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Abstract. Federated Learning (FL) enables collaborative model training with-
out sharing raw data, preserving privacy and reducing communication over-
head. On the other hand, in Internet of Things (IoT) wireless networks, FL faces
issues such as limited resources, unreliable communication channels, and large
delays. Hierarchical Federated Learning (HFL) addresses these issues using a
tree topology with intermediate servers to reduce communication distances, im-
prove aggregation efficiency, and mitigate transmission failures. However, cur-
rent algorithms are not well-suited to address the scalability challenges posed
by the massive scale of beyond-5G networks. In this context, we propose a
novel HFL algorithm called HFLwOpt, which dynamically optimizes communi-
cation and computation resources in massive wireless IoT networks, maximizing
successful transmissions, minimizing energy use, and reducing training latency.
Our simulation with over 1, 000 devices, utilizing three levels of aggregation,
demonstrates that HFLwOpt surpasses baselines with fixed resource allocations.
The results reveal a reduction of up to 45.34% in energy efficiency and 77.01% in
training latency for the MNIST-based dataset, and 42.23% in energy efficiency
and 76.77% in training latency for the FMNIST-based dataset.

1. Introduction
The ultra-low latency demands of 5G/6G network applications, combined with strict pri-
vacy constraints, necessitate the deployment of distributed ML systems at the network
edge [Stergiou and Psannis 2022]. Furthermore, traditional ML approaches that central-
ize data on servers for training are limited due to high communication costs and privacy
risks, making them unsuitable for modern applications requiring low latency and data
privacy [Nakayama and Jeno 2022].

FL has emerged as a promising solution for the distributed training of ML mod-
els, enabling multiple devices to collaboratively train a global model without the need
for data sharing, thereby preserving user privacy [McMahan et al. 2016]. Transmitting
model parameters instead of training data conserves energy, optimizes network resources,
and reduces latency [Yang et al. 2022]. Furthermore, edge computing integrated into
the network infrastructure, as proposed by the Multi-Access Edge Computing (MEC)
[ETSI 2022] approach, has facilitated the deployment of FL parameter servers at the net-
work edge, positioned closer to the devices where models are trained. However, FL
in wireless networks faces challenges due to limited communication resources and the



unreliability of the wireless channel, which can lead to failures in distributed training
[Chen et al. 2021]. Moreover, traditional FL systems based on a server-client architecture
face significant challenges due to resource constraints in wireless networks and extended
transmission distances [Xu et al. 2022]. Consequently, these traditional FL solutions may
struggle to adapt effectively to large-scale scenarios, which are inevitable in massive MEC
networks [You et al. 2023].

HFL has emerged as a promising solution based on a tree topology that lever-
ages edge servers positioned closer to devices [Liu et al. 2020]. The scalable structure
and communication efficiency make HFL-based solutions effective for massive networks,
where direct communication between many clients with a single central server may be-
come impractical [Wu et al. 2024]. This framework improves the scalability and effi-
ciency of massive FL networks by organizing communication into layers, significantly
reducing bandwidth overhead and central server computational complexity, and enabling
shorter transmission distances [You et al. 2023]. The training process at HFL involves at
least two aggregation steps: edge aggregation, conducted on edge servers near the de-
vices, and global aggregation, performed on the central server following multiple local
aggregations [Wu et al. 2024]. However, there can be additional layers between the cen-
tral server and edge devices. For instance, edge servers that connect edge devices and
the central server can formulate one or multiple layers, making a tree-like topology with
the highest level of the tree being the central server and the lowest level being edge de-
vices [Nakayama and Jeno 2022].

In this paper, we propose an HFL algorithm called HFLwOpt (Hierarchical FL
Wireless Optimizer)1, designed to support the training of ML models in massive hierar-
chical wireless IoT networks collaboratively and without sharing device data. Our algo-
rithm is formulated as an optimization problem that focuses on the efficient allocation of
computing and communication resources with the objective of maximizing the number of
successful transmissions while minimizing the energy consumption of devices and reduc-
ing training latency. This algorithm enhances scalability and performance by introducing
an additional intermediate layer between the edge server (ES) on the first communication
hop and the root ES. This extra aggregation layer enables progressive model aggregation
before reaching the root ES, reducing communication overhead and improving overall
learning efficiency. Moreover, HFLwOpt is extensible to n layers of aggregation, mak-
ing it highly scalable and adaptable for deployment in massive wireless IoT networks.
We conducted experiments varying device selection per communication round and dis-
tributing devices and edge servers (ESs) at different distances to account for transmission
errors and dynamic network conditions. We carried out our experiments to evaluate the
performance of HFLwOpt in scenarios with more than 10 hierarchically distributed ESs
and more than 1, 000 devices.

