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Abstract. Redes Neurais Profundas com Saidas Antecipadas (EE-DNNs) inse-
rem ramos laterais que permitem a inferéncia local quando a confianca ultra-
passa um limiar pré-definido, reduzindo a dependéncia da nuvem. No entanto,
um limiar fixo ndo se adapta as variagoes contextuais do mundo real. Este
trabalho investiga a adaptacdo dindmica dos limiares utilizando algoritmos de
multi-armed bandits (MABs). Além disso, um buffer de entradas finito é intro-
duzido para equilibrar o compromisso entre acurdcia e laténcia, considerando
a confianga e o tamanho da fila. Os resultados experimentais demonstram que
os limiares ajustados por MABs convergem rapidamente em diversos contextos,
enquanto o buffer garante um equilibrio eficiente entre acurdcia e laténcia.

Abstract. Early-exit Deep Neural Networks (EE-DNNs) insert intermediate
branches that enable local inference when confidence exceeds predefined th-
resholds, reducing reliance on cloud processing. However, fixed thresholds fail
to adapt to real-world contextual variations. This work investigates dynamically
adaptive threshold using multi-armed bandits (MABs) to address concept drift
caused by contextual changes. Additionally, a finite input buffer is introduced
to balance the accuracy-latency trade-off based on both confidence levels and
queue size. Experimental results demonstrate that MAB-based thresholds con-
verge rapidly, across diverse contexts, while the buffer ensures efficient balance
the accuracy-latency trade-off.

1. Introducao

Redes Neurais Profundas (Deep Neural Networks — DNNs) tém alcangado
avancos notdveis em desempenho [Krizhevsky et al. 2012, He et al. 2016], especi-
almente em tarefas relacionadas a visdo computacional. Contudo, o alto requisito de
processamento dessas redes dificulta sua aplicagdo em dispositivos mdveis para tare-
fas de inferéncia. Uma solugdo para contornar essas restricdes envolve o uso de infra-
estrutura de computagdo em nuvem equipada com Unidades de Processamento Gréfico
(GPUs) [Satyanarayanan 2017]. Em um modelo exclusivamente baseado na nuvem, os
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dispositivos méveis capturam dados e os transmitem a nuvem, onde o processamento
completo do modelo DNN ocorre. Entretanto, essa abordagem implica em custos adici-
onais relacionados a comunicacao entre os dispositivos moveis € o servidor na nuvem, o
que reforca a necessidade de particionar os modelos DNN para uma execu¢ao conjunta
entre dispositivos moveis e a nuvem [Kang et al. 2017, Hu et al. 2019]. Nesse contexto,
surge a abordagem de inferéncia colaborativa, que se baseia no particionamento do mo-
delo DNN. Esse particionamento € tratado como um problema de otimizagdo, em que
uma camada especifica € selecionada para dividir o modelo [Pacheco et al. 2021a]. As
camadas anteriores a camada de divisdo sdo executadas localmente no dispositivo mével,
enquanto as demais sdo processadas na nuvem.

Este estudo aborda uma tarefa de classificacio em que uma DNN com saidas
antecipadas (early-exit DNN — EE-DNN) € empregada para identificar objetos em ima-
gens. O trabalho explora um cendrio de offloading adaptativo, combinando EE-DNNs e
particionamento de modelo dentro de um framework de co-inferéncia entre dispositivos
moveis e a nuvem. As DNNs com saidas antecipadas desempenham um papel crucial na
implementag¢do da co-inferéncia [Teerapittayanon et al. 2016,Laskaridis et al. 2020, Wang
et al. 2019a], pois sao projetadas com multiplos ramos laterais que permitem a realizacao
de inferéncias em camadas intermedidrias.

Quando o dispositivo mével captura uma imagem, ela é processada até alcancar
um dos ramos laterais da DNN. Caso a confianga da classificacdo supere um limiar de
confianca predefinido, a inferéncia € concluida localmente. Caso contrario, os dados sao
enviados a nuvem, que processa as camadas restantes do modelo. Essa abordagem per-
mite que a inferéncia seja concluida condicionalmente, dependendo da complexidade de
classificar a entrada, resultando em economia de recursos como rede, energia e capacidade
computacional, além de reduzir o tempo de inferéncia para entradas menos complexas.
Entretanto, optar por classificagdes antecipadas pode levar a uma reduc¢io no desempenho,
gerando um trade-off entre laténcia e acuricia [Pacheco et al. 2021a].

BranchyNet [Teerapittayanon et al. 2016] e SPINN [Laskaridis et al. 2020] em-
pregam um limiar fixo para decidir se a inferéncia deve ser encerrada. Essas abordagens
pressupdem que a distribui¢cao de amostras entre classes € constante, o que pode ser inade-
quado em cendrios reais. Por exemplo, um dispositivo mével em um porto tende a proces-
sar mais imagens de navios, enquanto, em uma rodovia, 0 mesmo dispositivo precisaria
classificar predominantemente carros e caminhdes. O ambiente em que as imagens sdo
coletadas, referido como contexto, exerce influéncia direta nos resultados da inferéncia.

