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Abstract. This paper presents a Federated Learning Framework adapted for
resource-constrained environments, focusing on IoT devices. This is the first
framework that enables federated training directly on microcontrollers. The
framework demonstrates the autonomy of federated nodes, validating the fea-
sibility of training models directly on microcontrollers. Two experiments were
performed, showing promising results, despite challenges inherent to the envi-
ronment, such as computational limitations, communicability, and scalability.
Comparisons with related frameworks, such as TensorFlow-Federated, high-
light the efficiency and dynamism of the proposed solution. The paper also
discusses practical insights and improvements, contributing to the advancement
of decentralized learning and the evolution of the TinyML scenario.

Resumo. Este artigo apresenta um framework de Aprendizado Federado adap-
tado para ambientes com recursos limitados, com foco em dispositivos IoT. Este
é o primeiro framework que permite realizar treinamento federado diretamente
em microcontroladores. O framework demonstra a autonomia dos nós federa-
dos, validando a viabilidade de treinar modelos diretamente em microcontrola-
dores. Dois experimentos foram realizados, mostrando resultados promissores,
apesar de desafios inerentes ao ambiente, tais como limitações computacionais,
comunicabilidade e escalabilidade. Comparações com frameworks estabele-
cidos, como TensorFlow-Federated, destacam a eficiência e o dinamismo da
solução proposta. O trabalho também discute ideias práticas e melhorias, con-
tribuindo para o avanço do aprendizado descentralizado e para a evolução do
cenário TinyML.

1. Introdução

A Internet das Coisas (IoT) [Čolaković and Hadžialić 2018] redefiniu a interação entre
dispositivos e sistemas com seu grande número de inclusões diárias. Essa revolução per-
mitiu avanços e soluções inteligentes em vários contextos sociais, de áreas urbanas a
setores agrı́colas e industriais. Muitos desses dispositivos operam em um ambiente de
computação de borda, desempenhando um papel vital na habilitação e amplificação da
capacidade de processamento distribuı́do [Li et al. 2018]. De acordo com um estudo da
International Data Corporation (IDC), estima-se que os dados globais atinjam 180 zet-
tabytes (ZB), com 70% dos dados gerados pela IoT esperados para serem processados
na borda da rede até 2025 [Shi et al. 2019]. Esse cenário exige abordagens inovadoras,
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particularmente no reino do controle descentralizado capaz de operar vários dispositivos
de borda juntos.

Paralelamente, avanços em técnicas de aprendizado de máquina (ML) vem cres-
cendo significativamente. ML consiste no desenvolvimento de algoritmos e modelos que
permitem reconhecer padrões para prever e tomar decisões com base no treinamento
dos parâmetros de modelos por meio de uma grande quantidade de dados complexos
[Wang et al. 2017]. No cenário de computação de borda, a crescente descentralização
do ML se faz necessária, pois as soluções carecem de escalabilidade, possibilitando
o aumento das capacidades de processamento com a adição de mais dispositivos.
[Verbraeken et al. 2020]. Outro ponto importante é garantir a segurança e privacidade
dos dados que podem ser processados localmente ou estão sob alguma regulamentação
de proteção de dados. Os modelos de treinamento a partir de dispositivos IoT geral-
mente apresentam problemas de latência devido ao tempo de resposta do servidor central
[Verbraeken et al. 2020]. Outro problema é a largura de banda, que pode causar gargalos
na comunicação de dados com o servidor central ou até mesmo sobrecarregar a rede, prin-
cipalmente em redes com conectividade limitada, impossibilitando, portanto, a utilização
de ML centralizado em alguns cenários.

Como a computação de borda envolve a produção contı́nua de uma grande quanti-
dade de dados, o Aprendizado Federado (FL) [Zhang et al. 2021] surge como uma abor-
dagem inovadora no campo do aprendizado de máquina, especialmente adaptada para am-
bientes descentralizados. Nesse paradigma, o treinamento do modelo ocorre localmente
em dispositivos distribuı́dos, preservando a privacidade dos dados, pois não é necessário
transferir dados locais para um servidor central. Localmente, algoritmos de aprendizado
especı́ficos são empregados para ajustar os parâmetros do modelo. A colaboração en-
tre dispositivos ocorre de forma federada, onde cada dispositivo contribui para o trei-
namento global, promovendo assim a convergência entre modelos locais. Essa abor-
dagem pode oferecer vantagens significativas em ambientes com recursos computaci-
onais limitados, pois o treinamento do modelo é totalmente distribuı́do, otimizando a
eficiência da comunicação e minimizando a sobrecarga de dados entre dispositivos fe-
derados. No entanto, a implementação eficaz de técnicas de aprendizado de máquina
em dispositivos com recursos limitados enfrenta desafios significativos. Termos como
TinyML [Abadade et al. 2023] surgiram como referências para modelos de treinamento
especificamente para dispositivos de borda como esses.