The main contributions of this paper are: (i) Resource awareness in massive
wireless IoT networks: HFLwOpt uses simulation models for HFL tasks, optimizing en-
ergy efficiency, training latency, and adaptability to network conditions by considering
power, bandwidth, and CPU resources; (ii) Novel HFL approach: HFLwOpt enhances
locally trained model representativeness by selecting devices that maximize data cover-
age, scales communication resources to minimize energy consumption, and reduces train-

1Available at https://github.com/LABORA-INF-UFG/HFLwOpt



ing latency while maximizing device participation; (iii) Multi-level aggregation design:
HFLwOpt algorithm supports n aggregation layers, improving scalability and enabling
efficient operation in complex hierarchical wireless IoT networks; (iv) Efficient exact
solution: Communication resource scaling is achieved via an optimal Mixed Integer Lin-
ear Programming (MILP) solution using the PuLP library; (v) Robustness in large-scale
IoT: HFLwOpt is validated with over 1, 000 devices, demonstrating high scalability, ro-
bustness, and efficiency in massive wireless IoT networks; (vi) Performance and in-
sights: Experimental results show superior accuracy trends, significant energy savings,
reduced training latency, and maintained global model quality.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the mathematical models that were used in simulating the massive
wireless IoT network for HFL tasks. Section 4 describes the formulation of HFLwOpt.
Section 5 discusses the simulation results and their analysis. Finally, Section 6 presents
the concluding remarks and outlines directions for future work.

2. Related Work
Edge-based aggregation in HFL has gained attention as a potential improvement over tra-
ditional FL. The client-edge-cloud hierarchical system by [Liu et al. 2020] reduces cloud
communication costs by aggregating models in stages. Despite its benefits, it overlooks
dynamic resource allocation, transmission errors, and latency variability. In contrast,
[Luo et al. 2020] proposed an HFL structure to jointly minimize energy consumption
and delay through resource scheduling, showing potential for low-latency and energy-
efficient, but its analysis lacked scalability for large-scale networks. In [You et al. 2023],
the authors introduce an HFL architecture for mobile MEC networks, enabling semi-
asynchronous updates to reduce latency. However, it did not explore architectures with
multiple hierarchical levels.

Table 1. Related Work

Ref.
Resource Multi-Level Aggregation Energy Devices

Scheduling Design Validation Efficiency (≥ 1000)
[Liu et al. 2020] ✗ ✗ ✗ ✗ ✗

[Luo et al. 2020] ✓ ✗ ✗ ✓ ✗

[Simos et al. 2022] ✓ ✓ ✗ ✓ ✗

[Xu et al. 2022] ✓ ✓ ✗ ✓ ✗

[You et al. 2023] ✓ ✗ ✗ ✓ ✗

[Su et al. 2024] ✓ ✓ ✗ ✓ ✗

HFLwOpt (Ours) ✓ ✓ ✓ ✓ ✓

The work of [Xu et al. 2022] optimized HFL efficiency through adaptive resource
allocation and dynamic aggregation control, yet simulations were limited to two lev-
els of aggregation in small networks. Other studies addressed specific challenges but
had limitations in scalability. The work by [Su et al. 2024] used strategies for dynamic
client selection, improving latency but restricting applicability to small networks. In
[Simos et al. 2022], the authors combined intermediate and global aggregations to min-
imize training delays and energy consumption, though its experiments focused on two-
level hierarchies, limiting its generalizability to complex scenarios.



Table 1 highlights the HFLwOpt algorithm. Addressing these gaps, HFLwOpt is
introduced as a scalable solution for massive wireless IoT networks. It dynamically scales
computational and communication resources to maximize successful transmissions, min-
imize energy consumption, and reduce training latency. Tested with more than 1, 000
devices across diverse network conditions, HFLwOpt demonstrates robustness and scala-
bility in high-density and heterogeneous environments.

