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Abstract. Redes Neurais Profundas com Saı́das Antecipadas (EE-DNNs) inse-
rem ramos laterais que permitem a inferência local quando a confiança ultra-
passa um limiar pré-definido, reduzindo a dependência da nuvem. No entanto,
um limiar fixo não se adapta às variações contextuais do mundo real. Este
trabalho investiga a adaptação dinâmica dos limiares utilizando algoritmos de
multi-armed bandits (MABs). Além disso, um buffer de entradas finito é intro-
duzido para equilibrar o compromisso entre acurácia e latência, considerando
a confiança e o tamanho da fila. Os resultados experimentais demonstram que
os limiares ajustados por MABs convergem rapidamente em diversos contextos,
enquanto o buffer garante um equilı́brio eficiente entre acurácia e latência.

Abstract. Early-exit Deep Neural Networks (EE-DNNs) insert intermediate
branches that enable local inference when confidence exceeds predefined th-
resholds, reducing reliance on cloud processing. However, fixed thresholds fail
to adapt to real-world contextual variations. This work investigates dynamically
adaptive threshold using multi-armed bandits (MABs) to address concept drift
caused by contextual changes. Additionally, a finite input buffer is introduced
to balance the accuracy-latency trade-off based on both confidence levels and
queue size. Experimental results demonstrate that MAB-based thresholds con-
verge rapidly, across diverse contexts, while the buffer ensures efficient balance
the accuracy-latency trade-off.

1. Introdução
Redes Neurais Profundas (Deep Neural Networks – DNNs) têm alcançado

avanços notáveis em desempenho [Krizhevsky et al. 2012, He et al. 2016], especi-
almente em tarefas relacionadas à visão computacional. Contudo, o alto requisito de
processamento dessas redes dificulta sua aplicação em dispositivos móveis para tare-
fas de inferência. Uma solução para contornar essas restrições envolve o uso de infra-
estrutura de computação em nuvem equipada com Unidades de Processamento Gráfico
(GPUs) [Satyanarayanan 2017]. Em um modelo exclusivamente baseado na nuvem, os
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dispositivos móveis capturam dados e os transmitem à nuvem, onde o processamento
completo do modelo DNN ocorre. Entretanto, essa abordagem implica em custos adici-
onais relacionados à comunicação entre os dispositivos móveis e o servidor na nuvem, o
que reforça a necessidade de particionar os modelos DNN para uma execução conjunta
entre dispositivos móveis e a nuvem [Kang et al. 2017, Hu et al. 2019]. Nesse contexto,
surge a abordagem de inferência colaborativa, que se baseia no particionamento do mo-
delo DNN. Esse particionamento é tratado como um problema de otimização, em que
uma camada especı́fica é selecionada para dividir o modelo [Pacheco et al. 2021a]. As
camadas anteriores à camada de divisão são executadas localmente no dispositivo móvel,
enquanto as demais são processadas na nuvem.

Este estudo aborda uma tarefa de classificação em que uma DNN com saı́das
antecipadas (early-exit DNN – EE-DNN) é empregada para identificar objetos em ima-
gens. O trabalho explora um cenário de offloading adaptativo, combinando EE-DNNs e
particionamento de modelo dentro de um framework de co-inferência entre dispositivos
móveis e a nuvem. As DNNs com saı́das antecipadas desempenham um papel crucial na
implementação da co-inferência [Teerapittayanon et al. 2016,Laskaridis et al. 2020,Wang
et al. 2019a], pois são projetadas com múltiplos ramos laterais que permitem a realização
de inferências em camadas intermediárias.

Quando o dispositivo móvel captura uma imagem, ela é processada até alcançar
um dos ramos laterais da DNN. Caso a confiança da classificação supere um limiar de
confiança predefinido, a inferência é concluı́da localmente. Caso contrário, os dados são
enviados à nuvem, que processa as camadas restantes do modelo. Essa abordagem per-
mite que a inferência seja concluı́da condicionalmente, dependendo da complexidade de
classificar a entrada, resultando em economia de recursos como rede, energia e capacidade
computacional, além de reduzir o tempo de inferência para entradas menos complexas.
Entretanto, optar por classificações antecipadas pode levar a uma redução no desempenho,
gerando um trade-off entre latência e acurácia [Pacheco et al. 2021a].

BranchyNet [Teerapittayanon et al. 2016] e SPINN [Laskaridis et al. 2020] em-
pregam um limiar fixo para decidir se a inferência deve ser encerrada. Essas abordagens
pressupõem que a distribuição de amostras entre classes é constante, o que pode ser inade-
quado em cenários reais. Por exemplo, um dispositivo móvel em um porto tende a proces-
sar mais imagens de navios, enquanto, em uma rodovia, o mesmo dispositivo precisaria
classificar predominantemente carros e caminhões. O ambiente em que as imagens são
coletadas, referido como contexto, exerce influência direta nos resultados da inferência.