Neste cendrio, este trabalho apresenta duas principais contribuigdes:

Multi-armed bandits para lidar com concept drift: Este trabalho demonstra que
algoritmos de multi-armed bandits (MABs) s@o eficazes na adaptacdo dinamica dos limi-
ares de confianga para enfrentar o concept drift, ou seja, mudangas nas propriedades es-
tatisticas das imagens ao longo do tempo. Os resultados indicam que os limiares ajustados
por MABs convergem apés algumas milhares de amostras, maximizando o desempenho
em diferentes contextos e cendrios de sobrecarga. Os MABs levam em consideragdo: ¢) as
confiancas obtidas nos ramos laterais; i7) os ganhos de confianca estimados ao processar
todas as camadas do modelo; e iii) os custos associados a sobrecarga.

Buffer de entradas para gerenciar o trade-off entre precisao e atraso: Um



buffer finito de entradas é introduzido para auxiliar o controlador na tomada de decisdes
sobre saidas antecipadas, com base tanto na confianca da classificagdo quanto no tamanho
da fila de espera. O backlog representa a quantidade de tarefas ou dados acumulados
aguardando processamento pelo modelo de EE-DNN. Quando o backlog € pequeno, o
controlador pode priorizar a acuricia das inferéncias processando todo o modelo de EE-
DNN, garantindo resultados mais precisos. No entanto, se o backlog é alto, ou seja,
o buffer estiver proximo de sua capacidade médxima, o controlador precisa favorecer a
velocidade de processamento para evitar a perda de novas entradas, garantindo assim a
eficiéncia do sistema mesmo sob alta demanda.

Este estudo amplia os resultados apresentados em [Pacheco et al. 2024], intro-
duzindo duas contribui¢des principais: 1) a implementacdo de um buffer de entrada para
aprimorar as decisoes relacionadas as saidas antecipadas e 2) a avaliag¢do do concept drift,
em que mudangas no contexto refletem alteracdes nas categorias de imagens. Diferen-
temente dos trabalhos anteriores [Pacheco et al. 2024], que focaram a influéncia de di-
ferentes niveis de desfoque (blur) nas imagens, este trabalho considera explicitamente
variagdes contextuais associadas as classes de imagens existentes no conjunto de dados.

A organizacao do artigo € a seguinte: a Secdo 2 apresenta uma revisao dos traba-
lhos relacionados. Na Secao 3, sdo explorados os conceitos de DNNs com saidas anteci-
padas e a aplicacdo de multi-armed bandits. A Se¢do 4 aborda a formulag@o do problema
considerando a introducao de um buffer de entradas. A Se¢do 5 discute o impacto do con-
texto sobre as decisOes de saida antecipada, demonstra a convergéncia dos MABs para a
escolha de limiares adequados e analisa o impacto do buffer. Por fim, a Secdo 6 apresenta
as conclusodes e sugere direcOes para pesquisas futuras.

2. Trabalhos Relacionados

BranchyNet [Teerapittayanon et al. 2016] € uma DNN com saidas antecipadas que
decide se uma amostra pode ser classificada antecipadamente, com base na entropia da
classificacdo. A decisao € tomada quando o valor da entropia € inferior a um limiar fixo
predefinido, permitindo que a amostra seja classificada em um ramo lateral. Arquiteturas
similares, como SPINN [Laskaridis et al. 2020] e SEE [Wang et al. 2019b], utilizam a
confianca da classificacdo, representada pela probabilidade da classe mais provével, para
decidir sobre saidas antecipadas. Este trabalho também considera uma arquitetura em que
a saida antecipada ocorre quando a confianga ultrapassa um limiar especifico.

Além da BranchyNet e da SPINN, outras abordagens exploram DNNs com saidas
antecipadas para reduzir o tempo de inferéncia. FlexDNN [Fang et al. 2020] e Edgent [Li
et al. 2019] utilizam essas DNNs para selecionar a profundidade ideal do modelo, en-
quanto Dynexit [Wang et al. 2019a] implementa DNNs com saidas antecipadas em hard-
ware FPGA, visando otimizar a laténcia e o consumo energético. Paul et al. [Kim and
Park 2020] também destacam as vantagens de implementar DNNs com saidas antecipadas
em placas FPGA, alcancando ganhos significativos em tempo de inferéncia e eficiéncia
energética.

Casale e Roveri [Casale and Roveri 2023] introduzem o conceito de buffer de
entradas no contexto de DNNs com saidas antecipadas (EE-DNNs), no qual o backlog do
buffer influencia diretamente as decisdes de saida antecipada. No entanto, este trabalho
se diferencia ao abordar o impacto das mudancgas no contexto, o que esta fora do escopo



de [Casale and Roveri 2023].

Os trabalhos existentes geralmente assumem limiares fixos [Fang et al. 2020,
Li et al. 2019, Kim and Park 2020, Pacheco et al. 2021a, Pacheco et al. 2021b] ou
pré-definidos durante a inferéncia. Em contraste, este trabalho propde uma abordagem
adaptativa que ajusta os limiares dinamicamente por meio de aprendizado por reforgo,
respondendo as mudangas no contexto.