3. System Model
3.1. Network Model
Consider a wireless IoT network within a geographic area for an HFL system with L
aggregation levels, where l = 0 represents the root ES level. The network comprises
intermediate ESs with aggregator servers, as in the MEC approach. A set of IoT devices
Sz = {iz,1, iz,2, . . . , iz,Nz} is associated with an ES z ∈ Z l in the first communication hop,
with each ES potentially co-located with small cell base stations [Poularakis et al. 2020].
From this point on, the ES located in the first communication hop is referred to as the
first-hop ES. Intermediate ESs connect to higher-level ESs, forming a hierarchical tree
culminating at the root ES. Each participating device has a dataset Pz,i with nz,i = |Pz,i|
samples and sends local updates to its connected first-hop ES. The ES performs the first
aggregation layer and transmits the aggregated model to the next higher-level ES, contin-
uing until reaching the root ES.

3.2. HFL Model with Tree Topology
Traditional FL employs a two-tier architecture with a central server and N devices, opti-
mizing the global model wglobal to minimize the loss function f(wglobal) =

1
N

∑N
i=1 f(wi),

where f(wi) evaluates the local model wi using device dataPi. For large-scale tasks, HFL
organizes devices into geographically distributed areas, each with potentially thousands
of devices [You et al. 2023], forming a hierarchical tree-like topology [Wu et al. 2024].
Devices send updates to the nearest ES z, which aggregates local models as wz

t+1 =
1
Nz

∑Nz

i=1w
z,i
t+1, where wz,i

t+1 = wz,i
t − η∇ℓz,i(wt). Aggregated models are forwarded up

in the hierarchy, and the root ES computes the global model as wt+1 = 1
|Zl|

∑|Zl|
z=1 w

z
t+1,

providing scalability and efficiency.

3.3. Local Model Training and Transmission
Under each first-hop ES z ∈ Z l, each local device i trains its local model at round t and
sends wz

t+1 to its ES z. Based on [Chen et al. 2021], the computation time and the energy
required of device i in round t for local model training can be expressed by Tcmpz,i =
ωz,iZ(wz,i)

ϑz,i
and Ecmpz,i = ζz,iωz,iϑ

2
z,iZ(wz,i), where ϑz,i, ωz,i, and ζz,i refer, respectively,

to the clock frequency, the number of cycles of the central processing unit, and the energy
consumption coefficient of device i connected to the first-hop ES z, to perform training
of a model of size Z(wz,i).

After each device updates its local model, it sends the update to its first-hop ES z
for edge model aggregation. In this paper, we consider the Orthogonal Frequency Di-
vision Multiple Access (OFDMA) technique for uplink, where each device occupies a
Resource Block (RB) with the allocation of power, bandwidth, and CPU frequency dis-
cretized with increments of non-integer values. Based on [Chen et al. 2021], the uplink



rate of device i transmitting model parameters to ES z in round t, can be formulated
as cUz,i =

∑R
k=1 ri,kB

UE(log2
(
1 +

Pz,ihz,i

Ik+BUN0

)
), where rijklm = [ri1111, ..., riBRPF ] is an

allocation vector with rijklm ∈ [0, 1], R is the number of RBs, and B, P and F are vec-
tors of discretized elements containing, respectively, the values for bandwidth, power and
CPU frequency allocation. Furthermore,

∑Nz

i=1

∑|B|
j=1

∑R
k=1

∑|P |
l=1

∑|F |
m=1 rijklm = 1, with∑

rijklm = 1 indicating that the uplink rate of device i is cUz,i using bandwidth Bj
z,i on RB

k with power P l
z,i and CPU frequency Fm

z,i. The channel gain between device i and the ES
z is given by hz,i = oz,id

−α
z,i , where dz,i is the distance between device i and the ES z, oz,i

is the Rayleigh fading parameter, and α is an exponent that affects how the channel gain
varies with distance. E(·) is the expected data rate with respect to hz,i, N0 is the noise
power spectral density, and Ik is the interference to RB k caused by other devices.