Pode-se destacar vários desafios ao tentar aplicar sistemas de FL em dispositivos
com grande restrição computacional. Por exemplo, como reduzir o uso de memória do
dispositivo ou mesmo diminuir a latência na execução da etapa de treinamento no disposi-
tivo, pois os dispositivos têm memória flash e memória de acesso aleatório (RAM) restrita
e normalmente têm um núcleo de processamento com arquiteturas de hardware simples,
operando em frequências mais baixas em comparação aos computadores convencionais.
Logo, o problema em estudo nesse trabalho é como realizar e escalar o treinamento de mo-
delos de ML de forma federada em ambientes com dispositivos com grandes limitações de
hardware, garantindo a convergência do treinamento e obtendo desempenho satisfatório
para um conjunto de aplicações.

Dado o cenário acima, este trabalho propõe um framework para realizar o treina-
mento de modelos de ML de forma federada diretamente em microcontroladores, respei-



tando as limitações de recursos computacionais desses dispositivos. Diferente de soluções
existentes na literatura, o framework proposto é o único que permite realizar a etapa de
treinamento federado diretamente nos microcontroladores. A solução proposta abstrai di-
versos aspectos do processo de aprendizado federado, além de oferecer uma interface sim-
ples para os desenvolvedores. Desse modo, o framework demanda apenas a definição de
alguns hiperparâmetros, como o número de dispositivos clientes, configuração de épocas
por dispositivos e configurações de sincronização com o servidor de FL. De forma a
demonstrar a viabilidade de se realizar treinamento federado diretamente em sistemas
embarcados, uma comparação com o estabelecido TensorFlow-Federated foi realizada,
destacando a eficiência e o dinamismo da solução proposta.

Este trabalho é organizado da seguinte forma: a Seção 2 apresenta trabalhos rela-
cionados ao tema de aprendizado de máquina com dispositivos embarcados. Em seguida,
a Seção 3 descreve em detalhes o desenvolvimento da arquitetura da estrutura de aprendi-
zado federado para o problema proposto. Na Seção 4, um caso de uso é apresentado, que
usa o conjunto de dados da flor iris para simular o ambiente FL e comparar a solução pro-
posta com o TensorFlow-Federated. Finalmente, a Seção 5 fornece as conclusões obtidas
ao longo do trabalho e propostas para trabalhos futuros.

2. Trabalhos Relacionados
A literatura foi revisada para encontrar trabalhos que forneçam suporte para o desenvol-
vimento de soluções de ML em um ambiente descentralizado que opera em pequenos
dispositivos para treinamento de nós de rede federados.

O trabalho de Llisterri Gimenez et al.˜[Llisterri Giménez et al. 2022] levanta pon-
tos importantes na implementação de aprendizado distribuı́do para reconhecimento de
palavras-chave. Usa-se uma placa Arduino Nano 33 BLE Sense. A arquitetura do sistema
é projetada para que o treinamento seja totalmente supervisionado com o objetivo princi-
pal de reconhecer duas palavras pelo usuário. No entanto, o trabalho tem uma aplicação
única e é dedicado a um único problema, pois não possui uma estrutura de ferramentas
que suporte o treinamento como um framework dedicado.

O trabalho de Ficco et al. [Ficco et al. 2024] cria outra abordagem geral para o
treinamento em microcontroladores. A ideia principal é montar um sistema de apren-
dizado federado para pequenos dispositivos heterogêneos, cada um com suas próprias
caracterı́sticas, limitações e restrições. Um dos principais recursos explorados no traba-
lho é a quantidade de RAM, que está diretamente relacionada à complexidade do modelo
que está sendo treinado e à latência de aprendizagem que está atrelada ao poder compu-
tacional do dispositivo. O trabalho avalia como diferentes hardwares se comportam com
diferentes métricas de aprendizagem em cenários com e sem FL. Pontos fundamentais são
levantados, especialmente quanto à aplicação da técnica proposta em cenários do mundo
real para avaliar seu desempenho em vários domı́nios.