A maioria das solucdes atuais define saidas antecipadas comparando valores de
confianca ou entropia a limiares fixos. Exce¢des sao LEE [Ju et al. 2021b] e DEE [Ju
et al. 2021a], que utilizam MABs para aprender politicas de saida. Apesar de motivado
por objetivos semelhantes, este trabalho se distingue em aspectos fundamentais, como o
uso de MABs para ajustar os limiares que determinam saidas 6timas, enquanto trabalhos
como LEE e DEE definem explicitamente a saida 6tima como varidavel de controle.

3. DNN com Saidas Antecipadas Através de Multi-Armed Bandits

Este trabalho utiliza a DNN MobileNetV2 [Krizhevsky et al. 2012] com um ramo
lateral como modelo para DNNs com saidas antecipadas, considerando uma inferéncia
colaborativa entre borda e nuvem, como ilustrado na Figura 1(a). Apds receber uma en-
trada &, o modelo € processado no dispositivo de borda, camada por camada, até atingir
o ramo lateral, no qual um vetor de saida intermediario z; € calculado. Em seguida, o
modelo aplica a fun¢do softmax para gerar o vetor de probabilidade p; 2 softmax(z;),
em que softmax(z;) o exp(zy). Cada componente de p; representa a probabilidade de
x pertencer a uma classe especifica. A partir de p;, calcula-se a confianca intermediaria
de classificacdo da entrada & como C; = maxp;. Se C; > «, onde a é o limiar de
confianga, o ramo lateral classifica  como § = arg max(p;), encerrando o processo de
inferé€ncia. Caso contrario, se C; < «, a borda transfere dados a nuvem que processa as
camadas subsequentes até a camada final, gerando a confianca C';. Este processamento
adicional resulta em uma sobrecarga o, que pode ser significativa dependendo do cenadrio.
Por exemplo, em aplicagdes de offloading adaptativo com particao de DNN, a sobrecarga
inclui o tempo de comunicagdo para transferir os dados do dispositivo em borda a nuvem
e o tempo de processamento das camadas restantes na nuvem. Em aplicagdes puramente
moveis, onde todo o modelo € processado no dispositivo, a sobrecarga estd associada ao
tempo de execugdo das camadas subsequentes no dispositivo e, possivelmente, ao con-
sumo de energia. Embora EE-DNNs possam ter multiplos ramos laterais, este trabalho
considera apenas um ramo lateral, simplificando a anélise.

Tradicionalmente, as EE-DNNs empregam um limiar de confianga fixo o. Con-
tudo, aplicacdes reais podem requerer o emprego de limiar adaptativo a depender do con-
texto, como explicado anteriormente. Este estudo aborda a adaptacdo de EE-DNNs a
diferentes contextos utilizando algoritmos baseados em multi-armed bandits (MABs). A
principal contribuicdo deste trabalho € a defini¢do de um limiar condicional de confianga,
que determina se a saida antecipada serd utilizada. Este limiar é adaptativo, ajustando-se
de acordo com a acuricia observada no ramo lateral e as condi¢des do contexto. A Secao 4
detalha o algoritmo proposto para a escolha adaptativa do limiar, utilizando aprendizado
por refor¢co via MABs.

Modelo. Para cada entrada (imagem), as confiancas de classificacdo nas camadas
intermediaria e final, representadas por C; e C', respectivamente, permanecem desconhe-



Algorithm 1: Algoritmo de selecdo de limiar de confianca (MAB)

1 Entrada: ¢ > 0, o (sobrecarga), K (nimero de limiares)
2 Inicializa¢do Tente cada limiar; atribua Q1 (1) = (o), ..., Qr (k) =rr(ak)
sfort=K+1,K+2,...,do

4 Receba uma amostra oy <— argmax, ¢ 4 (Qt-l(()é) +é /Nir_l(lt()a));

5 Obtenha a confianca C'; na camada intermediaria

6 if C;r > oy then

7 ‘ Realiza classificagdo antecipada e define r; () < 0
8 else

9 Use a tdltima camada e observe Cy and C,

10 r¢(at) < max(Cp — Cr,0) —o
11 end

12 Nt(at) = Ntfl(()ét) + ].,
13 Qe(ar) = Yy rulow) o = o}/ Niy(aw);

14 end

cidas até que a entrada seja processada por essas camadas da DNN. Dado cada exemplo,
o algoritmo decide uma acdo o € A, correspondente a um limiar de confianga. Posterior-
mente, a confianca intermedidria C'; é comparada com o limiar . A combinagdo da acdo
« e do valor de C} determinard se a inferéncia serd concluida antecipadamente na camada
intermedidria ou se o processamento seguird para as camadas subsequentes.

Considere AC' como o incremento de confianga obtido ao avangar da camada
intermedidria para a camada final, definido por AC' = max{C, — C7,0}. Denotando por
C' a confianga de classificacdo associada a uma observagao escolhida aleatoriamente, a
confianca média esperada sobre todas as observacdes é expressa como: E[C] = E[AC +
Cr| Cr <al-PlC; <o +E[C; | C; > a]- P[Cr > «]. Neste caso, o primeiro
termo considera as observagdes que continuam até a camada final (C; < «), enquanto
o segundo abrange as que sdo classificadas antecipadamente (C; > «). Para qualquer
limiar v € A, seja r(«) a recompensa instantnea associada a esse limiar. A recompensa
instantdnea é definida como: r(«) = 0se C; > « (classificagdo antecipada), e r(«a) =
AC' — o, caso contrario. A sobrecarga o estd associada ao processamento da amostra até
a camada final. Neste trabalho, a sobrecarga o € normalizada, ou seja, é escalada por um
fator que torna as unidades de energia ou tempo comparaveis com AC'.