Based on the related works discussed in Section 2, we assumed that FL models
are transmitted via a single packet. Then, the communication latency and the device
power consumption for transmission of local model from device i to ES z in round t
can be computed by TcomU

z,i = Z
cUz,i

and EcomU
z,i = Pz,iTcom

U
z,i, where Z is the size

of the uplink packet (in bits) that the devices need to transmit through the wireless link.
The energy consumed by device i is given by Eroundz,i = Ecmpz,i + EcomU

z,i. The
transmit power of the BS linking an ES is generally much greater than the power of the
devices. Therefore, the entire downlink bandwidth can be used to transmit the global
model. Thus, the downlink data rate is given by cDz,i = BDE(log2

(
1 +

PBhz,i

ID+BDN0

)
),

where BD is the bandwidth used by the BS to transmit the global model to each device,
PB is the transmission power of the BS and ID is the interference caused by other BSs.

It is assumed that the BS does not request retransmission of models from devices
if they are received with errors. Therefore, whenever a packet containing a received local
model has errors, the ES does not use it to update the global model. In this case, based
on [Chen et al. 2021], the packet transmission error rate of the uplink from device i to ES
z in round t is given by qz,i =

∑R
k=1 ri,kE(1 − exp

(
−m(Ik+BUN0)

Pz,ihz,i

)
), where E(·) is the

expected packet error rate considering hz,i in RB k, with m being a threshold (waterfall
threshold) that defines transmission quality. Thus, we can also formulate the transmission
success probability of the local model from device i to ES z in round t as by pz,i =
(1 − qz,i) if (qz,i ≤ γQ) else 0, where γQ sets the minimum packet error rate for
transmitting the local model to ES z. If transmission fails, the model is not received and
does not contribute to global aggregation.

3.3.1. Model Aggregation and Transmission

After receiving models from local devices, the first-hop ES aggregates them to update the
edge model. With no data training at any ES, the aggregation time is negligible. The
updated model is then passed up the hierarchy until the root ES aggregates the global
model. Let BU

z,(l−1) be the bandwidth allocated to ES z for transmitting its model to ES
in the next higher level of the hierarchy in the uplink, where l = 0 denoting root ES.
For simplicity, let us denote p = l − 1. In this way, the uplink rate from ES z in level
l to ES in level p can be formulated by cUz,p = BU

z,plog2

(
1 + Pz,phz,p

I+BU
z,pN0

)
, where BU

z,p is
the bandwidth, Pz,p is the transmit power and hz,p

t is the channel gain of ES z to server



p at the next level of the hierarchy in round t. Using the formulation of cUz,p, we can find
the downlink rate cDz,p for transmitting the aggregated global model from server p to the
lower level ES z. Then, the edge model upload latency and power consumption from
ES z in level l to ES in level p at the next level of the hierarchy in the uplink in round
t can be computed by TcomU

z,p = Z
cUz,p

and EcomU
z,p = Pz,pTcom

U
z,p, where Z is the size

of the uplink packet (in bits) that the devices need to transmit through the wireless link.
Based on the formulation of TcomU

z,p and EcomU
z,p, we can find edge model upload latency

TcomD
z,p and power consumption EcomD

z,p from ES in level p to ES z in level l.

3.3.2. HFL Communication Round Latency

The total HFL communication round latency consists of two parts: the time for down-
loading, training, and uploading the local model between devices and their first-hop ES.
The latency of this step is determined by the slowest device within the coverage of ES z
in round t, which is equal to TmaxFirstHop = maxz∈Zl

{maxi∈Nz{TcomD
z,i+TcmpU

z,i+

TcomU
z,i}}, where Zl is the set of ES at level l. The second part consists of the longest

transmission delay from the intermediate ES at level l to the ES at level p = (l − 1)
of the hierarchy, which is equal to TmaxBridgeHop = maxz∈Zl

{maxq∈Qz{(TcomD
z,q +

TcomU
z,q)}}, where Qz is the set of ES at level p connected to intermediate ES z and

TcomD
z,q and TcomU

z,q is, respectively, the communication latency between intermediate
ES z at level l and ES q at level p in the downlink and uplink. As a result, the round
latency in HFL can be computed by Tround = TmaxFirstHop+TmaxBridgeHop. The
ES energy demand for model aggregation is ignored due to its continuous power supply,
and the intermediate ES aggregation delay is omitted as it is negligible.