Além do escopo do treinamento e das restrições do microcontrolador, alguns estu-
dos abordam a etapa de treinamento federado. O trabalho de [Wulfert et al. 2023] traz um
novo conceito chamado TinyFL. Por meio da integração do barramento de comunicação
de circuito integrado (I2C), o TinyFL usa um protocolo mestre/escravo hı́brido onde o
MCU mestre é responsável pela comunicação e agregação. Usando o reconhecimento de
gestos como estudo de caso, a abordagem deste estudo atingiu uma velocidade 11,5%



maior do que o treinamento centralizado. No entanto, além do barramento (I2C) ter um
alcance relativamente curto, ele pode sofrer gargalos quando estressado em um sistema
multimestre hierárquico de forma assı́ncrona, comprometendo todo o sistema federado.

A maioria das soluções TinyML não fornece um sistema robusto para configu-
rar o aprendizado federado, especialmente em relação a hiperparâmetros e parâmetros de
redes neurais. Existem abordagens interessantes, como usar servidores em nuvem para
treinamento em dispositivos restringidos computacionalmente ou usar plataformas bem
conhecidas como TensorFlow Lite para habilitar a inferência de modelos nos disposi-
tivos. No entanto, a integração dessas soluções pode tornar a implementação cara e o
processo de treinamento complexo. Este projeto apresenta uma estrutura de aprendizado
federado com opções de configuração para hiperparâmetros e parâmetros de rede neural
para microcontroladores, como será mostrado nas seções a seguir.

3. Desenvolvimento do Framework
Esta seção descreve o desenvolvimento do framework FL inicialmente para o micro-
controlador ESP32 [Rai and Rehman 2019] para analisar e estudar o framework em
comparação com a plataforma TensorFlow-Federate. O Framework consiste em um ser-
vidor que deve ser capaz de compilar e instanciar um modelo global para disponibilizá-lo
aos dispositivos clientes, onde eles treinarão o modelo global instanciado a partir de um
conjunto de dados local, simulando a capacidade de ser autônomo e descentralizado. O
servidor responsável pela aplicação deve receber os modelos locais treinados pelos micro-
controladores em cada rodada federada e agregá-los ao modelo global para classificar to-
das as classes disponı́veis do conjunto de dados escolhido para o treinamento. Após cada
rodada predefinida, o servidor apresenta as métricas de validação do aprendizado fede-
rado. As subseções a seguir descreverão com mais detalhes a funcionalidade do servidor
e cliente FL, algoritmos, configurações de hardware e fluxo de trabalho do framework.

3.1. Arquitetura do Aprendizado Federado

Uma arquitetura de aprendizado federado é implementada para executar qualquer tama-
nho de modelo, inicialmente compatı́vel com a restrição do módulo ESP32 em estudo.
Essa arquitetura consiste em um servidor central que controla vários módulos como um
nó federado em uma rede Wi-Fi por meio de um roteador local.

A estrutura da arquitetura ilustrada na Figura 1 consiste em três subestruturas fun-
damentais vinculadas chamadas FederatedLearning, NodeControl e NeuralNetwork. A
estrutura FederatedLearning representa a estrutura principal da arquitetura responsável
por indicar o status do modelo global e armazenar a instância das estruturas Neural-
Network e Nodecontrol. A estrutura Neuralnetwork possui os parâmetros necessários
para a configuração e treinamento da rede neural profunda, na qual possui ponteiros para
montar modelos de camadas e pesos de neurônios. Por fim, a estrutura NodeControl é res-
ponsável por gerenciar os nós clientes registrados na rede federada e controlar a agregação
dos modelos locais treinados no modelo global por meio de outra instância da estrutura
NeuralNetwork.

Os tipos de neurônios implementados até então para o framework foram os
neurônios de entrada, saı́da e ocultos, necessários para a configuração de uma rede neu-
ral profunda. As funções de ativação implementadas para os neurônios ocultos são ReLU,



Figura 1. Estrutura Geral do Framework de Aprendizado Federado

Sigmoid e Perceptron. Para os neurônios de saı́da, a função Softmax está disponı́vel, o que
é essencial para redes de classificação multiclasse. Até o dado momento, o framework for-
nece duas funções de perda, a saber, Categorical cross entropy e minimal mean square.
Além disso, também há duas funções de regularização disponı́veis, Lasso e Ridge, para
minimizar o efeito de overfitting. Com essas implementações, é possı́vel modelar diversos
modelos, pois as estruturas Layer, Neuron e Weight têm ponteiros para si mesmas, permi-
tindo a alocação dinâmica de tamanho n limitado pela RAM do dispositivo e também são
duplamente encadeadas para facilitar o processo de feed-forward e back-propagation da
rede.