Neste cenário, este trabalho apresenta duas principais contribuições:

Multi-armed bandits para lidar com concept drift: Este trabalho demonstra que
algoritmos de multi-armed bandits (MABs) são eficazes na adaptação dinâmica dos limi-
ares de confiança para enfrentar o concept drift, ou seja, mudanças nas propriedades es-
tatı́sticas das imagens ao longo do tempo. Os resultados indicam que os limiares ajustados
por MABs convergem após algumas milhares de amostras, maximizando o desempenho
em diferentes contextos e cenários de sobrecarga. Os MABs levam em consideração: i) as
confianças obtidas nos ramos laterais; ii) os ganhos de confiança estimados ao processar
todas as camadas do modelo; e iii) os custos associados à sobrecarga.

Buffer de entradas para gerenciar o trade-off entre precisão e atraso: Um



buffer finito de entradas é introduzido para auxiliar o controlador na tomada de decisões
sobre saı́das antecipadas, com base tanto na confiança da classificação quanto no tamanho
da fila de espera. O backlog representa a quantidade de tarefas ou dados acumulados
aguardando processamento pelo modelo de EE-DNN. Quando o backlog é pequeno, o
controlador pode priorizar a acurácia das inferências processando todo o modelo de EE-
DNN, garantindo resultados mais precisos. No entanto, se o backlog é alto, ou seja,
o buffer estiver próximo de sua capacidade máxima, o controlador precisa favorecer a
velocidade de processamento para evitar a perda de novas entradas, garantindo assim a
eficiência do sistema mesmo sob alta demanda.

Este estudo amplia os resultados apresentados em [Pacheco et al. 2024], intro-
duzindo duas contribuições principais: 1) a implementação de um buffer de entrada para
aprimorar as decisões relacionadas às saı́das antecipadas e 2) a avaliação do concept drift,
em que mudanças no contexto refletem alterações nas categorias de imagens. Diferen-
temente dos trabalhos anteriores [Pacheco et al. 2024], que focaram a influência de di-
ferentes nı́veis de desfoque (blur) nas imagens, este trabalho considera explicitamente
variações contextuais associadas às classes de imagens existentes no conjunto de dados.

A organização do artigo é a seguinte: a Seção 2 apresenta uma revisão dos traba-
lhos relacionados. Na Seção 3, são explorados os conceitos de DNNs com saı́das anteci-
padas e a aplicação de multi-armed bandits. A Seção 4 aborda a formulação do problema
considerando a introdução de um buffer de entradas. A Seção 5 discute o impacto do con-
texto sobre as decisões de saı́da antecipada, demonstra a convergência dos MABs para a
escolha de limiares adequados e analisa o impacto do buffer. Por fim, a Seção 6 apresenta
as conclusões e sugere direções para pesquisas futuras.

2. Trabalhos Relacionados
BranchyNet [Teerapittayanon et al. 2016] é uma DNN com saı́das antecipadas que

decide se uma amostra pode ser classificada antecipadamente, com base na entropia da
classificação. A decisão é tomada quando o valor da entropia é inferior a um limiar fixo
predefinido, permitindo que a amostra seja classificada em um ramo lateral. Arquiteturas
similares, como SPINN [Laskaridis et al. 2020] e SEE [Wang et al. 2019b], utilizam a
confiança da classificação, representada pela probabilidade da classe mais provável, para
decidir sobre saı́das antecipadas. Este trabalho também considera uma arquitetura em que
a saı́da antecipada ocorre quando a confiança ultrapassa um limiar especı́fico.

Além da BranchyNet e da SPINN, outras abordagens exploram DNNs com saı́das
antecipadas para reduzir o tempo de inferência. FlexDNN [Fang et al. 2020] e Edgent [Li
et al. 2019] utilizam essas DNNs para selecionar a profundidade ideal do modelo, en-
quanto Dynexit [Wang et al. 2019a] implementa DNNs com saı́das antecipadas em hard-
ware FPGA, visando otimizar a latência e o consumo energético. Paul et al. [Kim and
Park 2020] também destacam as vantagens de implementar DNNs com saı́das antecipadas
em placas FPGA, alcançando ganhos significativos em tempo de inferência e eficiência
energética.

Casale e Roveri [Casale and Roveri 2023] introduzem o conceito de buffer de
entradas no contexto de DNNs com saı́das antecipadas (EE-DNNs), no qual o backlog do
buffer influencia diretamente as decisões de saı́da antecipada. No entanto, este trabalho
se diferencia ao abordar o impacto das mudanças no contexto, o que está fora do escopo



de [Casale and Roveri 2023].

Os trabalhos existentes geralmente assumem limiares fixos [Fang et al. 2020,
Li et al. 2019, Kim and Park 2020, Pacheco et al. 2021a, Pacheco et al. 2021b] ou
pré-definidos durante a inferência. Em contraste, este trabalho propõe uma abordagem
adaptativa que ajusta os limiares dinamicamente por meio de aprendizado por reforço,
respondendo às mudanças no contexto.

A maioria das soluções atuais define saı́das antecipadas comparando valores de
confiança ou entropia a limiares fixos. Exceções são LEE [Ju et al. 2021b] e DEE [Ju
et al. 2021a], que utilizam MABs para aprender polı́ticas de saı́da. Apesar de motivado
por objetivos semelhantes, este trabalho se distingue em aspectos fundamentais, como o
uso de MABs para ajustar os limiares que determinam saı́das ótimas, enquanto trabalhos
como LEE e DEE definem explicitamente a saı́da ótima como variável de controle.

