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1Instituto de Informática – Universidade Federal de Goiás (UFG),

2Instituto Federal de Goias (IFG), GO, Brasil

3Fraunhofer Portugal AICOS, Porto, Portugal

andre.goncalves@discente.ufg.br,

leandro.freitas@ifg.edu.br, antoniojr@ufg.br

Abstract. Meeting performance and stability demands in latency-sensitive
applications is one of today’s major technological challenges. This work presents
an Adaptive Scaling Architecture with Learning Support, applied to the context
of immersive applications and based on the combination of hardware metrics
and application-level events to optimize resource allocation. The implementation
uses Kubernetes and the Kubernetes Event-driven Autoscaler (KEDA), with the
Hubs VR application as a case study. Experiments were conducted resulting
in the construction of two structured datasets: one based solely on hardware
metrics and another also integrating application events. These datasets represent
a relevant outcome of the research, serving as a foundation for analyses and the
development of predictive strategies. The results indicate that combining metrics
can lead to more agile and stable responses to load variations, contributing to
the advancement of adaptive solutions in dynamic environments.

Resumo. Atender às demandas de desempenho e estabilidade em aplicações
sensı́veis à latência é um dos principais desafios tecnológicos atuais. Este
trabalho apresenta uma Arquitetura de Dimensionamento Adaptativo com
Suporte ao Aprendizado, aplicada ao contexto de aplicações imersivas, baseada
na combinação de métricas de hardware e eventos da aplicação para otimizar a
alocação de recursos. A implementação utiliza Kubernetes (K8s) e o Kubernetes
Event-driven Autoscaler (KEDA), tendo a aplicação Hubs VR como estudo
de caso. Foram conduzidos experimentos que resultaram na construção de
conjuntos de dados estruturados distintos: um baseado apenas em métricas
de hardware e outro que integra também eventos da aplicação. Esses datasets
representam um produto relevante da pesquisa, servindo como base para análises
e desenvolvimento de estratégias preditivas. Os resultados indicam que a
combinação de métricas pode promover respostas mais ágeis e estáveis frente
às variações de carga, contribuindo para o avanço de soluções adaptativas em
ambientes dinâmicos.

1. Introdução
Com o avanço das tecnologias pós-5G (Beyond 5G - B5G), as aplicações
sensı́veis à latência se consolidam como um dos maiores desafios tecnológicos



contemporâneos [Mehta et al. 2023, Han et al. 2022]. Essas aplicações abrangem
desde plataformas de streaming em tempo real e sistemas industriais crı́ticos até
soluções imersivas, como aplicações de Realidade Virtual (Virtual Reality - VR),
Realidade Aumentada (Augmented Reality - AR) e Realidade Mista (Mixed Reality -
MR) [Pelle et al. 2019], que convergem para o termo Realidade Estendida (Extended
Reality - XR). Para atender aos requisitos de baixa latência e alta responsividade exigidos
por essas tecnologias, especialmente em ambientes distribuı́dos e baseados em nuvem, são
necessárias estratégias eficazes e inovadoras [Han et al. 2022].

As soluções de XR são particularmente relevantes para a análise das exigências
de aplicações sensı́veis à latência, uma vez que a integração sincronizada entre o
ambiente fı́sico e os elementos virtuais é indispensável para proporcionar experiências
imersivas com percepção contı́nua e responsiva aos usuários [Han et al. 2022]. Contudo,
desafios relacionados à transmissão de dados, atraso, qualidade gráfica e desconforto
fı́sico tornam-se ainda mais crı́ticos em cenários de carga variável e picos de
demanda [Wu et al. 2023].

O avanço das comunicações imersivas reforça o impacto dessas aplicações no
paradigma atual das telecomunicações. Tecnologias emergentes, como redes de alta
velocidade, mostram-se promissoras para enfrentar tais desafios ao oferecer suporte para
baixa latência e maior confiabilidade [Siriwardhana et al. 2021]. Em particular, o uso
de arquiteturas modernas baseadas em orquestração de serviços, como as fornecidas
pelo Kubernetes (K8s), viabiliza a adaptação automática de recursos frente às variações
dinâmicas de demanda [Santos et al. 2023].