Entdo, a recompensa média por escolher o limiar de confianga o é dada por:
E[r(a)] = E[AC — o|C; < a] - P[C; < a]. O objetivo é encontrar um limiar de
confianca que atinja a recompensa Gtima dada por o* = argmax,ec4 E[r(«)]. Este
trabalho define o desempenho em escolher uma politica [Tyjag ao longo de n € N ro-
dadas em termos de arrependimento esperado (expected regret) como: R(Ilyap,n) =
n - Elr(a)] — > 7 E[r(a;)IIvas], onde a; denota o limiar selecionado pelo aprendiz
na rodada ¢, com base nas entradas anteriores. O arrependimento de IIyjap € dado pela
diferenca entre a recompensa coletada ao usar um limiar 6timo e a recompensa coletada

por Iyag.

Algoritmo. O pseudo-codigo do algoritmo € apresentado no Algoritmo 1,
baseando-se no Upper Confidence Bound (UCB) [Auer et al. 2002]. Os parametros
de entrada do algoritmo sdo o fator de compromisso entre exploracao e exploracdo, ¢, e



o numero de limiares, /. Inicialmente, cada limiar € aplicado uma vez para os primei-
ros K inputs, gerando uma amostra para cada brago. Nas rodadas subsequentes, o limiar
com o indice UCB mais alto € selecionado. Se a confianca da classificagdo na camada
intermedidria exceder o limiar, uma saida antecipada ocorre (linhas 6-7). Caso contrério,
o algoritmo processa todas as camadas subsequentes. Neste caso, a classificacdo da ca-
mada com a maior confianca é considerada como a saida final (linhas 8-10). Em seguida,
as estatisticas Ny(cy) e QQ;(«;) sdo atualizadas (linhas 13-14). Aqui, NV;(ay) representa o
niimero de vezes que a a¢do « foi escolhida na ¢-ésima rodada, e ;(a;) é a recompensa
média associada a acdo a; na mesma rodada.

4. Buffer de Entrada

A seguir, considera-se um buffer finito de observac¢des com capacidade B. As en-
tradas chegam ao buffer para serem classificadas por uma EE-DNN, e o controlador pode
determinar, com base no backlog do buffer e na confianca intermedidria, se deve reali-
zar a saida antecipada. Vale lembrar que o backlog do buffer corresponde a quantidade
de entradas acumuladas no buffer aguardando processamento, o qual é denotado por n.
Enquanto na secdo anterior as decisdes em relacdo a classificacdo antecipada eram feitas
exclusivamente com base em C'7, agora essas decisdes podem depender de n e (7.

Como nas secoOes anteriores, o Tomador de Decisdao (TD) deve ponderar duas
opcdes: aproveitar a saida antecipada, que oferece menor acurdcia, mas um atraso
minimo, ou processar todo modelo, que oferece maior acuricia, mas resulta em um maior
atraso. O objetivo principal é maximizar a eficiéncia do sistema, medida pela vazao (th-
roughput), que corresponde a taxa de observacdes classificadas corretamente por uni-
dade de tempo, equilibrando esses trade-offs. Por exemplo, considere um cenario em
que o TD deve decidir entre classificar uma entrada rapidamente para obter um processa-
mento mais rdpido ou continuar pelas camadas mais profundas para melhorar a precisiao
da classificacdo, as custas de um maior atraso. Essa decisdo depende de vérios fatores,
como a carga atual do sistema, a confianca na classificagcdo e o backlog de entradas aguar-
dando processamento.

Compromisso (fradeoff) fundamental. Quando o buffer estd cheio, atrasar a
classificagdo pode resultar em perdas devido ao descarte de novas entradas. Tais per-
das causam uma diminui¢do na vazdo. Por outro lado, quando o buffer estd subutili-
zado, depender excessivamente das saidas antecipadas pode causar perda desnecessaria
de acurécia, afetando mais uma vez a vazao, medida em observagdes corretamente clas-
sificadas por unidade de tempo. Assim, para maximizar a vazao € necessario achar um
balanco 6timo no uso de saidas antecipadas, conforme detalhado nas secoes a seguir.

Modelo: CTMDP para DNNs com Saidas Antecipadas. Este artigo utiliza um
Processo de Decisao de Markov em Tempo Continuo (Continuous-Time Markov Decision
Process — CTMDP) para determinar a politica 6tima que equilibra tempo de inferéncia e
acuracia. O modelo € inspirado em [Shifrin et al. 2020] e no exemplo de controle de
admissao no Capitulo 6 de [Puterman 2014].

Este trabalho assume que as entradas chegam de acordo com um processo de Pois-
son com taxa A, e que o tempo para processar cada entrada € distribuido exponencialmente
com média 1/u,, onde u € a agdo escolhida: u = I caso seja realizada uma saida ante-
cipada, e u = L, caso contrario. Seja # a sobrecarga média, em unidades de tempo, para



se transmitir cada entrada a nuvem e processar as camadas finais do modelo de EE-DNN.
Entdo, 1/, = 1/pr + 6, onde 1/p; é o tempo médio para processar uma observagao na
borda, usando a saida antecipada.