3. DNN com Saı́das Antecipadas Através de Multi-Armed Bandits
Este trabalho utiliza a DNN MobileNetV2 [Krizhevsky et al. 2012] com um ramo

lateral como modelo para DNNs com saı́das antecipadas, considerando uma inferência
colaborativa entre borda e nuvem, como ilustrado na Figura 1(a). Após receber uma en-
trada x, o modelo é processado no dispositivo de borda, camada por camada, até atingir
o ramo lateral, no qual um vetor de saı́da intermediário zI é calculado. Em seguida, o
modelo aplica a função softmax para gerar o vetor de probabilidade pI =∆ softmax(zI),
em que softmax(zI) ∝ exp(zI). Cada componente de pI representa a probabilidade de
x pertencer a uma classe especı́fica. A partir de pI , calcula-se a confiança intermediária
de classificação da entrada x como CI = maxpI . Se CI ≥ α, onde α é o limiar de
confiança, o ramo lateral classifica x como ŷ = argmax(pI), encerrando o processo de
inferência. Caso contrário, se CI < α, a borda transfere dados à nuvem que processa as
camadas subsequentes até a camada final, gerando a confiança CL. Este processamento
adicional resulta em uma sobrecarga o, que pode ser significativa dependendo do cenário.
Por exemplo, em aplicações de offloading adaptativo com partição de DNN, a sobrecarga
inclui o tempo de comunicação para transferir os dados do dispositivo em borda à nuvem
e o tempo de processamento das camadas restantes na nuvem. Em aplicações puramente
móveis, onde todo o modelo é processado no dispositivo, a sobrecarga está associada ao
tempo de execução das camadas subsequentes no dispositivo e, possivelmente, ao con-
sumo de energia. Embora EE-DNNs possam ter múltiplos ramos laterais, este trabalho
considera apenas um ramo lateral, simplificando a análise.

Tradicionalmente, as EE-DNNs empregam um limiar de confiança fixo α. Con-
tudo, aplicações reais podem requerer o emprego de limiar adaptativo a depender do con-
texto, como explicado anteriormente. Este estudo aborda a adaptação de EE-DNNs a
diferentes contextos utilizando algoritmos baseados em multi-armed bandits (MABs). A
principal contribuição deste trabalho é a definição de um limiar condicional de confiança,
que determina se a saı́da antecipada será utilizada. Este limiar é adaptativo, ajustando-se
de acordo com a acurácia observada no ramo lateral e as condições do contexto. A Seção 4
detalha o algoritmo proposto para a escolha adaptativa do limiar, utilizando aprendizado
por reforço via MABs.

Modelo. Para cada entrada (imagem), as confianças de classificação nas camadas
intermediária e final, representadas por CI e CL, respectivamente, permanecem desconhe-



Algorithm 1: Algoritmo de seleção de limiar de confiança (MAB)
1 Entrada: c̃ > 0, o (sobrecarga), K (número de limiares)
2 Inicialização Tente cada limiar; atribua Q1(α1) = r1(α1), . . . , QK(αK) = rK(αK)
3 for t = K + 1,K + 2, . . . , do
4 Receba uma amostra αt ← argmaxα∈A

(
Qt−1(α) + c̃

√
ln(t)

Nt−1(α)

)
;

5 Obtenha a confiança CI na camada intermediária
6 if CI ≥ αt then
7 Realiza classificação antecipada e define rt(αt)← 0
8 else
9 Use a última camada e observe CI and CL

10 rt(αt)← max(CL − CI , 0)− o

11 end
12 Nt(αt) = Nt−1(αt) + 1;
13 Qt(αt) =

∑t
u=1 ru(αu)1{αu = αt}/Nt(αt);

14 end

cidas até que a entrada seja processada por essas camadas da DNN. Dado cada exemplo,
o algoritmo decide uma ação α ∈ A, correspondente a um limiar de confiança. Posterior-
mente, a confiança intermediária CI é comparada com o limiar α. A combinação da ação
α e do valor de CI determinará se a inferência será concluı́da antecipadamente na camada
intermediária ou se o processamento seguirá para as camadas subsequentes.

Considere ∆C como o incremento de confiança obtido ao avançar da camada
intermediária para a camada final, definido por ∆C = max{CL −CI , 0}. Denotando por
C a confiança de classificação associada a uma observação escolhida aleatoriamente, a
confiança média esperada sobre todas as observações é expressa como: E[C] = E[∆C +
CI | CI < α] · P [CI < α] + E[CI | CI ≥ α] · P [CI ≥ α]. Neste caso, o primeiro
termo considera as observações que continuam até a camada final (CI < α), enquanto
o segundo abrange as que são classificadas antecipadamente (CI ≥ α). Para qualquer
limiar α ∈ A, seja r(α) a recompensa instantânea associada a esse limiar. A recompensa
instantânea é definida como: r(α) = 0 se CI ≥ α (classificação antecipada), e r(α) =
∆C − o, caso contrário. A sobrecarga o está associada ao processamento da amostra até
a camada final. Neste trabalho, a sobrecarga o é normalizada, ou seja, é escalada por um
fator que torna as unidades de energia ou tempo comparáveis com ∆C.