4. Algorithm Design

4.1. Device Selection

By directing the strategy towards local training that covers more data, is expected to im-
prove the representativeness of locally trained models. Therefore, by denoting Sz

t as a
fraction ft of Nz devices and bz as a binary vector indicating the selection of nz

p devices,
the problem of maximizing the quantity of data from nz

p ≤ |Sz
t | devices associated in each

first-hop ES z can be expressed as

max
∑
i∈Sz

t

|Pz,i|bz,i, (1)
s.t.

|Sz
t |∑

i=1

bz,i = nz
p, (1a) bz,i ∈ {0, 1}, (1b)

where |Pz,i| is the number of data samples from device i ∈ Sz of ES z and nz
p is the partial

number of devices selected for the resource scaling step of communication. The constraint
(1a) guarantees that the number of selected devices is equal to nz

p, and the constraint (1b)
indicates that bz is a binary vector, where bz,i = 1 indicates that the device was selected
from the subset Sz

t and bz,i = 0 indicates otherwise.

4.2. Communication Resource Scheduling

This section presents the objective function of the HFLwOpt algorithm for massive wire-
less IoT networks with a hierarchical topology. The function is formulated as an opti-
mization problem to efficiently allocate computing and communication resources, aiming



to maximize successful transmissions, minimize device energy consumption, and reduce
federated training latency through optimized resource allocation, as follows

max
(∑

pz,i − λ
∑

Eroundz,i

)
× cz,ijklm, (2)

s.t.

nz
p∑

i=1

 |B|∑
j=1

R∑
k=1

|P |∑
l=1

|F |∑
m=1

cz,ijklm

 = 1, (2a)

R∑
k=1

 |B|∑
j=1

nz
p∑

i=1

|P |∑
l=1

|F |∑
m=1

cz,ijklm

 = 1, (2b)

∑
Bj

z,i ≤ BT
z , (2c)

Pmin
z ≤ P l

z,i ≤ Pmax
z , (2d)

Fmin
z ≤ Fm

z,i ≤ Fmax
z , (2e)

qz,i ≤ γQ, (2f)∑
cz,ijklm ≤ nz

f , (2g)

cz,ijklm ∈ {0, 1}, (2h)

where λ is a weight that controls the importance of the objective of minimizing the energy
consumption of each device i, with nz

f ≤ nz
p being the maximum number of devices that

should be selected for the next round of communication in each ES z. The constraint
(2a) guarantees that each device is allocated a single bandwidth Bj

z,i, power P l
z,i, CPU

frequency Fm
z,i and assigned to exactly one RB k, and the constraint (2b) guarantees that

each RB is allocated to a single device. The constraint (2c) ensures that the total sum of
Bj

z,i does not exceed BT
z , which is the total bandwidth budget. Constraints (2d) and (2e)

set power and CPU frequency bounds. Constraint (2f) sets the packet error rate for model
transmission. The constraint (2g) guarantees that the final number of selected devices is
at most nz

f , and the constraint (2h) defines that cz is a binary matrix, where cz,ijklm = 1

indicates that RB k in ES z has been allocated to device i with bandwidth Bj
z,i, power P l

z,i

and CPU frequency Fm
z,i, while cz,ijklm = 0 indicates otherwise.

For the effectiveness of large-scale HFL, a robust mechanism for adding and prop-
agating models is crucial. The next section details the implementation of HFLwOpt algo-
rithm, which integrates device selection and resource allocation in optimized federated
training for massive wireless IoT networks.

4.3. HFLwOpt Algorithm

Algorithm 1 outlines the HFLwOpt strategy for wireless IoT networks, based on Equations
(1) and (2), designed for scalable and efficient handling of n-level HFL aggregation. The
algorithm initializes model w0 and sets L aggregation levels. AC defines the number of
aggregations performed at each level of the hierarchy. The model w0 propagates through
the hierarchy via wireless links. At level L − 1, first-hop ESs optimize resources to
maximize local model aggregation, minimizing delays and energy consumption. Devices



are selected using matrix cz, considering bandwidth, CPU, power, and delay γT . Local
models are trained, aggregated using data-weighted averages, and sent to level L−2 after
ACL−1 iterations. Intermediate ESs (level 1 ≤ l ≤ L − 2) aggregate models from lower
levels and transmit to higher levels. The root ES performs global aggregation, generating
wglobal

t+1 after AC0 iterations and distributing it back through the hierarchy.