Os principais componentes do CTMDP sao: 1) espaco de estados: cada estado
representa o backlog do sistema e, possivelmente, a decisdo de classificacdo atual para
a entrada na cabeca da fila (Head of Line - HOL), ou seja, se serd realizada uma saida
antecipada ou nao; 2) acoes: o TD escolhe, em ultima instancia, se deve realizar uma
saida antecipada ou continuar o processamento por camadas mais profundas, dependendo
do tamanho do backlog; 3) objetivo: maximizar a vazdo, equilibrando o compromisso
entre melhoria na acurdcia e o tempo de inferéncia.

Nos cendrios em que se considera um buffer, assume-se que o TD determina dire-
tamente se realizard a saida antecipada ou nao, em funcdo do backlog. Para estender os
resultados ao caso em que o TD escolhe o limiar o, que impacta indiretamente a even-
tual saida antecipada, € preciso adicionar uma fun¢do adicional que mapeie o em uma
probabilidade de saida antecipada, levando em conta a distribui¢do de C;. Essa extensdo,
unificando os modelos MAB e CTMDP, sera tratada em trabalhos futuros.

Equacao de Bellman. Em um processo de decisao Markoviano, a funcio de
valor é definida para cada estado e é computada iterativamente utilizando as equagdes de
Bellman [Puterman 2014]. A politica 6tima € definida a partir da funcdo de valor. Devido
a restricoes de espaco, esta versdao do trabalho nio apresenta as equagdes de Bellman e
o algoritmo de iteragao de valor (value iteration) em sua generalidade. Ao invés disso, é
aproveitado o resultado derivado em [Shifrin et al. 2020] para tratar de uma classe especial
de politicas, chamadas de politicas baseadas em limiar (threshold policies). Em [Shifrin
et al. 2020] os autores provam que a politica 6tima para tomada de decis@o no tipo de pro-
blema considerado neste artigo € do tipo limiar de backlog (backlog threshold). Segundo
tal politica, se o backlog contiver mais que um determinado nimero de requisi¢des pen-
dentes, deve-se adotar a acdo mais rapida (neste caso, saida antecipada). Caso contrario,
pode-se adotar a acdo mais demorada (neste caso, processar até a ultima camada). Os
leitores interessados nas equacgdes de Bellman e no algoritmo de iteragdo por valor podem
consulta-los no relatério técnico.

Seja 7 o limiar de backlog. Se, apds um servigo, o backlog n for tal que n >
7, adota-se a saida antecipada para o proximo servigo. Caso contrdrio, se n < T, O
proximo servigo ocorre sem saida antecipada. A seguir, descreve-se brevemente a cadeia
de Markov que caracteriza o sistema para um determinado 7, e nos estudos numéricos
varia-se o limiar 7, entre 0 e 3, buscando-se pelo 6timo que maximiza a vazao.

Fluxos envolvidos no modelo Markoviano. A Figura 1(a) ilustra o modelo Mar-
koviano considerado. Um fluxo de observacdes com taxa A alimenta o buffer local, que
possui capacidade B. As entradas que excedem a capacidade do buffer sdo descartadas,
gerando um fluxo de descarte com taxa §. As observac¢des nao descartadas sdo processa-
das por um dispositivo de borda, que decide localmente, com base na ocupacio da fila, se
as classificagdes devem ser realizadas em camadas intermedidrias ou enviadas a nuvem
para processamento adicional.

Cadeia de Markov. A cadeia de Markov modela o comportamento de um sis-
tema com saidas antecipadas e um buffer finito, para um dado limiar 7 fixo. As transi¢des
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Figura 1. (a) Modelo do sistema; (b) Cadeia de Markov ilustrativa: - =2, B = 3.

de estado sao determinadas pelas taxas de chegada () e pelas taxas de atendimento (j;
e ur), que correspondem ao processamento pela saida antecipada e pela rede completa,
respectivamente. Cada estado da cadeia é representado por um par (n,u), onde n indica
o numero de itens no buffer e u especifica a classe de processamento, que pode ser saida
antecipada (u = I) ou modelo de EE-DNN completo (u = L). O estado (0) é usado para
indicar que o buffer estd vazio. O objetivo da modelagem é capturar o impacto de dife-
rentes politicas e configuracdes de buffer sobre o desempenho do sistema. A Figura 1(b)
ilustra a cadeia de Markov considerada, paraT™ =2e B = 3.

A probabilidade em estado estacionario do estado (n,u) é dada por =, ,, para
1 <n < B,edoestado 0 € dada por 7. Seja 7 a fracdo de tempo em que o sistema esta
processando uma entrada usando a saida antecipada, enquanto 7;, corresponde a fracao de
tempo para processar até a ultima camada. Note que 7; = Zle Tp, 1 € ML, = Zle Tn,Ls
de modo que 7; + 7, + mz = 1. A matriz de transi¢do da cadeia de Markov continua é
construida considerando trés tipos de eventos principais. O primeiro € a chegada de itens
ao buffer, que ocorre com taxa A. Esse evento resulta na transicao para estados com maior
ocupagado do buffer, até o limite maximo B ser atingido. O segundo é o processamento
pela saida antecipada, com taxa (7, no qual itens deixam o buffer e podem ser classifica-
dos corretamente ou incorretamente. O terceiro evento € o processamento pelo modelo
completo, com taxa iy, cujo comportamento é andlogo ao da saida antecipada.