Então, a recompensa média por escolher o limiar de confiança α é dada por:
E[r(α)] = E[∆C − o|CI < α] · P [CI < α]. O objetivo é encontrar um limiar de
confiança que atinja a recompensa ótima dada por α∗ = argmaxα∈A E[r(α)]. Este
trabalho define o desempenho em escolher uma polı́tica ΠMAB ao longo de n ∈ N ro-
dadas em termos de arrependimento esperado (expected regret) como: R(ΠMAB, n) =
n · E[r(α∗)] −

∑n
t=1 E[r(αt)|ΠMAB], onde αt denota o limiar selecionado pelo aprendiz

na rodada t, com base nas entradas anteriores. O arrependimento de ΠMAB é dado pela
diferença entre a recompensa coletada ao usar um limiar ótimo e a recompensa coletada
por ΠMAB.

Algoritmo. O pseudo-código do algoritmo é apresentado no Algoritmo 1,
baseando-se no Upper Confidence Bound (UCB) [Auer et al. 2002]. Os parâmetros
de entrada do algoritmo são o fator de compromisso entre exploração e exploração, c̃, e



o número de limiares, K. Inicialmente, cada limiar é aplicado uma vez para os primei-
ros K inputs, gerando uma amostra para cada braço. Nas rodadas subsequentes, o limiar
com o ı́ndice UCB mais alto é selecionado. Se a confiança da classificação na camada
intermediária exceder o limiar, uma saı́da antecipada ocorre (linhas 6-7). Caso contrário,
o algoritmo processa todas as camadas subsequentes. Neste caso, a classificação da ca-
mada com a maior confiança é considerada como a saı́da final (linhas 8-10). Em seguida,
as estatı́sticas Nt(αt) e Qt(αt) são atualizadas (linhas 13-14). Aqui, Nt(αt) representa o
número de vezes que a ação αt foi escolhida na t-ésima rodada, e Qt(αt) é a recompensa
média associada à ação αt na mesma rodada.

4. Buffer de Entrada
A seguir, considera-se um buffer finito de observações com capacidade B. As en-

tradas chegam ao buffer para serem classificadas por uma EE-DNN, e o controlador pode
determinar, com base no backlog do buffer e na confiança intermediária, se deve reali-
zar a saı́da antecipada. Vale lembrar que o backlog do buffer corresponde à quantidade
de entradas acumuladas no buffer aguardando processamento, o qual é denotado por n.
Enquanto na seção anterior as decisões em relação à classificação antecipada eram feitas
exclusivamente com base em CI , agora essas decisões podem depender de n e CI .

Como nas seções anteriores, o Tomador de Decisão (TD) deve ponderar duas
opções: aproveitar a saı́da antecipada, que oferece menor acurácia, mas um atraso
mı́nimo, ou processar todo modelo, que oferece maior acurácia, mas resulta em um maior
atraso. O objetivo principal é maximizar a eficiência do sistema, medida pela vazão (th-
roughput), que corresponde à taxa de observações classificadas corretamente por uni-
dade de tempo, equilibrando esses trade-offs. Por exemplo, considere um cenário em
que o TD deve decidir entre classificar uma entrada rapidamente para obter um processa-
mento mais rápido ou continuar pelas camadas mais profundas para melhorar a precisão
da classificação, às custas de um maior atraso. Essa decisão depende de vários fatores,
como a carga atual do sistema, a confiança na classificação e o backlog de entradas aguar-
dando processamento.

Compromisso (tradeoff ) fundamental. Quando o buffer está cheio, atrasar a
classificação pode resultar em perdas devido ao descarte de novas entradas. Tais per-
das causam uma diminuição na vazão. Por outro lado, quando o buffer está subutili-
zado, depender excessivamente das saı́das antecipadas pode causar perda desnecessária
de acurácia, afetando mais uma vez a vazão, medida em observações corretamente clas-
sificadas por unidade de tempo. Assim, para maximizar a vazão é necessário achar um
balanço ótimo no uso de saı́das antecipadas, conforme detalhado nas seções a seguir.

Modelo: CTMDP para DNNs com Saı́das Antecipadas. Este artigo utiliza um
Processo de Decisão de Markov em Tempo Contı́nuo (Continuous-Time Markov Decision
Process – CTMDP) para determinar a polı́tica ótima que equilibra tempo de inferência e
acurácia. O modelo é inspirado em [Shifrin et al. 2020] e no exemplo de controle de
admissão no Capı́tulo 6 de [Puterman 2014].

Este trabalho assume que as entradas chegam de acordo com um processo de Pois-
son com taxa λ, e que o tempo para processar cada entrada é distribuı́do exponencialmente
com média 1/µu, onde u é a ação escolhida: u = I caso seja realizada uma saı́da ante-
cipada, e u = L, caso contrário. Seja θ a sobrecarga média, em unidades de tempo, para



se transmitir cada entrada à nuvem e processar as camadas finais do modelo de EE-DNN.
Então, 1/µL = 1/µI + θ, onde 1/µI é o tempo médio para processar uma observação na
borda, usando a saı́da antecipada.