Algorithm 1: HFLwOpt in Wireless IoT Networks
1 Initialization:
2 Initialize w0, L, AC ← [c0, c1, ..., c(L−1)]
3 DistributeGlobalModel(w0)

4 for each global iteration AC0 in parallel do

5 Level L− 1: ▷ ES z in the first hop
6 for each first hop iteration ACL−1 in parallel do
7 Sz

t ← (random set of max(ft · Nz, 1) devices)
8 Define bz with nz

p ≤ |Sz
t | ▷Select nz

p devices using Equation 1
9 Define cz with nz

f ≤ nz
p ▷Schedule resources to nz

f devices using Equation 2

10 for each device i ∈ Sz
t in parallel do ▷Device Level

11 wz,i
t+1 ← TrainingOnDevice(i, wz

t )
12 wz

t+1 ← AggregationModels(wz,i
t+1)

13 UploadLocalModels(wz
t+1, L− 2) ▷Send models to ES at the top level

14 Level L− 2, ..., 1: ▷ ES in intermediate levels
15 for each intermediate level l in parallel do
16 for each aggregation round ACl in parallel do
17 w

z,Ll+1

t+1 ←ModelsFromLevel(l + 1)
18 wz,Ll

t+1 ← AggregationModels(wz,Ll+1

t+1 )
19 UploadLocalModels(wz,Ll

t+1 , l − 1) ▷Send models to ES at the top level

20 Level 0: ▷ Root ES
21 for each aggregation round AC0 in parallel do
22 wz,L1

t+1 ←ModelsFromLevel(1)
23 wglobal

t+1 ← AggregationModels(wz,L1

t+1 )
24 DistributeGlobalModel(wglobal

t+1 ) ▷Global model is propagated back down

25 Output:
26 Return wglobal after AC0 global iteration

5. Configuration Parameters and Simulation Results

5.1. Network Topologies

The scenario in Figure 1a features a two-level aggregation hierarchy, where devices send
local updates to a Middle ES for the first aggregation. Then, the Middle ES forwards the
aggregated models to the Far ES for the final aggregation. In this case, consider a wireless
IoT network with three distinct circular areas with a radius r of 625 meters with a BS in
the center of each area. Each BS is directly associated with a FL ES aggregator, where
there are Nz = 120 devices in each area distributed uniformly and randomly, totaling 360
devices in the total area. The distance between the devices and the first-hop Middle ES



is between 100 and 625 meters and each Middle ES is approximately 1, 625 meters from
Far ES.

(a) (b)

Figure 1. (a) HFL with the Middle ES, Far ES and the device level. (b) HFL with
the NearES, Middle ES, Far ES and the device level.

The scenario in Figure 1b introduces a hierarchy with three levels of aggregation.
A new server, called Near ES, is positioned closer to the devices in this topology. In this
case, Near ES is responsible for the first level of aggregation, Middle ES is responsible
for the second level of aggregation and Far ES, located at the top of the hierarchy, is
responsible for the third and final level of aggregation. In this case, consider a wireless
IoT network with nine distinct circular areas with a radius r of 625 meters with a BS in
the center of each area. Each BS is directly associated with a FL ES aggregator, where
there are Nz = 120 devices in each area distributed uniformly and randomly, totaling
1, 080 devices in the total area. The distance between the devices and the Near ES in the
first-hop is between 50 and 250 meters. Each set of three Near ES is associated with a
Middle ES. The distance from each Near ES to Middle ES and from each Middle ES to
Far ES is approximately 875 meters.

5.2. Network Parameters
The uplink bandwidth Bz,i of each RB in ES z is limited by discretized values generated
by an arithmetic progression in the range of [1, 2] MHz with increments and median val-
ues of 0.25 MHz and 1.5 MHz, respectively. Similarly, the transmission power Pz,i of
the devices is limited by the range of [5, 10] mW with increments and median values of
1 mW and 7.5 mW and the CPU frequency Fz,i of the devices is limited by the range
of [0.6, 1] GHz with increments and median values of 0.1 GHz and 0.8 GHz. The total
bandwidth budget BT

z for the uplink of each ES z is equivalent to the value of nz
f × 1.5

MHz, where nz
f defines the maximum number of devices participating in each round of

communication. Furthermore, each RB includes the attribution of a distinct and incre-
mental interference. The downlink bandwidth is 20 MHz, and the BS transmit power is
1 W. In each communication round t, the hz,i modeling incorporates a fading effect that
indicates that the channel gain decreases as the distance of the devices i from the ES z
increases. According to [Chen et al. 2021], other parameters include α = 2, N0 = −174
dBm/Hz, m = 0.023 dB, ωz,i = 40 and ζz,i = 10−27.