3.1.1. Servidor do Aprendizado Federado

O servidor de arquitetura foi implementado em linguagem C. Dessa forma, há um
maior controle sobre onde ele pode ser executado em um computador convencional ou
mesmo em outro dispositivo com recursos restritos, visando, por exemplo, uma futura
implementação horizontal ou em camadas da rede federada. O servidor utiliza o padrão
de criação Singleton na estrutura FL supracitada, garantindo uma única instância global
acessı́vel. Para proteger o acesso concorrente, cada vez que é feita uma tentativa de acesso
à estrutura Singleton, uma chave mutex é utilizada, evitando a corrupção de dados durante
as operações de leitura e escrita. Ele também é responsável por gerenciar todo o controle
dos nós federados através da subestrutura NodeControl.

Além disso, o servidor é responsável por prover um serviço HTTP para consumo
da API, no qual o microcontrolador pode solicitar o modelo global, verificar a disponi-
bilidade do modelo global e se registrar como um nó válido. E para que o cliente possa
enviar modelos locais, o servidor disponibiliza um serviço Websocket com um sistema de
controle de buffer de mensagens para o controle de múltiplos nós clientes simultâneos na
rede.

Para este projeto, o Federated Averaging (FedAVG) [Sun et al. 2023] é escolhido
como o método de algoritmo de agregação. Ele é usado para combinar modelos treinados
localmente de dispositivos de borda em um modelo global em um servidor central. Ele
opera em rodadas iterativas, onde cada rodada envolve o treinamento do modelo local



seguido pela agregação de atualizações do modelo. FedAVG emprega a média ponderada
para garantir uma representação equilibrada no modelo global, facilitando a colaboração
eficaz, preservando a privacidade dos dados e minimizando a sobrecarga de comunicação.
Essa abordagem torna o FedAVG um algoritmo fundamental para sistemas de ML descen-
tralizados. Finalmente, para avaliar o modelo, o servidor executa as funções de acurácia,
precisão, revocação, especificidade e F1-Score implementadas para essa finalidade em
cada rodada federada.

3.1.2. Cliente do Aprendizado Federado

Como o cliente tem recursos computacionais limitados, ele tem o mı́nimo de tare-
fas possı́veis. Inicialmente, ele configura a comunicação serial UART, estabelece a
comunicação de rede Wi-Fi, formata e particiona o sistema de arquivos e, finalmente,
configura os pinos de entrada e saı́da. O nó cliente tem implementações de comunicação
http para requisitar o modelo global, registrar-se no servidor e verificar a disponibilidade
do modelo global. Há também a configuração da comunicação Websocket com o servidor
apenas para enviar o modelo local treinado.

3.2. Configuração do Hardware

Para interagir com a aplicação, é necessária uma etapa de preparação do hardware. A
aplicação é implantada em módulos ESP32-WROOM-32, que já integram vários dos com-
ponentes. Uma etapa importante é configurar as partições do projeto, pois a memória é
um recurso limitado, sendo de no mı́nimo 4 MB. Quatro partições foram configuradas, a
primeira NVS de 16 KB, PHYINIT de 4 KB, FACTORY de 1 MB e o restante na partição
STORAGE. Elas são usadas respectivamente para armazenar as configurações não voláteis
do sistema, inicialização fı́sica da camada de rede, armazenar dados do sistema e código
embarcado e finalmente armazenar os dados que serão usados na simulação de treina-
mento mostrada na Tabela 1.

Tabela de Partições
Nome Tipo SubTipo Offset Tamanho
NVS data nvs 0x9000 0x4000

PGYINIT data phy 0xf000 0x1000
FACTORY app factory 0x10000 1M
STORAGE data spiffs 0x110000 0x100000

Tabela 1. Tabela de representação do sistema de partição do dispositivo ESP32.