A evolução das infraestruturas em nuvem tem permitido a orquestração
eficiente de serviços distribuı́dos, embora a crescente complexidade exija soluções
avançadas de automação para garantir desempenho e disponibilidade [Nguyen et al. 2020,
Taleb et al. 2022]. Nesse cenário, o K8s destaca-se como plataforma amplamente
adotada na gestão de cargas em contêineres, oferecendo escalabilidade e
resiliência [Kubernetes 2022]. Entre suas funcionalidades, o Horizontal Pod Autoscaler
(HPA) ajusta dinamicamente o número de pods com base em métricas como uso de CPU e
memória, permitindo respostas mais rápidas a variações de carga [Nguyen et al. 2020].
Ferramentas como o Prometheus [Prometheus 2024] também contribuem para o
monitoramento e a definição de gatilhos de escalonamento.

Para ampliar a eficiência desses mecanismos, o Kubernetes-based Event Driven
Autoscaler (KEDA) estende o HPA ao incorporar eventos da aplicação como
acionadores de escalonamento, permitindo decisões mais alinhadas às necessidades
operacionais [KEDA Project 2024]. Essa abordagem tem se mostrado especialmente
relevante em aplicações sensı́veis à latência, como as de XR, que requerem alta
disponibilidade e respostas em tempo real [Gonçalves et al. 2023].

Grande parte das soluções atuais, no entanto, baseia-se exclusivamente em métricas
de hardware, o que pode comprometer a precisão do dimensionamento em contextos com
alta variabilidade de carga. Ao desconsiderar a dinâmica comportamental das aplicações,
tais abordagens tendem a resultar em ajustes menos eficazes e, por consequência, impactar
negativamente a qualidade do serviço (Quality of Service - QoS). A integração de métricas
de hardware com eventos da aplicação surge, assim, como alternativa promissora para



um dimensionamento mais contextualizado e adaptativo às exigências dos sistemas
modernos [Dogani et al. 2023].

Diversos estudos têm explorado estratégias de dimensionamento em ambientes
distribuı́dos, baseando-se em métricas de infraestrutura, técnicas de previsão de carga
e métodos de aprendizado de máquina. Neste contexto, este trabalho apresenta uma
arquitetura adaptativa com suporte ao aprendizado, que integra métricas de hardware e
eventos da aplicação como base para o escalonamento de recursos em aplicações imersivas.
No escopo desta pesquisa, vêm sendo conduzidas avaliações experimentais com a aplicação
Hubs VR, focadas na análise da escalabilidade de microsserviços sob diferentes condições
de carga. Tais experimentos buscam examinar em que medida a correlação entre métricas
de monitoramento e indicadores comportamentais da aplicação pode subsidiar decisões
mais eficientes no ajuste dinâmico de recursos.

Entre os resultados obtidos até o momento, destaca-se a constituição de dois
conjuntos de dados distintos e estruturados: um baseado exclusivamente em métricas de
hardware e outro que incorpora eventos da aplicação à análise. Tais conjuntos subsidiaram
experimentos voltados à escalabilidade de réplicas dos microsserviços, considerando a
combinação de métricas como parâmetro-chave para o dimensionamento adaptativo. A
abordagem mostrou vantagens frente a métodos baseados apenas em hardware, com
agilidade, estabilidade e potencial para ambientes sensı́veis à latência.

As principais contribuições deste artigo incluem: (i) a proposição de uma
arquitetura de dimensionamento adaptativo com suporte ao aprendizado voltada a
aplicações imersivas; (ii) a construção e disponibilização de dois conjuntos de dados
experimentais que integram métricas de hardware e eventos da aplicação, juntamente
com o código-fonte, experimentos e demais artefatos da pesquisa; (iii) a aplicação de
técnicas de Estatı́stica Descritiva e Exploratória na análise de desempenho do sistema em
diferentes cenários de carga, assegurando transparência, reprodutibilidade e replicabilidade
dos resultados1.

Para além desta seção introdutória, este artigo está estruturado da seguinte forma:
inicialmente, discute-se a revisão dos trabalhos relacionados na Seção 2. Na Seção 3,
descreve-se a arquitetura proposta para o dimensionamento adaptativo inteligente de
aplicações imersivas. A Seção 4 aborda a metodologia e os procedimentos da avaliação
experimental, cujos resultados são analisados e discutidos na Seção 5. Por fim, na Seção 6,
apresentam-se as conclusões e perspectivas futuras do trabalho.