Communication between devices and their respective first-hop ES is higher than
between intermediate ESs. In our experiments, the aggregation frequencies are controlled



by the parameters. For example, in the topology of Figure 1a, 5 Middle ES aggregations
trigger 1 Far ES aggregation and in the topology of Figure 1b, 5 Near ES aggregations
trigger 1 Middle ES aggregation, and 2 Middle ES aggregations trigger 1 Far ES aggre-
gation. In the communication between the intermediate ESs, the uplink and downlink
bandwidth is 20 MHz and the BS transmission power is 1 W. For the assignment of up-
link RBs, we use a heuristic that prioritizes the intermediate ESs that are farthest from the
higher-level ES, allocating these ESs to the uplink channels with the highest SINR value.

5.3. Datasets and DNNs Architectures
The FL tasks in this work consider image classification problems using bench-
mark datasets used in FL research, called MNIST and Fashion-MNIST, accord-
ing to the works of [McMahan et al. 2016], [Chen et al. 2021], [Simos et al. 2022],
[Su et al. 2024], [Liu et al. 2020] and [Luo et al. 2020]. Unlike the cited references, this
work introduces heterogeneity in device data as a core feature of wireless IoT networks,
using non-Independent and Identically Distributed (non-IID) variations of MNIST and
Fashion-MNIST to challenge local model accuracy and global model aggregation opti-
mization. MNIST and Fashion-MNIST datasets were split into 10 subsets with samples
from the same label, using 75% of the samples for the training set and 25% for the test
set. Then, each device received a training and testing partition, where 90% of the samples
belong to the same label and the remaining 10% belong equally to the other labels; each
image is rotated up to 15◦ clockwise or counterclockwise; the final amount of data is given
by a factor between [0.25, 1] of the initial partition. The MNIST and Fashion-MNIST
partitions used in this work are referred to as NIID R-MNIST and NIID R-FMNIST, re-
spectively.

To evaluate HFLwOpt, we use two Deep Neural Networks (DNNs) architectures.
For NIID R-MNIST, an MLP with 192 neurons, ReLU activation, and a softmax output
layer was used. For NIID R-FMNIST, a CNN with three convolutional layers with 64
filters each, followed by ReLU activations, MaxPooling, and a dense layer with 192 neu-
rons was used. The MLP and CNN architectures have 152, 650 and 187, 210 parameters,
respectively, and both utilize the ADAM optimizer and the Sparse Categorical Cross-
Entropy loss function.

5.4. Simulation Results
HFLwOpt is evaluated against three baselines. H-FedAvgSINR is based on the FedAvg
algorithm [McMahan et al. 2016], which randomly selects devices and allocates commu-
nication resources, incorporating SINR-based uplink resource assignment. H-POCSINR is
derived from the POC algorithm [Cho et al. 2020], selecting devices with the highest lo-
cal loss and also utilizing SINR-based uplink assignment. The third algorithm, HFLwFix

Opt,
is a variation of HFLwOpt that uses fixed values for uplink bandwidth, power, and CPU
frequency. All these algorithms are implemented in an HFL tree topology using the same
fixed parameters: 1 MHz uplink bandwidth, 10 mW transmit power, and 1 GHz CPU
frequency.

Figures 2 and 3 depicts the evolution of accuracy and f(wglobal) for HFL algo-
rithms across different hierarchical aggregation topologies, analyzed as a function of suc-
cessful transmissions and energy cost. The experimental setup assumes a deployment
area of up to 2, 000 meters for distributing devices and ESs, where each first-hop ES has
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Figure 2. Evolution of accuracy and f(wglobal) for HFL algorithms using the NIID
R-MNIST dataset and MLP architecture, evaluated by successful transmis-
sions and energy cost across hierarchical aggregation topologies.

