even with
this small decrease, the general F1 score of the model is higher with 190 units than with
10 units. Meanwhile, the energy cost to raise the F1-score from 0.9215 to 0.9240 is about
1 J only.

Recall and Energy Consumption

0.980

0.952 { Cycle: Test

(a) Precision (b) Recall (c) F1-score

Figure 6. MLP - Precision Recall & F1-score Results.

6. Concluding Remarks

This paper proposes an analysis of the trade-offs between energy and the performance
of network anomaly detection based on DL. To provide a precise energy measurement,
statistically valid data, and realistic simulation of DL life cycle routines, this work pro-
posed a profiling framework. A prototype was implemented and experiments enabled us
to visualize the different configurations concerning energy and performance results. In
particular, it was possible to observe details regarding the energy and performance trade-
offs for the DL models (even trade-offs among different performance metrics).

In future work, we intend to explore the impact of additional techniques for model
complexity optimization (e.g., quantization, pruning) in terms of performance and energy
consumption. Moreover, another intended extension is to compare and evaluate traditional
network anomaly detection systems [Faustini et al. 2017], such as the statistical or even
classical machine learning approaches.
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