2. Trabalhos Relacionados

O dimensionamento automático de aplicações distribuı́das tem sido objeto de estudo
em diferentes contextos, com abordagens que vão desde métodos reativos baseados
em métricas de infraestrutura até modelos preditivos apoiados por aprendizado de
máquina [Dogani et al. 2023]. Nesta seção, são analisados trabalhos relevantes da literatura,
com base em critérios como: Dimensionamento Automático de Aplicações (DAA),
Monitoramento no Dimensionamento Automático (MDA), Orquestração de Contêineres
(OC), Análise de Dados Históricos (ADH), Dimensionamento Baseado em Eventos
da Aplicação (DBE), suporte a Aplicações Sensı́veis à Latência (DSL), Abordagens

1Repositório disponı́vel em: https://github.com/LABORA-INF-UFG/AdaptScale



Adaptativas ao Dimensionamento (AAD) e Correlação entre Métricas de Hardware e
Aplicação (CMHA). A Tabela 1 apresenta a sı́ntese dos trabalhos analisados.

Tabela 1. Trabalhos Relacionados

Trabalhos Relacionados DAA MDA OC ADH DBE DSL AAD CMHA

[Yuan and Liao 2024] ✓ ✓ ✓ ✓ ✓

[Quattrocchi et al. 2024] ✓ ✓ ✓ ✓

[Cheng et al. 2023] ✓ ✓ ✓ ✓

[Dimolitsas et al. 2023] ✓ ✓ ✓ ✓ ✓ ✓

[Bartolomeo et al. 2023] ✓ ✓ ✓

[Benmerar et al. 2023] ✓ ✓ ✓ ✓ ✓ ✓

Nossa proposta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adotando modelos de séries temporais, YUAN e LIAO [Yuan and Liao 2024]
estruturam uma solução preditiva para o escalonamento em clusters K8s, utilizando
algoritmos como Holt-Winters e Gated Recurrent Unit GRU. Embora a abordagem
apresente bom desempenho preditivo, ela se baseia exclusivamente em dados históricos,
sem incorporar métricas em tempo real ou eventos da aplicação, o que limita sua resposta
a comportamentos emergentes, sobretudo em aplicações sensı́veis à latência, como as de
realidade virtual.

No trabalho de QUATTROCCHI et al. [Quattrocchi et al. 2024], os sistemas ScaleX
e QN-CTRL integram técnicas de controle e previsão estatı́stica para otimização de
recursos. A abordagem demonstra potencial para garantir estabilidade e eficiência em
ambientes de nuvem, porém sua ênfase no dimensionamento vertical pode restringir a
escalabilidade em cenários de alta variabilidade. Além da falta de mecanismos adaptativos
que limita a capacidade de ajuste dinâmico conforme as flutuações da carga de trabalho.

Com o framework ProScale, CHENG et al. [Cheng et al. 2023] propõem uma
solução proativa baseada em média móvel simples (Simple Moving Average - SMA) para
microserviços em ambientes de borda. Contudo, a dependência exclusiva do SMA como
modelo preditivo restringe a capacidade de adaptação do sistema, uma vez que este método
pressupõe padrões de carga relativamente estáveis. Esta limitação, combinada à ausência
de estratégias adaptativas de dimensionamento, pode comprometer o desempenho em
ambientes sujeitos a demandas imprevisı́veis.

No contexto de clusters heterogêneos, DIMOLITSAS et al. [Dimolitsas et al. 2023]
propõem um modelo hierárquico de escalonamento para múltiplas aplicações, combinando
critérios de QoS e eficiência energética por meio do método Analytic Hierarchy Process
(AHP). No entanto, o modelo adota uma lógica de alocação agregada, ou seja, distribui os
recursos com base em metas globais de desempenho, sem considerar em profundidade o
comportamento individual de cada aplicação frente às flutuações de carga. Essa ausência
de correlação direta entre padrões de uso e decisões de escalonamento pode limitar sua
adaptabilidade em cenários com alta variabilidade.

Com foco na orquestração de aplicações imersivas, BARTOLOMEO et
al. [Bartolomeo et al. 2023] investigam uma arquitetura distribuı́da em ambientes de
edge computing, utilizando o framework Oakestra. Embora o estudo traga avanços na
escalabilidade de soluções em Realidade Aumentada (AR), a abordagem ainda depende de
regras estáticas de dimensionamento, sem contemplar adequadamente variações súbitas



de carga. Além disso, a alocação de recursos fundamenta-se exclusivamente em métricas
de hardware, desconsiderando indicadores diretamente relacionados ao desempenho da
aplicação.