120 devices. Scenarios with Middle/Far aggregation represent the topology in Figure 1a
with 3 Middle ESs, 1 Far ES, and 360 devices. Similarly, scenarios with Near/Middle/Far
aggregation follow the topology in Figure 1b with 9 Near ESs, 3 Middle ESs, 1 Far ES,
and 1, 080 devices. The results are derived from scenarios involving 100 communication
rounds at each first-hop ES z, with a maximum of nz

f = 10 devices selected per com-
munication round with the requirement of the packet transmission error rate γQ = 0.3.
Solid curves show average performance, and shaded regions represent standard deviation
across 15 executions.

The algorithms based on HFLwOpt achieve high accuracy in Figures 2a and 3a,
supported by the substantial number of successful transmissions. Conversely, in Figures
2c and 3c, the inclusion of Near ESs close to the devices favors SINR-based algorithms,
which prioritize devices with favorable channel conditions, resulting in a high number
of successful transmissions. However, this approach fails to address the optimization
of global energy consumption effectively by using a fixed allocation of resources and,
therefore, disregarding critical factors for energy efficiency, such as the joint optimization
of bandwidth, power, and CPU frequency. This limitation is evidenced by Figures 2c
and 3c, in which the SINR algorithms present significantly higher energy costs to achieve
similar accuracies. Figures 2b, 2d, 3b, and 3d highlight the energy efficiency advantage
of HFLwOpt due to its formulation based on the Algorithm 1 that efficiently integrates
resource allocation and energy consumption. By carefully balancing bandwidth, power,
and CPU frequency, the HFLwOpt algorithm significantly reduces energy consumption
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Figure 3. Evolution of accuracy and f(wglobal) for HFL algorithms using the NIID
R-FMNIST dataset and CNN architecture, evaluated by successful trans-
missions and energy cost across hierarchical aggregation topologies.

while maintaining high-quality global models, even in complex scenarios with varying
hierarchical topologies.

Figure 4 presents the number of successful transmissions, energy cost, and train-
ing latency for HFL algorithms, emphasizing the influence of resource allocation and
communication distances on overall performance. In Figures 4a and 4c, which analyze
a topology with two levels of aggregation, HFLwOpt has superior performance based on
fixed resource allocation algorithms, achieving a higher number of successful transmis-
sions with lower training latency and reduced energy cost. In simpler hierarchical config-
urations, such as Middle/Far, based on fixed resource allocation algorithms struggle due
to their formulation and longer communication distances, leading to higher latencies and
increased transmission failures. In contrast, HFLwOpt minimizes these failures through
dynamic resource optimization, enabling lower training latencies and superior energy ef-
ficiency.

Figures 4b and 4d examine the performance of HFL algorithms in denser hier-
archical topologies with three levels of aggregation, highlighting the scalability of the
HFL approach. The introduction of intermediate ESs significantly reduces communi-
cation distances and improves SINR, leading to fewer transmission failures and better
overall performance. While algorithms like H-FedAvgSINR, H-POCSINR, and HFLwFix

Opt

show some performance improvements due to the shorter communication distances, they
remain limited by their static resource allocation strategies. This constraint hampers their
scalability, resulting in higher energy consumption and increased training latency as the
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Figure 4. Successful transmissions and energy cost as a function of training
latency for HFL algorithms across hierarchical aggregation topologies.

network complexity and device density grow. In contrast, HFLwOpt demonstrates supe-
rior adaptability to hierarchical configurations, leveraging dynamic resource allocation to
effectively balance energy consumption, training latency and successful transmissions.
These results establish HFLwOpt as an effective solution for massive IoT networks, offer-
ing consistent and sustainable performance.

6. Conclusion and Future Work

This work addresses device selection and communication resource allocation in wire-
less IoT networks for HFL tasks, proposing the HFLwOpt algorithm. Formulated as an
optimization problem, it maximizes successful transmissions, minimizes latency, and re-
duces energy consumption. Its hierarchical structure reduces transmission failures and
supports scalability, enabling the integration of more devices without compromising ef-
ficiency. HFLwOpt is robust in high-density scenarios and large-scale wireless IoT net-
works. The HFLwOpt source code is available to allow reproduction and validation of
the results. Future work will explore alternative network topologies and optimization
techniques that consider device mobility.
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