A partir do equilibrio estaciondrio da cadeia de Markov, podem ser derivadas trés
métricas principais. A vazdo, ou throughput (I'), representa a taxa de itens processados
corretamente, considerando tanto a saida antecipada quanto o modelo completo. A taxa
de classificagdes incorretas (M) quantifica a taxa de itens processados com erro. A taxa
de descarte (0) mede a taxa de itens descartados devido ao congestionamento do buffer.
Essas métricas sdo inter-relacionadas pela conservagdo de fluxo no sistema, de forma que
a soma das trés € igual a taxa de chegada: T'+ M + 6 = A, conforme Figura 1(a), onde

T =pumCr+prrCry, M =pm(1—Cr) +prr(1—Cr), 6= NrpL+751).
(D

A secgdes a seguir avaliam as métricas acima experimentalmente ao considerar, conjunta-
mente, o impacto do contexto e do buffer.

5. Avaliacao

As avaliacdes empregam o modelo MobileNetV2 com um ramo lateral inserido
conforme a metodologia descrita em [Laskaridis et al. 2020]. O modelo é treinado se-
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Figura 2. Acuracia em ramo lateral e a probabilidade de classificacdo antecipada:
(a) @ = 0.7 e (b) a = 0.9; (c) confianca na camada intermediaria, C;.

guindo o procedimento apresentado em [Teerapittayanon et al. 2016] usando o conjunto
de dados CIFAR-10 [Krizhevsky et al. 2009].

O CIFAR-10 contém imagens distribuidas em dez classes. O modelo EE-DNN
pré-treinado tem como objetivo classificar cada amostra em sua respectiva classe. Con-
forme descrito na Se¢do 5.1, em cada experimento, o modelo € alimentado com amostras
pertencentes a uma unica classe, denominada aqui como contexto. Neste caso em parti-
cular, temos falsos negativos quando a rede neural infere que a classe é diferente daquela
correspondente ao contexto, e verdadeiros positivos caso contrdrio. Na Secdo 5.2, o con-
ceito de contexto € relaxado. Todo cddigo desenvolvido esta disponivel em um repositorio
aberto!, incluindo a descri¢do detalhada da cadeia de Markov e o c6digo para reproduzir
os resultados deste artigo.

5.1. Como Lidar com o Contexto e o Buffer?

Esta secdo visa demonstrar o impacto do contexto no desempenho de DNNs
com saidas antecipadas e buffers. Para avaliar o desempenho, esta secdo considera duas
métricas: probabilidade de inferéncia no ramo lateral e acurdcia no ramo lateral. A pro-
babilidade de inferéncia no ramo lateral € definida como a proporc¢ao de entradas classi-
ficadas neste ramo em relacao ao nimero total de entradas, enquanto a acurdcia no ramo
lateral € calculada como a razdo entre as classificacdes corretas realizadas nesse ramo e o
numero total de entradas classificadas nele.

As Figuras 2(a) e 2(b) mostram, respectivamente, o desempenho do modelo con-
siderando dois limiares de confianca diferentes o = 0.7 e a« = 0.9. Especificamente, as
barras azuis mostram a acurdcia da saida antecipada, e as barras vermelhas mostram a pro-
babilidade de classificacdo no ramo lateral. Nota-se que as diferentes classes apresentam
variagoes significativas na acuricia da saida antecipada e na probabilidade de classificagdao
no ramo lateral. Por exemplo, para um limiar o« = 0.7, a classe de pdssaros corresponde
a uma probabilidade de saida antecipada de aproximadamente 0.7, com a acurécia cor-
respondente de 0.9. Por outro lado, a probabilidade e a acuridcia da saida antecipada
para a classe de avides s@o 0.5 e 0.2, respectivamente. De forma clara, a distribui¢ao das
observacgdes entre as classes impacta o desempenho da saida antecipada.

Desafio: alta variancia intra-classe. A Figura 2(c) apresenta um boxplot com
as confiangas intermedidrias C'; para cada classe do CIFAR-10. Esta figura mostra a alta

"https://github.com/pachecobeto95/QAdaEE.
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Figura 3. Impacto do contexto no limiar de backlog 6timo e demais métricas.

variancia nas confiancas das entradas, mesmo para amostras da mesma classe. Essa alta
variancia intra-classe indica a necessidade de limiares adaptativos. Embora os MABs
sejam uma solucao natural para implementar limiares adaptativos, a alta variancia intra-
classe das confiancas desafia a convergéncia de algoritmos cldssicos de MAB, como o
algoritmo UCB [Auer et al. 2002], o que requer uma divisdo adicional das entradas com
base nas suas respectivas confiancas de classificacdo, conforme detalhado a seguir.