BENMERAR et al. [Benmerar et al. 2023], por sua vez, propõem o Application
Management Framework (AMF), que aplica técnicas de Inteligência Artificial à
orquestração de ambientes distribuı́dos voltados à Realidade Virtual (VR) e AR. O
framework apresenta mecanismos de adaptação para garantir QoS em cenários altamente
distribuı́dos, mas foca na gestão multi-domı́nio e no ciclo de vida das aplicações, sem
incorporar um processo contı́nuo de escalonamento automático sensı́vel às variações de
carga.

Diferenciando-se dessas propostas, este trabalho propõe uma arquitetura modular
orientada ao modelo MAPE-K, que integra métricas de hardware e eventos da aplicação
para compor decisões de escalonamento mais contextuais e responsivas. A contribuição
destaca-se não apenas pela combinação dessas métricas, mas também pela estruturação de
conjuntos de dados experimentais, oferecendo subsı́dios para análises futuras com modelos
de aprendizado de máquina. Além disso, a proposta aborda a evolução da arquitetura com
base no conhecimento extraı́do do sistema, atuando tanto no nı́vel do serviço quanto da
plataforma, aspecto ainda incipiente nos trabalhos anteriores.

3. Arquitetura de Dimensionamento Adaptativo com Suporte ao Aprendizado

O dimensionamento adaptativo com suporte ao aprendizado baseia-se em uma
proposta de arquitetura que adota o modelo MAPE-K (Monitor, Analyze, Plan, Execute,
Knowledge) [Malburg et al. 2023]. Essa abordagem foi projetada para oferecer ajustes
proativos e reativos em ambientes de microsserviços, ampliando a responsividade e a
estabilidade do sistema mesmo sob alta variabilidade de carga.

Nesse contexto, a arquitetura proposta integra métricas de hardware e eventos da
aplicação como estratégia para aprimorar a eficiência do dimensionamento adaptativo,
essencial para aplicações imersivas com baixa latência e controle de recursos. A
Figura 1 apresenta os fluxos operacionais e os componentes integrados responsáveis
pelo monitoramento, análise e ajuste dinâmico da capacidade computacional.

A arquitetura foi implementada em ambiente controlado, de modo a possibilitar
sua experimentação em cenários de carga variável. Os detalhes da infraestrutura e da
configuração dos testes são apresentados na Seção 4.

No fluxo operacional, a aplicação Hubs atua como núcleo das interações com
os usuários e do gerenciamento das sessões virtuais. As requisições simuladas pelo
K6 [k6.io 2024] chegam ao HAProxy, responsável pelo balanceamento de carga entre
os microsserviços que compõem a aplicação. Esses microsserviços desempenham funções
especı́ficas e complementares. O Reticulum gerencia conexões WebSocket e roteamento
de mensagens entre clientes e servidores, enquanto o Dialog viabiliza a comunicação
peer-to-peer utilizando Web Real-Time Communications (WebRTC). O Coturn atua como
servidor Traversal Using Relays around NAT (TURN), retransmitindo dados entre clientes
para garantir a estabilidade das conexões WebRTC, mesmo em redes restritivas com NATs
e firewalls. O Nearspark realiza cálculos para otimização de latência e o Photomnemonic
processa e gerencia mı́dias, incluindo armazenamento e recuperação de imagens e vı́deos.



Figura 1. Arquitetura para o Dimensionamento Adaptativo de Aplicações

O microsserviço Hubs, homônimo da aplicação, centraliza a lógica das sessões virtuais,
integrando a interação entre os usuários e a sincronização das atividades no ambiente. Por
fim, o Spoke cria ambientes 3D e permite a personalização dos espaços virtuais. O banco
de dados utilizado é o PgSQL, com suporte dos serviços PgBouncer e PgBouncer-T para
pooling de conexões [Hubs Foundation 2024].

A Figura 1 ilustra como, no contexto da arquitetura proposta, o módulo Monitor
coleta e organiza métricas por meio do Prometheus, padronizando e sincronizando dados
como uso de CPU, volume de dados transmitidos, taxa de requisições por segundo e número
de conexões simultâneas. O módulo Analyze processa essas informações por meio de
consultas e análises gráficas com o objetivo de identificar padrões sob diferentes condições
de carga e detectar variações relevantes no desempenho do sistema. As métricas de
hardware, como uso de CPU e tráfego de rede, complementam-se aos eventos da aplicação,
como taxa de requisições e conexões simultâneas, oferecendo múltiplas perspectivas sobre
o comportamento dinâmico do ambiente monitorado. Os dados históricos alimentam o
repositório Knowledge, que oferece suporte ao módulo Plan para definição de estratégias
de escalonamento, incluindo a parametrização de thresholds com base nas informações
previamente analisadas. O módulo Execute, por sua vez, aplica os ajustes de recursos de
forma alinhada às variações de demanda observadas.