Para melhor visualização do funcionamento do sistema e para ter uma melhor
forma de depuração, foram configurados um botão e três LEDs para indicar os passos de
execução do algoritmo, como pode ser visto na Figura 2

O botão é usado para inicializar o aplicativo após a configuração base inicial do
dispositivo. O LED verde tem dois estados, em que o estado piscando indica que está
esperando o botão ser pressionado para inicializar o aplicativo, enquanto o estado ligado
indica que o aplicativo está em operação. O LED azul sinaliza qualquer conexão com o
servidor via solicitação HTTP ou usando o canal WebSocket para enviar o modelo local.



Figura 2. Configuração do Hardware.

Por fim, o LED vermelho indica falhas do sistema, em que uma piscada indica falha de
inicialização, duas piscadas indicam falha de comunicação com o servidor e três piscadas
indicam falha de treinamento.

3.3. Funcionamento Dinâmico do Sistema

Inicialmente, o servidor inicializa e compila o modelo FL, que consiste basicamente na
construção dinâmica das três estruturas descritas na Seção 3.1, onde o número de nós cli-
entes e o número de rodadas federadas são definidos para o controle dos nós. Quanto ao
treinamento da rede, o número de camadas, a função de ativação para os neurônios da ca-
mada, o número de neurônios por camada, o tipo de regularização, a taxa de regularização,
o número de épocas por rodada federada e a função de perda podem ser definidos. Logo
após, os serviços HTTP e Websocket são inicializados em threads diferentes para que os
nós clientes possam fazer as requisições necessárias.

Após a configuração inicial, o servidor aguarda o registro de todos os nós definidos
no momento da compilação, armazenados na estrutura NodeControl. Quando todos os
registros foram feitos, o servidor libera o modelo global para que os nós clientes possam
solicitá-los. Agora o servidor entra em um estado de loop aguardando o modelo local de
todos os nós registrados. Quando um modelo local é enviado ao servidor, o algoritmo
FedAvg é executado em uma cópia da rede instanciada na estrutura NodeControl. Dessa
forma, se um nó na rede perder o treinamento por algum motivo, ele pode solicitar o
modelo global da rodada atual novamente. Assim que todos os nós enviam seus modelos,
o servidor sai do loop de espera, copia a rede neural da estrutura NodeControl para a
rede neural principal e executa as métricas de desempenho. Finalmente, o servidor entra
em outro loop no qual verifica se todas as rodadas foram executadas. Caso contrário, o
servidor libera o modelo global novamente e repete o processo de rodada federada. Então,
após todas as rodadas federadas, a aplicação é encerrada. Uma melhor visualização do
fluxo de trabalho do servidor pode ser vista na Figura 3a.

As tarefas nos microcontroladores são mı́nimas devido às suas restrições compu-
tacionais. Inicialmente, o nó cliente inicia suas configurações base iniciais mencionadas
na Seção 3.1.2 para ter as condições necessárias para executar o aplicativo. Então, o nó
faz uma solicitação HTTP para se registrar como um nó operacional na rede federada.
Então, ele faz outra solicitação HTTP para verificar se o modelo global está disponı́vel.
Se não estiver disponı́vel, um loop é inicializado para verificar a disponibilidade do mo-
delo até que ele esteja disponı́vel. Quando o modelo global está finalmente pronto para
o treinamento, o loop é encerrado, continuando o fluxo do aplicativo, que subsequente-
mente faz uma nova solicitação à estrutura de aprendizado federado descrita na Seção
3.1. Com o modelo instanciado no dispositivo, o treinamento local inicializa com os da-



dos disponı́veis na partição STORAGE, apresentada na tabela 1, e com as configurações
predefinidas na compilação do modelo. Após a conclusão do treinamento, o dispositivo
abre uma conexão WebSocket para enviar o modelo local ao servidor. Por fim, o processo
retorna à etapa de verificação da disponibilidade do modelo global para uma nova rodada
federada. A Figura 3b ilustra o fluxo de operação do nó cliente conforme descrito acima.

Figura 3. Fluxograma do funcionamento do sistema dinâmico do Framework.

4. Caso de Uso
Nesta seção, apresentamos primeiramente o estudo de caso envolvendo a descrição do
conjunto de dados e sua aplicação do framework apresentado na seção 3. Além disso,
apresentamos o modelo e os hiperparâmetros escolhidos para o treinamento federado.
Dois experimentos foram conduzidos, nos quais o primeiro experimento executa o con-
junto de dados de forma federada em três microcontrolador ESP32 como nós cliente da
rede. O segundo experimento apresenta a execução do framework TFF em comparação
com o framework desenvolvido neste trabalho para demonstrar o desempenho do treina-
mento federado.