Impacto do contexto no buffer. A Figura 3(a) apresenta o limiar de backlog
otimo, considerando diferentes tamanhos de buffer, niveis de sobrecarga e contextos,
cada contexto representando uma classe do conjunto CIFAR-10. Os resultados eviden-
ciam que o limiar de backlog 6timo varia conforme o contexto, reforcando a importancia
de limiares de backlog adaptativos em modelos EE-DNNs. Além disso, observa-se uma
relacdo inversa entre o nivel de sobrecarga e o limiar de backlog: a medida que a sobre-
carga associada a transmissao e processamento na nuvem aumenta, os limiares 6timos
tendem a diminuir. Esse comportamento sugere que, em cendrios com maior sobrecarga,
¢ mais vantajoso concluir a inferéncia nos ramos laterais, adotando saidas antecipadas,
e que o valor 6timo depende do contexto. A Figura 3(b), obtida usando os limiares de
backlog 6timos apresentados na Figura 3(a), indica como que a decomposi¢do apresen-
tada na Eq. (1) se traduz na pratica. Em particular, vemos que a vazao aumenta sutilmente
quando passamos da classe ‘gato’ para a classe ‘passaro’. Tal aumento da vazdo (verde)
se deve primordialmente a uma diminui¢c@o na taxa de erro de classificacdo (vermelho),
notando-se que taxa de rejei¢ao de observagdes se mantém praticamente estavel ao longo
das configuracdes consideradas (amarelo). Tal estabilidade se deve, em parte, ao ajuste no
limiar, que nesta secdo € ilustrado sempre em seu valor 6timo. Na Secdo 5.3, analisa-se a
classe ‘gato’, ilustrando como os componentes da Eq. (1) variam em cendrios sub4timos.

5.2. Avaliacao do Algoritmo de Aprendizado

Classes e contextos. A seguir, o conceito de contexto € refinado. Para isso, as
entradas de interesse sdo divididas em bins. Assim, o contexto se refere a distribui¢do
das entradas entre os bins. Cada bin pode corresponder a uma classe alvo (por exemplo,
avido, navio ou cachorro, como na Figura 2), ou a um intervalo de confianga (por exemplo,
Cr € [0,0.1], como na Figura 4). Neste tltimo caso, no qual o contexto corresponde a
distribui¢do das entradas conforme a confianca intermedidria C';, agrupam-se as entradas
em m bins de intervalo de tamanho igual By, ..., B,, com base na confianca C; para
capturar a complexidade da entrada. Assim, cada bin B; contém imagens cuja confiancga
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Cy satisfaz C; € (%, %] por exemplo, se m = 10, o bin B; contém imagens com
Cr € (0,0.1]. Como antes, o contexto muda quando a distribui¢do das observagdes entre
os bins é modificada, observando que o contexto impacta a avaliagdo do algoritmo, mas

nao afeta explicitamente sua operacao.

Qual é o impacto da sobrecarga? A Figura 4 mostra a probabilidade de valer a
pena processar até a ultima camada, em func¢io da sobrecarga, sob diferentes intervalos
de C'7. Cada linha sdlida representa um contexto particular composto por entradas cujos
(1 estdo em um bin de confianga especifico, usando as observacdes de todas as classes.
Primeiramente, essa figura quantifica que uma sobrecarga menor aumenta a probabilidade
de processamento até a dltima camada. De fato, observe que essas curvas sao fungdes de
distribui¢do acumulada complementar (CCDFs). Assim, dado o intervalo de C}, a drea
sob essas curvas corresponde ao ganho médio condicional de confianca. A area sob as
curvas vermelha, verde, laranja e azul sélida € 0.07, 0.22, 0.35 e 0.48, respectivamente,
correspondendo a valores decrescentes de C;.

A saida antecipada € 6tima sob um critério de ganho médio quando a drea € menor
que a sobrecarga. Quanto maior o valor de C';, mais provavel é que a saida antecipada
seja 6tima. A Figura 4 também nos permite avaliar o impacto das decisdes além das
médias, levando em conta a distribuicao dos ganhos. Por exemplo, quando a sobrecarga
¢ 0.15, a saida antecipada é 6tima para 50% e 80% das entradas se C; € (0.8,0.9) e
Cr € (0.6,0.7), respectivamente. As linhas pontilhadas filtram ainda mais as entradas
com base em suas classes-alvo, ou seja, representando uma mudanga de contexto baseada
em classes. Para cada um dos quatro intervalos de C'; considerados, adicionamos duas
linhas pontilhadas que correspondem a amostras das classes-alvo de caes e gatos. A figura
mostra que as dreas sob as curvas, e portanto os limiares 6timos, mudam de acordo com
o contexto. De fato, esse comportamento exige uma avaliacdo adaptativa de limiares,
na qual os beneficios da saida antecipada sdo continuamente avaliados em fungdo das
estatisticas coletadas de novas entradas.

Arrependimento logaritmico é viavel? Os resultados demonstram experimen-
talmente a convergéncia para selecionar o limiar 6timo a* que se adapta ao contexto.
Para isso, executa-se o algoritmo considerado utilizando imagens de teste do conjunto de
dados CIFAR-10. As imagens sdao agrupadas em bins de confianga, conforme descrito
na Secdo 5.1. A cada época, uma imagem do bin € sorteada com reposicdo. Em seguida,
realiza-se uma inferéncia adaptativa de saida antecipada, escolhendo o limiar « utilizando
o algoritmo baseado em MAB considerado.