Embora a arquitetura integre ferramentas amplamente utilizadas no contexto de
orquestração de contêineres, sua contribuição reside na forma como esses componentes
são articulados segundo o ciclo MAPE-K. A proposta combina métricas de infraestrutura e
eventos da aplicação para decisões adaptativas de escalonamento em aplicações imersivas,
uma configuração que, segundo a revisão realizada, não é explorada em propostas
anteriores.

No âmbito do KEDA, o processo é acionado a partir da configuração dos
ScaledObjects, que especificam as métricas monitoradas e seus respectivos valores de
referência. O KEDA atua como intermediário entre o Prometheus e o K8s, convertendo os
valores das métricas em sinais que instruem o ajuste automático de réplicas. Quando os
limites são ultrapassados, o KEDA aciona o controlador do K8s para ajustar instâncias,
proporcionando uma resposta mais ágil e adequada à carga do sistema.

Com isso, a arquitetura estabelece um fluxo integrado de monitoramento, análise e



ajuste dinâmico de recursos, direcionado a aplicações imersivas com requisitos de baixa
latência e alta estabilidade. No escopo desta pesquisa, a implementação desse modelo
tem possibilitado a construção de um ambiente controlado para experimentação e coleta
estruturada de dados. A próxima seção detalha os procedimentos adotados na avaliação
experimental, com foco na geração e organização dos conjuntos de dados utilizados nas
análises exploratórias.

A arquitetura proposta encontra-se em desenvolvimento progressivo, com os
módulos Monitor e Analyze consolidados, e o módulo Plan em estruturação inicial. Já os
módulos Execute e Knowledge foram projetados conceitualmente para compor versões
futuras da arquitetura. O módulo Monitor utiliza scripts que padronizam e sincronizam
temporalmente as métricas coletadas pelo Prometheus, garantindo consistência para análise.
O módulo Analyze aplica rotinas estatı́sticas com o Pandas para identificar padrões sob
diferentes cargas. Em sua versão atual, o módulo Plan opera com thresholds definidos a
partir de análise gráfica e observações empı́ricas, conforme a Seção 4, e será futuramente
aprimorado com modelos preditivos. A expectativa é que, com o amadurecimento dos
módulos restantes, o ciclo MAPE-K seja operacionalizado de forma contı́nua. O módulo
Execute aplicará os ajustes via KEDA e Kubernetes, enquanto o Knowledge organizará o
conhecimento extraı́do do sistema. A arquitetura foi concebida com estrutura modular e
escalável, permitindo a integração incremental de novas funcionalidades, como a previsão
de carga baseada em aprendizado de máquina. Essa composição amplia a adaptabilidade
da solução e sua resposta a variações dinâmicas em aplicações imersivas.

4. Avaliação Experimental da Arquitetura Proposta

O processo experimental foi estruturado para analisar o comportamento da arquitetura
proposta em dois cenários distintos, voltados ao dimensionamento de réplicas dos
microsserviços da aplicação: um baseado exclusivamente em métricas de hardware, e
outro que combina métricas de hardware e eventos da aplicação. Ambos os cenários foram
projetados para observar aspectos relacionados à estabilidade, previsibilidade e eficiência
do sistema em condições de carga variável.

Para viabilizar os experimentos, a infraestrutura foi provisionada na plataforma
Digital Ocean, utilizando um cluster K8s configurado para suportar cenários de carga
variável e testes controlados. O cluster foi estruturado em dois node pools: o primeiro, com
uma instância de 2 vCPUs e 4 GB de memória RAM; e o segundo, com duas instâncias de 1
vCPU e 2 GB de memória RAM cada. A configuração favorece a resiliência e distribuição
da carga.

As requisições simuladas pelos usuários virtuais seguiram um mesmo padrão,
envolvendo interações com a aplicação Hubs, como o acesso a salas virtuais e a manutenção
da sessão ativa. A injeção de carga foi conduzida com a ferramenta K6, alternando entre
uma carga regular de 55 a 65 usuários virtuais e uma sobrecarga que atingiu até 700
conexões simultâneas. Ao longo de duas horas de teste, foram simulados dois eventos
de sobrecarga aplicados de forma progressiva, permitindo a análise do comportamento
do sistema em relação à resiliência, tempos de resposta e capacidade de ajuste dinâmico.
Para representar, ainda que de forma controlada, a imprevisibilidade tı́pica das cargas
de trabalho em aplicações reais, essa variação buscou simular cenários de oscilação de
demanda.