Os principais componentes do CTMDP são: 1) espaço de estados: cada estado
representa o backlog do sistema e, possivelmente, a decisão de classificação atual para
a entrada na cabeça da fila (Head of Line - HOL), ou seja, se será realizada uma saı́da
antecipada ou não; 2) ações: o TD escolhe, em última instância, se deve realizar uma
saı́da antecipada ou continuar o processamento por camadas mais profundas, dependendo
do tamanho do backlog; 3) objetivo: maximizar a vazão, equilibrando o compromisso
entre melhoria na acurácia e o tempo de inferência.

Nos cenários em que se considera um buffer, assume-se que o TD determina dire-
tamente se realizará a saı́da antecipada ou não, em função do backlog. Para estender os
resultados ao caso em que o TD escolhe o limiar α, que impacta indiretamente a even-
tual saı́da antecipada, é preciso adicionar uma função adicional que mapeie α em uma
probabilidade de saı́da antecipada, levando em conta a distribuição de CI . Essa extensão,
unificando os modelos MAB e CTMDP, será tratada em trabalhos futuros.

Equação de Bellman. Em um processo de decisão Markoviano, a função de
valor é definida para cada estado e é computada iterativamente utilizando as equações de
Bellman [Puterman 2014]. A polı́tica ótima é definida a partir da função de valor. Devido
a restrições de espaço, esta versão do trabalho não apresenta as equações de Bellman e
o algoritmo de iteração de valor (value iteration) em sua generalidade. Ao invés disso, é
aproveitado o resultado derivado em [Shifrin et al. 2020] para tratar de uma classe especial
de polı́ticas, chamadas de polı́ticas baseadas em limiar (threshold policies). Em [Shifrin
et al. 2020] os autores provam que a polı́tica ótima para tomada de decisão no tipo de pro-
blema considerado neste artigo é do tipo limiar de backlog (backlog threshold). Segundo
tal polı́tica, se o backlog contiver mais que um determinado número de requisições pen-
dentes, deve-se adotar a ação mais rápida (neste caso, saı́da antecipada). Caso contrário,
pode-se adotar a ação mais demorada (neste caso, processar até a última camada). Os
leitores interessados nas equações de Bellman e no algoritmo de iteração por valor podem
consultá-los no relatório técnico.

Seja τ o limiar de backlog. Se, após um serviço, o backlog n for tal que n ≥
τ , adota-se a saı́da antecipada para o próximo serviço. Caso contrário, se n < τ , o
próximo serviço ocorre sem saı́da antecipada. A seguir, descreve-se brevemente a cadeia
de Markov que caracteriza o sistema para um determinado τ , e nos estudos numéricos
varia-se o limiar τ , entre 0 e B, buscando-se pelo ótimo que maximiza a vazão.

Fluxos envolvidos no modelo Markoviano. A Figura 1(a) ilustra o modelo Mar-
koviano considerado. Um fluxo de observações com taxa λ alimenta o buffer local, que
possui capacidade B. As entradas que excedem a capacidade do buffer são descartadas,
gerando um fluxo de descarte com taxa δ. As observações não descartadas são processa-
das por um dispositivo de borda, que decide localmente, com base na ocupação da fila, se
as classificações devem ser realizadas em camadas intermediárias ou enviadas à nuvem
para processamento adicional.

Cadeia de Markov. A cadeia de Markov modela o comportamento de um sis-
tema com saı́das antecipadas e um buffer finito, para um dado limiar τ fixo. As transições



 μLπLCL

λ 

EE-DNN 

 μLπL(1-CL)

 μIπI(1-CI) μIπICIδ 

...

bk

v1 vk ...vk+1 vN

Nuvem 

n 

Buffer

B 

Dispositivo
de Borda

Taxa 
de Rejeição

Taxa 
de

Chegada

Taxa de
erro de

classificação
na saída antecipada

Taxa de
erro de

classificação
na última camada

Vazão
na saída

antecipada

Vazão
na última
camada

0

1, L 2, L 3, L

2, I 3, I

λµL

λ

µL

λ

µL
µI

λ

µI

(a) (b)

Figura 1. (a) Modelo do sistema; (b) Cadeia de Markov ilustrativa: τ = 2, B = 3.
de estado são determinadas pelas taxas de chegada (λ) e pelas taxas de atendimento (µI

e µL), que correspondem ao processamento pela saı́da antecipada e pela rede completa,
respectivamente. Cada estado da cadeia é representado por um par (n, u), onde n indica
o número de itens no buffer e u especifica a classe de processamento, que pode ser saı́da
antecipada (u = I) ou modelo de EE-DNN completo (u = L). O estado (0) é usado para
indicar que o buffer está vazio. O objetivo da modelagem é capturar o impacto de dife-
rentes polı́ticas e configurações de buffer sobre o desempenho do sistema. A Figura 1(b)
ilustra a cadeia de Markov considerada, para τ = 2 e B = 3.