4.1. Conjunto de Dados

Para analisar o desempenho e a operação do framework, escolhemos o conjunto de dados
iris, que abrange três tipos da flor iris: Setosa, Versicolor e Virginica. Cada uma caracte-
rizada por quatro caracterı́sticas: comprimento da sépala, largura da sépala, comprimento
da pétala e largura da pétala. Este conjunto de dados tem 150 amostras, das quais há 3
classes representando a classificação dos tipos de flores de ı́ris. Cada classe tem a mesma
quantidade de amostras, totalizando um terço para cada classe.

4.2. Treinamento do modelo de rede neural

É importante construir um modelo ideal para o conjunto de dados escolhido para poder
avaliar o desempenho do framework e se ele realmente opera corretamente. É utilizada
uma rede neural totalmente conectada composta por quatro camadas. A primeira camada
de entrada é composta por quatro nós, responsáveis por receber as quatro caracterı́sticas da
amostra da flor de ı́ris. Seguidas por duas camadas ocultas com três neurônios cada, am-
bas com funções de ativação ReLU (Rectified Linear Unit). O uso da função de ativação



ReLU se deve à mitigação do problema do gradiente de fuga, uma vez que suas derivadas
são constantes para entradas positivas, facilitando a propagação do gradiente em redes
profundas. Além disso, ReLU é computacionalmente simples e promove a escassez na
ativação, melhorando a generalização do modelo e tornando-o menos propenso a over-
fitting. Por fim, a última camada, chamada de camada de saı́da, possui três neurônios
porque as amostras são distribuı́das em três classes. Portanto, ele usa a função de ativação
Softmax para classificação, que é ideal para transformar os valores de saı́da do modelo em
uma distribuição de probabilidade, onde a soma das probabilidades é 1, tornando mais
fácil interpretar as previsões do modelo como probabilidades de pertencer a cada classe.
O modelo pode ser melhor visualizado na Figura 4

Figura 4. O modelo usado no projeto onde as células amarelas representam os
neurônios de entrada, as células verdes representam os neurônios ocultos
e as células laranja representam as células de saı́da

A função de perda Entropia Cruzada Categórica é amplamente usada em tarefas
de classificação em Deep Learning porque mede a divergência entre a distribuição de pro-
babilidade prevista pelo modelo e a distribuição real das classes. É ideal para problemas
de classificação multiclasse porque penaliza fortemente previsões que atribuem alta pro-
babilidade às classes erradas, incentivando o modelo a ser mais preciso. Ao minimizar
a entropia cruzada categórica, o modelo ajusta seus pesos para aumentar a probabilidade
das classes corretas, resultando em previsões mais precisas e confiáveis.

Para otimizar o treinamento do modelo, é possı́vel ajustar os hiperparâmetros,
sendo a taxa de aprendizado um dos mais importantes. Essa taxa controla o quanto o
modelo é atualizado em resposta ao erro estimado em cada época de treinamento. Esco-
lher a taxa de aprendizado correta é um desafio considerável. Um valor muito pequeno
pode resultar em um longo perı́odo de treinamento, enquanto um valor muito alto pode
tornar o processo de treinamento instável. A taxa de aprendizado padrão usada em nossa
aplicação é 0,001. A ideia principal é permitir que os nós treinem por um perı́odo sufi-
ciente para que nenhum deles tenha um impacto significativo no momento da agregação
pelo servidor.

Além da taxa de aprendizado, outro hiperparâmetro crucial é definir o número de
épocas que cada nó treinará antes de enviar seu modelo local para o servidor e solicitar
uma atualização. Essa escolha é vital para equilibrar o tempo de treinamento local e a
frequência de atualização do modelo. Se o número de épocas for muito baixo, o modelo
local pode não ter tempo suficiente para aprender padrões significativos nos dados. Por
outro lado, um número excessivamente alto de épocas pode levar a um desperdı́cio de
recursos computacionais e possı́vel ajuste excessivo aos dados locais. Portanto, encontrar
o equilı́brio ideal para o número de épocas é essencial para garantir um treinamento eficaz
e uma colaboração suave entre os nós e o servidor no sistema de aprendizado federado.