Com base na configuração proposta, os testes foram organizados em dois cenários.
No Cenário 1, foram utilizadas métricas de hardware, como uso de CPU e transmissão
de dados, para orientar o dimensionamento. Essa configuração buscou observar o
comportamento do sistema com base em indicadores exclusivamente reativos. No Cenário
2, as métricas combinadas incorporaram, além dos indicadores de hardware, a taxa de
requisições por segundo como métrica de evento. Essa abordagem permitiu avaliar o
potencial da associação entre dados de infraestrutura e eventos da aplicação como suporte
para ajustes mais contextualizados. A Tabela 2 apresenta as configurações adotadas em
cada cenário. Cabe destacar que a configuração do Cenário 1, ao utilizar exclusivamente
métricas de infraestrutura como uso de CPU e transmissão de dados, aproxima-se do
comportamento do HPA, uma vez que esse mecanismo se baseia em métricas de hardware
para orientar o escalonamento. A utilização do KEDA, por sua vez, estende as capacidades
do HPA ao incorporar também eventos da aplicação como gatilhos de escalonamento.
Assim, os experimentos conduzidos permitem não apenas avaliar a proposta com métricas
combinadas, mas também contrastá-la com um cenário de referência inspirado em
estratégias já consolidadas na literatura.

Tabela 2. Configurações e Cenários do Experimento de Dimensionamento

Experimentos Duração (h) Métricas Configuradas Cenário de Carga

Cenário 1: Métricas de hardware 2 Uso de CPU ou
transmissão de dados

Alternância entre:
Carga Regular (55-65 usuários)
Sobrecarga (até 700 usuários)

Cenário 2: Métricas combinadas 2
Uso de CPU ou

transmissão de Dados
e taxa de requisições por segundo

Alternância entre:
Carga Regular (55-65 usuários)
Sobrecarga (até 700 usuários)

A definição dos thresholds foi um aspecto crı́tico da configuração experimental,
exigindo a identificação de limites adequados para acionar ou desativar réplicas de
forma oportuna [Dogani et al. 2023]. Para os microsserviços da aplicação Hubs, esses
valores foram definidos com base em análise gráfica e observações empı́ricas das
métricas coletadas. Durante os testes, verificou-se que, sob carga regular, o sistema
mantinha estabilidade, enquanto o escalonamento era acionado a partir de 135 requisições
por segundo, conforme identificado com o auxı́lio das ferramentas Prometheus e
Grafana [Grafana, 2024 ]. A calibragem dos valores foi realizada manualmente, com
ajustes baseados em testes sucessivos, buscando evitar tanto a criação de réplicas
desnecessárias quanto respostas tardias. Os thresholds finais foram incorporados ao arquivo
ScaledObject, componente do KEDA responsável por definir e gerenciar as regras de
dimensionamento automático, como apresentado na Listagem 1.

Com o suporte da biblioteca Pandas [Pandas 2025], foram calculadas estatı́sticas
descritivas para cada conjunto de dados, selecionando experimentos equivalentes
para garantir consistência e minimizar vieses. Esses dados estruturados representam
a principal entrega desta etapa, servindo de base às análises exploratórias. Os
experimentos também consolidaram os processos dos módulos Monitor e Analyze do
modelo MAPE-K. No módulo Monitor, scripts integrados ao Prometheus asseguraram
rastreabilidade, padronização e reprodutibilidade dos dados, com documentação para
replicação [LABORA-INF-UFG 2025]. No módulo Analyze, os scripts processaram os
dados coletados e geraram análises estatı́sticas voltadas à identificação de padrões e
tendências do sistema.



Listagem 1. Configuração do arquivo ScaledObject
1 apiVersion: keda.sh/v1alpha1
2 kind: ScaledObject
3 metadata:
4 name: reticulum-scaledobject
5 namespace: hcce
6 spec:
7 scaleTargetRef:
8 name: reticulum
9 minReplicaCount: 1

10 maxReplicaCount: 3
11 cooldownPeriod: 60
12 pollingInterval: 30
13 triggers:
14 - type: prometheus
15 metadata:
16 serverAddress: http://prometheus-server.monitoramento.svc.cluster.local
17 metricName: rate_k6_http_reqs_total
18 query: rate(k6_http_reqs_total[1m])
19 threshold: "135"
20 - type: prometheus
21 metadata:
22 serverAddress: http://prometheus-server.monitoramento.svc.cluster.local
23 metricName: reticulum_cpu_usage_seconds_total
24 query: >
25 sum(rate(container_cpu_usage_seconds_total{namespace=’hcce’,
26 pod=˜’reticulum.*’}[5m])) 100 / count(node_cpu_seconds_total{mode=’idle’})
27 threshold: "8.5"