A probabilidade em estado estacionário do estado (n, u) é dada por πn,u, para
1 ≤ n ≤ B, e do estado 0 é dada por πZ . Seja πI a fração de tempo em que o sistema está
processando uma entrada usando a saı́da antecipada, enquanto πL corresponde a fração de
tempo para processar até a última camada. Note que πI =

∑B
n=1 πn,I e πL =

∑B
n=1 πn,L,

de modo que πI + πL + πZ = 1. A matriz de transição da cadeia de Markov contı́nua é
construı́da considerando três tipos de eventos principais. O primeiro é a chegada de itens
ao buffer, que ocorre com taxa λ. Esse evento resulta na transição para estados com maior
ocupação do buffer, até o limite máximo B ser atingido. O segundo é o processamento
pela saı́da antecipada, com taxa µI , no qual itens deixam o buffer e podem ser classifica-
dos corretamente ou incorretamente. O terceiro evento é o processamento pelo modelo
completo, com taxa µL, cujo comportamento é análogo ao da saı́da antecipada.

A partir do equilı́brio estacionário da cadeia de Markov, podem ser derivadas três
métricas principais. A vazão, ou throughput (T ), representa a taxa de itens processados
corretamente, considerando tanto a saı́da antecipada quanto o modelo completo. A taxa
de classificações incorretas (M ) quantifica a taxa de itens processados com erro. A taxa
de descarte (δ) mede a taxa de itens descartados devido ao congestionamento do buffer.
Essas métricas são inter-relacionadas pela conservação de fluxo no sistema, de forma que
a soma das três é igual à taxa de chegada: T +M + δ = λ, conforme Figura 1(a), onde

T = µIπICI + µLπLCL, M = µIπI(1− CI) + µLπL(1− CL), δ = λ(πB,L + πB,I).
(1)

A seções a seguir avaliam as métricas acima experimentalmente ao considerar, conjunta-
mente, o impacto do contexto e do buffer.

5. Avaliação
As avaliações empregam o modelo MobileNetV2 com um ramo lateral inserido

conforme a metodologia descrita em [Laskaridis et al. 2020]. O modelo é treinado se-
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Figura 2. Acurácia em ramo lateral e a probabilidade de classificação antecipada:
(a) α = 0.7 e (b) α = 0.9; (c) confiança na camada intermediária, CI .

guindo o procedimento apresentado em [Teerapittayanon et al. 2016] usando o conjunto
de dados CIFAR-10 [Krizhevsky et al. 2009].

O CIFAR-10 contém imagens distribuı́das em dez classes. O modelo EE-DNN
pré-treinado tem como objetivo classificar cada amostra em sua respectiva classe. Con-
forme descrito na Seção 5.1, em cada experimento, o modelo é alimentado com amostras
pertencentes a uma única classe, denominada aqui como contexto. Neste caso em parti-
cular, temos falsos negativos quando a rede neural infere que a classe é diferente daquela
correspondente ao contexto, e verdadeiros positivos caso contrário. Na Seção 5.2, o con-
ceito de contexto é relaxado. Todo código desenvolvido está disponı́vel em um repositório
aberto1, incluindo a descrição detalhada da cadeia de Markov e o código para reproduzir
os resultados deste artigo.

5.1. Como Lidar com o Contexto e o Buffer?

Esta seção visa demonstrar o impacto do contexto no desempenho de DNNs
com saı́das antecipadas e buffers. Para avaliar o desempenho, esta seção considera duas
métricas: probabilidade de inferência no ramo lateral e acurácia no ramo lateral. A pro-
babilidade de inferência no ramo lateral é definida como a proporção de entradas classi-
ficadas neste ramo em relação ao número total de entradas, enquanto a acurácia no ramo
lateral é calculada como a razão entre as classificações corretas realizadas nesse ramo e o
número total de entradas classificadas nele.

As Figuras 2(a) e 2(b) mostram, respectivamente, o desempenho do modelo con-
siderando dois limiares de confiança diferentes α = 0.7 e α = 0.9. Especificamente, as
barras azuis mostram a acurácia da saı́da antecipada, e as barras vermelhas mostram a pro-
babilidade de classificação no ramo lateral. Nota-se que as diferentes classes apresentam
variações significativas na acurácia da saı́da antecipada e na probabilidade de classificação
no ramo lateral. Por exemplo, para um limiar α = 0.7, a classe de pássaros corresponde
a uma probabilidade de saı́da antecipada de aproximadamente 0.7, com a acurácia cor-
respondente de 0.9. Por outro lado, a probabilidade e a acurácia da saı́da antecipada
para a classe de aviões são 0.5 e 0.2, respectivamente. De forma clara, a distribuição das
observações entre as classes impacta o desempenho da saı́da antecipada.

Desafio: alta variância intra-classe. A Figura 2(c) apresenta um boxplot com
as confianças intermediárias CI para cada classe do CIFAR-10. Esta figura mostra a alta

1https://github.com/pachecobeto95/QAdaEE.
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Figura 3. Impacto do contexto no limiar de backlog ótimo e demais métricas.

variância nas confianças das entradas, mesmo para amostras da mesma classe. Essa alta
variância intra-classe indica a necessidade de limiares adaptativos. Embora os MABs
sejam uma solução natural para implementar limiares adaptativos, a alta variância intra-
classe das confianças desafia a convergência de algoritmos clássicos de MAB, como o
algoritmo UCB [Auer et al. 2002], o que requer uma divisão adicional das entradas com
base nas suas respectivas confianças de classificação, conforme detalhado a seguir.