A Figura 5 mostra o arrependimento acumulado em funcao das épocas para um
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Figura 5. Arrependimento acumulado para diferentes valores de sobrecargas.

valor especifico de sobrecarga e varios contextos, representados pelos bins. Cada linha
corresponde a um contexto especifico, enquanto cada grafico mostra os resultados para um
valor de sobrecarga especifico. O arrependimento acumulado R; é calculado como a soma
do arrependimento instantneo r(«) obtido até a t-ésima época. A Figura 5 confirma ex-
perimentalmente que o arrependimento logaritmico € alcangdvel, ou seja, a convergéncia
normalmente ocorre apds a coleta de algumas milhares de observacdes para diferentes
contextos e valores de sobrecarga. Na Figura 5(a), quando a sobrecarga € zero, o limiar
6timo € o maximo permitido, e, portanto, nunca é realizada uma saida antecipada. Em
contraste, a Figura 5(c) mostra que o limiar 6timo € o minimo permitido quando a sobre-
carga € 0,5, realizando sempre uma saida antecipada. Para outros valores de sobrecarga,
o limiar 6timo esta entre os dois extremos. A Figura 5 mostra que, a medida que a sobre-
carga aumenta de 0 para 0,5, a dificuldade de encontrar o limiar 6timo primeiro aumenta e
depois diminui. De fato, para todos os contextos considerados, o arrependimento acumu-
lado cresce logaritmicamente ap6s 100.000 observacdes coletadas quando a sobrecarga é
zero, permanecendo abaixo de 1.200 na época 2 x 10°. Em contraste, quando a sobrecarga
¢ igual a 0,2, encontramos que em quatro dos oito contextos considerados, o arrependi-
mento acumulado atinge 3.000 sob o mesmo horizonte. Em seguida, quando a sobrecarga
€ igual a 0,5, o arrependimento acumulado nao ultrapassa 1.600 sob o horizonte conside-
rado, exceto para um dos contextos considerados.

5.3. Qual o Impacto do Limiar do Backlog?

A seguir, considera-se um buffer de tamanho 10, ou seja, capaz de armazenar
até 10 entradas. O modelo de buffer proposto € parametrizado usando dados da classe
‘gato’ da seguinte forma: pu; = 6.9, C; = 0.605, C, = 0.695 e puy, = s /2, para capturar
efeitos do atraso em rede. A Figura 6 ilustra os resultados obtidos, variando A no conjunto
{2,4,6}. Seja a vazdo normalizada igual a vazdo obtida para um determinado limiar de
backlog dividida pela vazao maxima alcangada no cendrio em questdo. A Figura 6(a)
ilustra o fato de que para taxas de chegada muito pequenas ou muito grandes, vale a
pena sempre usar a rede completa ou sempre fazer a saida antecipada, respectivamente.
Por outro lado, para uma taxa de chegada intermedidria, existe um valor 6timo para o
limiar, nesse caso igual a 4, tal que a vazao ¢ maximizada. A Figura 6(b) mostra métricas
adicionais, como a taxa de descarte e a taxa de classificacdo incorreta, em funcdo do
limiar de backlog (vide Eq. (1)). Na medida em que a taxa de chegada aumenta, a taxa de
descarte também aumenta, principalmente quando o limiar de backlog € alto.

O compromisso entre a taxa de descarte e a taxa de classifica¢do incorreta € ilus-
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Figura 6. Efeito do limiar de backlog nas métricas de interesse.

trado nas Figuras 6(c) e 6(d). Na medida em que o limiar de backlog aumenta, a acuracia
aumenta, mas a probabilidade de perda também aumenta. O que determina o limiar
6timo € a sensibilidade de cada uma dessas métricas com relacdo a variagdes no limiar de
backlog. Conforme ilustrado nas figuras, a probabilidade de perda se torna mais sensivel
a medida em que a taxa de chegada aumenta, favorecendo um aumento correspondente
do limiar de backlog.

6. Conclusoes e Trabalhos Futuros

Este trabalho mostrou que o contexto tem um impacto significativo no desem-
penho das DNNs de saida antecipada, o que exige uma abordagem adaptativa para a
parametrizacdo da saida antecipada bem como para lidar com buffers. Para lidar com
mudancas de contexto, apresentou-se um algoritmo online que escolhe eficientemente o
limiar 6timo de confianca para diferentes contextos. Para lidar com buffers, apresentou-
se uma abordagem baseada em CTMDP. O algoritmo online € baseado em multi-armed
bandits para equilibrar o compromisso entre exploracdo e exploragdo, escolhendo efeti-
vamente o melhor limiar de confiancga, enquanto que o algoritmo offline para lidar com
buffers visa encontrar o limiar de backlog 6timo. Os experimentos demonstram a con-
vergéncia de ambos os algoritmos para todos os contextos e varios valores de sobrecarga.

Este trabalho abre inimeros caminhos para investigagdes futuras, incluindo 1)
unificacao dos algoritmos online (MAB) e offline (CTMDP), 2) considerag¢do da possibi-
lidade de mais de uma saida antecipada, 3) andlise do impacto do limiar de confianca «
sobre a confianca de classificagdo na camada final, C7,, ou seja, da interdependéncia entre
as agdes e os parametros do problema, p.ex., usando algoritmos online para aprender C'..
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