5. Resultados
Os experimentos geraram uma quantidade significativa de dados, organizados em dois
conjuntos distintos, possibilitando a análise de desempenho do sistema em dois cenários:
um baseado exclusivamente em métricas de hardware e outro que combinou métricas de
hardware e eventos da aplicação, conforme descrito na Seção 4. Essas abordagens foram
avaliadas a partir da estabilidade do sistema durante o dimensionamento e na eficiência da
alocação de recursos para atender às demandas de forma ágil e proporcional.

A análise dos dados coletados nos experimentos foi conduzida por meio de técnicas
de Estatı́stica Descritiva e Exploratória, que permitem identificar padrões, variabilidade
e tendências [López-Ramı́rez et al. 2024]. As métricas avaliadas, listadas na Tabela 3,
incluem taxa de requisições por segundo (RPS), latência (L), tempo de resposta (TR) e
percentual de sucesso das requisições (SR), representando aspectos importantes para a
validação do sistema.

Tabela 3. Estatı́sticas Descritivas dos Experimentos.

Experimento Nº de registros Métrica Média Desvio Padrão Mı́nimo 25% Mediana 75% Máximo

Métricas
de hardware

23295 RPS 66.37 102.92 0.03 12.86 24.04 39.73 361.58
23295 L (s) 0.67 0.31 0.17 0.45 0.47 0.96 2.00
23295 TR(s) 0.50 0.30 0.17 0.28 0.44 0.52 2.00
23295 SR (%) 98.49 0.02 93.33 98.56 99.85 99.99 100.00

Métricas
combinadas

23077 RPS 61.85 90.48 0.03 13.28 27.65 53.31 364.54
23077 L (s) 0.42 0.08 0.17 0.41 0.43 0.49 0.57
23077 TR (s) 0.38 0.12 0.16 0.29 0.41 0.49 0.61
23077 SR (%) 99.35 0.01 97.69 98.91 99.90 99.99 100.00

Requisições por segundo - RPS; Latência - L; Tempo de resposta - TR; Sucesso das requisições - SR.

A Figura 2 apresenta diferenças relevantes observadas entre os experimentos. O
cenário de métricas combinadas apresentou mediana superior na taxa de requisições por
segundo (27,65 RPS contra 24,04 RPS), conforme apresentado na Figura 2a, além de



melhores resultados em latência (Figura 2b) e tempo de resposta (Figura 2c), com 0,43
segundos e 0,41 segundos, respectivamente, frente a 0,47 segundos e 0,44 segundos no
cenário de métricas de hardware.

Figura 2. Boxplots comparativo entre os indicadores de desempenho

No percentual de sucesso das requisições, o cenário combinado foi ligeiramente
superior, alcançando 99,9% contra 99,85%. Verifica-se também, que o cenário de hardware
mostrou maior dispersão nas métricas, como latência e tempo de resposta, com amplitudes
interquartis mais amplas e presença de outliers, especialmente no percentual de sucesso das
requisições. O cenário combinado, por outro lado, apresentou distribuições mais compactas
e consistentes, indicando maior estabilidade.

Os mapas de calor da Figura 3 evidenciam as correlações entre métricas nos dois
cenários analisados. No cenário baseado em hardware (Figura 3a), a correlação entre
latência e uso de memória do Dialog foi fraca, com valor de 0,1. Já no cenário de métricas
combinadas (Figura 3b), essa correlação subiu para 0,8, evidenciando forte relação quando
eventos da aplicação são incorporados. Alterações semelhantes ocorreram na correlação
entre latência e uso de CPU no Spoke, que passou de 0,2 para 0,7, e entre latência e
transmissão de dados no Nearspark, que aumentou de 0,3 para 0,8. A inclusão de eventos
revela relações ocultas quando apenas métricas de hardware são utilizadas.

As relações entre número de réplicas e latência são analisadas sob a perspectiva
de três microsserviços: Reticulum, Hubs e Spoke. O cenário baseado exclusivamente
em métricas de hardware apresentou latências superiores em comparação ao cenário de
métricas combinadas, como mostra a Figura 4. A análise considera médias e respectivos
intervalos de confiança de 95%, permitindo avaliar a consistência dos resultados entre
diferentes configurações. A abordagem com métricas combinadas revelou impacto positivo
em todos os microsserviços, resultando em latências menores, independentemente do
número de réplicas.