Impacto do contexto no buffer. A Figura 3(a) apresenta o limiar de backlog
ótimo, considerando diferentes tamanhos de buffer, nı́veis de sobrecarga e contextos,
cada contexto representando uma classe do conjunto CIFAR-10. Os resultados eviden-
ciam que o limiar de backlog ótimo varia conforme o contexto, reforçando a importância
de limiares de backlog adaptativos em modelos EE-DNNs. Além disso, observa-se uma
relação inversa entre o nı́vel de sobrecarga e o limiar de backlog: à medida que a sobre-
carga associada à transmissão e processamento na nuvem aumenta, os limiares ótimos
tendem a diminuir. Esse comportamento sugere que, em cenários com maior sobrecarga,
é mais vantajoso concluir a inferência nos ramos laterais, adotando saı́das antecipadas,
e que o valor ótimo depende do contexto. A Figura 3(b), obtida usando os limiares de
backlog ótimos apresentados na Figura 3(a), indica como que a decomposição apresen-
tada na Eq. (1) se traduz na prática. Em particular, vemos que a vazão aumenta sutilmente
quando passamos da classe ‘gato’ para a classe ‘pássaro’. Tal aumento da vazão (verde)
se deve primordialmente a uma diminuição na taxa de erro de classificação (vermelho),
notando-se que taxa de rejeição de observações se mantém praticamente estável ao longo
das configurações consideradas (amarelo). Tal estabilidade se deve, em parte, ao ajuste no
limiar, que nesta seção é ilustrado sempre em seu valor ótimo. Na Seção 5.3, analisa-se a
classe ‘gato’, ilustrando como os componentes da Eq. (1) variam em cenários subótimos.

5.2. Avaliação do Algoritmo de Aprendizado

Classes e contextos. A seguir, o conceito de contexto é refinado. Para isso, as
entradas de interesse são divididas em bins. Assim, o contexto se refere à distribuição
das entradas entre os bins. Cada bin pode corresponder a uma classe alvo (por exemplo,
avião, navio ou cachorro, como na Figura 2), ou a um intervalo de confiança (por exemplo,
CI ∈ [0, 0.1], como na Figura 4). Neste último caso, no qual o contexto corresponde à
distribuição das entradas conforme a confiança intermediária CI , agrupam-se as entradas
em m bins de intervalo de tamanho igual B1, . . . , Bm com base na confiança CI para
capturar a complexidade da entrada. Assim, cada bin Bi contém imagens cuja confiança
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]
, por exemplo, se m = 10, o bin B1 contém imagens com

CI ∈ (0, 0.1]. Como antes, o contexto muda quando a distribuição das observações entre
os bins é modificada, observando que o contexto impacta a avaliação do algoritmo, mas
não afeta explicitamente sua operação.

Qual é o impacto da sobrecarga? A Figura 4 mostra a probabilidade de valer a
pena processar até a última camada, em função da sobrecarga, sob diferentes intervalos
de CI . Cada linha sólida representa um contexto particular composto por entradas cujos
CI estão em um bin de confiança especı́fico, usando as observações de todas as classes.
Primeiramente, essa figura quantifica que uma sobrecarga menor aumenta a probabilidade
de processamento até a última camada. De fato, observe que essas curvas são funções de
distribuição acumulada complementar (CCDFs). Assim, dado o intervalo de CI , a área
sob essas curvas corresponde ao ganho médio condicional de confiança. A área sob as
curvas vermelha, verde, laranja e azul sólida é 0.07, 0.22, 0.35 e 0.48, respectivamente,
correspondendo a valores decrescentes de CI .

A saı́da antecipada é ótima sob um critério de ganho médio quando a área é menor
que a sobrecarga. Quanto maior o valor de CI , mais provável é que a saı́da antecipada
seja ótima. A Figura 4 também nos permite avaliar o impacto das decisões além das
médias, levando em conta a distribuição dos ganhos. Por exemplo, quando a sobrecarga
é 0.15, a saı́da antecipada é ótima para 50% e 80% das entradas se CI ∈ (0.8, 0.9) e
CI ∈ (0.6, 0.7), respectivamente. As linhas pontilhadas filtram ainda mais as entradas
com base em suas classes-alvo, ou seja, representando uma mudança de contexto baseada
em classes. Para cada um dos quatro intervalos de CI considerados, adicionamos duas
linhas pontilhadas que correspondem a amostras das classes-alvo de cães e gatos. A figura
mostra que as áreas sob as curvas, e portanto os limiares ótimos, mudam de acordo com
o contexto. De fato, esse comportamento exige uma avaliação adaptativa de limiares,
na qual os benefı́cios da saı́da antecipada são continuamente avaliados em função das
estatı́sticas coletadas de novas entradas.

Arrependimento logarı́tmico é viável? Os resultados demonstram experimen-
talmente a convergência para selecionar o limiar ótimo α∗ que se adapta ao contexto.
Para isso, executa-se o algoritmo considerado utilizando imagens de teste do conjunto de
dados CIFAR-10. As imagens são agrupadas em bins de confiança, conforme descrito
na Seção 5.1. A cada época, uma imagem do bin é sorteada com reposição. Em seguida,
realiza-se uma inferência adaptativa de saı́da antecipada, escolhendo o limiar α utilizando
o algoritmo baseado em MAB considerado.