De forma semelhante ao comportamento observado na latência, a relação entre o



Figura 3. Mapas de calor dos conjuntos de dados

número de réplicas e o tempo de resposta evidencia a vantagem do cenário baseado
em métricas combinadas. Conforme ilustrado na Figura 5, o tempo de resposta
nos microsserviços Reticulum, Hubs e Spoke foi sistematicamente menor quando o
dimensionamento considerou tanto métricas de hardware quanto eventos da aplicação. No
microsserviço Hubs, por exemplo, a abordagem combinada manteve um tempo de resposta
mais estável mesmo com o aumento do número de réplicas, enquanto no cenário baseado
apenas em métricas de hardware observou-se um crescimento mais acentuado. A análise
com intervalos de confiança reforça a evidência de que o modelo combinado contribui para
mitigar impactos negativos em situações de dimensionamento intensivo.

Figura 4. Relação entre o número de réplicas e a latência nos microsserviços
analisados (com intervalo de confiança de 95%)

Por fim, a Figura 6 apresenta a média de uso de recursos computacionais, como
CPU e memória, nos dois cenários analisados. Em relação à CPU, o consumo médio foi
semelhante em ambas as abordagens, com o cenário baseado exclusivamente em métricas
de hardware registrando 39,14%, um valor ligeiramente superior aos 37,34% observados no
cenário combinado. Já no uso de memória, a diferença foi mais expressiva, com o cenário



Figura 5. Relação entre o número de réplicas e o tempo de resposta nos
microsserviços analisados (com intervalo de confiança de 95%)

de hardware atingindo uma média de 85,45%, enquanto o modelo combinado demonstrou
maior eficiência ao reduzir esse consumo para 81,15%. Esses resultados sugerem vantagens
potenciais da abordagem combinada, que, ao integrar eventos da aplicação, possibilitou
uma melhor alocação de memória, mesmo diante de cargas variáveis e dimensionamento
ativo.

Figura 6. Comparação do uso de CPU e memória entre os cenários analisados

De forma geral, os resultados obtidos a partir da análise descritiva sugerem que a
abordagem baseada em métricas combinadas apresenta vantagens em relação ao cenário
que considera apenas métricas de hardware. Essa estratégia demonstrou maior eficiência na
redução da latência e do tempo de resposta, além de maior consistência durante o processo
de dimensionamento automático. Também se destacou no uso de recursos computacionais,
especialmente no consumo de memória, que foi, em média, inferior ao observado no
cenário exclusivamente baseado em hardware. A integração de eventos da aplicação às
métricas de infraestrutura possibilitou a identificação de correlações mais representativas,
contribuindo para uma gestão mais eficiente da escalabilidade do sistema. A combinação
de métricas favorece a alocação de recursos sob alta variabilidade.

6. Considerações Finais
Esta pesquisa propôs uma arquitetura de dimensionamento adaptativo com suporte ao
aprendizado, voltada à escalabilidade da aplicação Hubs, a partir de métricas de CPU,
transmissão de dados e taxa de requisições. Conjuntos de dados estruturados, oriundos
de experimentos com cenários distintos de monitoramento, compõem a principal entrega
deste estágio da investigação, base para análises descritivas, exploratórias e preditivas.

Os resultados obtidos indicam que a abordagem baseada em métricas combinadas
apresenta potencial para superar limitações observadas em estratégias que utilizam



exclusivamente métricas de hardware. Observou-se, por exemplo, maior agilidade no ajuste
de réplicas em momentos de sobrecarga e comportamento mais estável sob condições
crı́ticas. Embora promissora, a abordagem ainda enfrenta desafios operacionais, como
a definição precisa de thresholds para os gatilhos de escalonamento, que impactam
diretamente o equilı́brio entre consumo de recursos e tempo de resposta.

Como trabalhos futuros, destaca-se a integração de modelos preditivos ao ciclo de
dimensionamento, com vistas à consolidação dos módulos Plan, Execute e Knowledge,
projetados na arquitetura. Esses módulos atuarão na definição dinâmica de thresholds,
na aplicação automatizada das decisões e na consolidação do conhecimento extraı́do
de execuções anteriores, resultando no aprimoramento da capacidade da arquitetura de
adaptar-se às variações de carga com maior precisão.
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