A Figura 5 mostra o arrependimento acumulado em função das épocas para um
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Figura 5. Arrependimento acumulado para diferentes valores de sobrecargas.

valor especı́fico de sobrecarga e vários contextos, representados pelos bins. Cada linha
corresponde a um contexto especı́fico, enquanto cada gráfico mostra os resultados para um
valor de sobrecarga especı́fico. O arrependimento acumulado Rt é calculado como a soma
do arrependimento instantâneo r(α) obtido até a t-ésima época. A Figura 5 confirma ex-
perimentalmente que o arrependimento logarı́tmico é alcançável, ou seja, a convergência
normalmente ocorre após a coleta de algumas milhares de observações para diferentes
contextos e valores de sobrecarga. Na Figura 5(a), quando a sobrecarga é zero, o limiar
ótimo é o máximo permitido, e, portanto, nunca é realizada uma saı́da antecipada. Em
contraste, a Figura 5(c) mostra que o limiar ótimo é o mı́nimo permitido quando a sobre-
carga é 0,5, realizando sempre uma saı́da antecipada. Para outros valores de sobrecarga,
o limiar ótimo está entre os dois extremos. A Figura 5 mostra que, à medida que a sobre-
carga aumenta de 0 para 0,5, a dificuldade de encontrar o limiar ótimo primeiro aumenta e
depois diminui. De fato, para todos os contextos considerados, o arrependimento acumu-
lado cresce logaritmicamente após 100.000 observações coletadas quando a sobrecarga é
zero, permanecendo abaixo de 1.200 na época 2×106. Em contraste, quando a sobrecarga
é igual a 0,2, encontramos que em quatro dos oito contextos considerados, o arrependi-
mento acumulado atinge 3.000 sob o mesmo horizonte. Em seguida, quando a sobrecarga
é igual a 0,5, o arrependimento acumulado não ultrapassa 1.600 sob o horizonte conside-
rado, exceto para um dos contextos considerados.

5.3. Qual o Impacto do Limiar do Backlog?
A seguir, considera-se um buffer de tamanho 10, ou seja, capaz de armazenar

até 10 entradas. O modelo de buffer proposto é parametrizado usando dados da classe
‘gato’ da seguinte forma: µI = 6.9, CI = 0.605, CL = 0.695 e µL = µI/2, para capturar
efeitos do atraso em rede. A Figura 6 ilustra os resultados obtidos, variando λ no conjunto
{2, 4, 6}. Seja a vazão normalizada igual a vazão obtida para um determinado limiar de
backlog dividida pela vazão máxima alcançada no cenário em questão. A Figura 6(a)
ilustra o fato de que para taxas de chegada muito pequenas ou muito grandes, vale a
pena sempre usar a rede completa ou sempre fazer a saı́da antecipada, respectivamente.
Por outro lado, para uma taxa de chegada intermediária, existe um valor ótimo para o
limiar, nesse caso igual a 4, tal que a vazão é maximizada. A Figura 6(b) mostra métricas
adicionais, como a taxa de descarte e a taxa de classificação incorreta, em função do
limiar de backlog (vide Eq. (1)). Na medida em que a taxa de chegada aumenta, a taxa de
descarte também aumenta, principalmente quando o limiar de backlog é alto.

O compromisso entre a taxa de descarte e a taxa de classificação incorreta é ilus-
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Figura 6. Efeito do limiar de backlog nas métricas de interesse.

trado nas Figuras 6(c) e 6(d). Na medida em que o limiar de backlog aumenta, a acurácia
aumenta, mas a probabilidade de perda também aumenta. O que determina o limiar
ótimo é a sensibilidade de cada uma dessas métricas com relação a variações no limiar de
backlog. Conforme ilustrado nas figuras, a probabilidade de perda se torna mais sensı́vel
à medida em que a taxa de chegada aumenta, favorecendo um aumento correspondente
do limiar de backlog.

6. Conclusões e Trabalhos Futuros
Este trabalho mostrou que o contexto tem um impacto significativo no desem-

penho das DNNs de saı́da antecipada, o que exige uma abordagem adaptativa para a
parametrização da saı́da antecipada bem como para lidar com buffers. Para lidar com
mudanças de contexto, apresentou-se um algoritmo online que escolhe eficientemente o
limiar ótimo de confiança para diferentes contextos. Para lidar com buffers, apresentou-
se uma abordagem baseada em CTMDP. O algoritmo online é baseado em multi-armed
bandits para equilibrar o compromisso entre exploração e exploração, escolhendo efeti-
vamente o melhor limiar de confiança, enquanto que o algoritmo offline para lidar com
buffers visa encontrar o limiar de backlog ótimo. Os experimentos demonstram a con-
vergência de ambos os algoritmos para todos os contextos e vários valores de sobrecarga.

Este trabalho abre inúmeros caminhos para investigações futuras, incluindo 1)
unificação dos algoritmos online (MAB) e offline (CTMDP), 2) consideração da possibi-
lidade de mais de uma saı́da antecipada, 3) análise do impacto do limiar de confiança α
sobre a confiança de classificação na camada final, CL, ou seja, da interdependência entre
as ações e os parâmetros do problema, p.ex., usando algoritmos online para aprender CL.
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