Para finalizar a configuração do modelo, a regularização L2 (Regressão de Ridge)
foi adicionada, onde a função de perda é aumentada com a soma de todos os pesos ao qua-
drado. Em geral, ele evita o ajuste excessivo ao penalizar pesos que tiveram crescimento
significativo em comparação a outros pesos.

4.3. Execução do Framework

Para analisar o desempenho do framework em um ambiente federado, há 3 módulos do
ESP32 na rede como nós federados. Geralmente, um desempenho pior é esperado quando
um modelo é treinado de forma federada, quando comparados com um treinamento cen-
tralizado. Neste experimento, as 120 amostras disponı́veis foram divididas igualmente
entre os 3 nós da rede, totalizando 40 amostras distintas para cada um. A Figura 5 mostra
a média da função de perda do modelo local entre os 3 dispositivos.

Figura 5. Perda vs. épocas durante o processo de treinamento nos três disposi-
tivos.

Na Tabela 2 podemos ver a avaliação do modelo calculada pelo servidor através
de métricas de desempenho para 3 nós federados. Esses indicadores são cruciais para
uma análise abrangente e precisa da capacidade do modelo de fazer previsões corretas e
identificar corretamente as classes de interesse.

Ao distribuir o treinamento em 3 nós, cada um processando 40 amostras distintas,
o experimento destaca o desafio da diversidade de dados reduzida por nó, o que pode-
ria afetar potencialmente o desempenho dos modelos individuais. No entanto, o objetivo
principal dessa abordagem era demonstrar a capacidade da estrutura de treinar modelos
de rede neural profunda em dispositivos de baixa computação de forma federada. Os
resultados confirmam a viabilidade de combinar treinamento no dispositivo em micro-
controladores com aprendizado federado em uma estrutura dedicada, apesar dos desafios
relacionados à comunicação, escalabilidade e recursos computacionais limitados. Es-
sas descobertas ressaltam a capacidade da estrutura de agregar eficientemente modelos
treinados em subconjuntos distribuı́dos de dados, tornando-a uma solução viável para
aprendizado profundo baseado em computação de borda.

4.4. Comparando com o Framework Tensorflow-Federated

A comparação com um framework conhecido como o TensorFlow, aceito pela comu-
nidade, é importante para avaliar o bom funcionamento e dinamismo do framework
desenvolvido. O TensorFlow possui ferramentas de aprendizado federado chamadas



Métricas de desempenho por rodada
Rodada Acurácia Precisão Recall Especificidade F1-Score

1 0.76 0.27 1.00 0.73 0.42
2 0.76 0.30 0.90 0.74 0.45
3 0.77 0.33 0.91 0.75 0.49
4 0.78 0.43 0.81 0.77 0.57
5 0.82 0.57 0.85 0.81 0.68
6 0.81 0.57 0.81 0.81 0.67
7 0.81 0.57 0.81 0.81 0.67
8 0.81 0.57 0.81 0.81 0.67
9 0.82 0.57 0.85 0.81 0.68
10 0.82 0.57 0.85 0.81 0.68
11 0.87 0.70 0.88 0.86 0.78
12 0.92 0.87 0.90 0.93 0.88

Tabela 2. Métricas de desempenho para cada rodada durante o treinamento de
aprendizado federado no ESP32.

TensorFlow-Federated (TFF), que foram utilizadas para comparar os desempenhos asso-
ciados a cada framework. É muito difı́cil criar o mesmo modelo idêntico em frameworks
diferentes e ao mesmo tempo obter os mesmos resultados, pois pode haver pequenas
alterações nos algoritmos e diferentes formas de precisão e conversão de ponto flutuante
de uma linguagem para outra. Outro ponto importante a ser avaliado é a forma como os
parâmetros são aplicados nos diferentes frameworks, principalmente aqueles relacionados
ao aprendizado federado. Dito isso, foi montado um modelo o mais fiel possı́vel no TFF,
seguindo a mesma ideia de um modelo de 4 camadas em que uma se refere à camada de
entrada de 4 neurônios, seguida de 2 camadas intermediárias de 3 neurônios com ativação
Relu e finalmente uma camada de saı́da com ativação Softmax. A configuração federada
também consiste em 3 nós com a mesma taxa de aprendizado de 0,001, também usando
Entropia cruzada categórica como a função de perda e também o mesmo otimizador de
treinamento Stochastic Gradient Descent. É importante destacar que o TFF não permite
o treinamento federado (permite apenas a fase de inferência) diretamente nos microcon-
troladores, logo, uma rede com os 3 nós foi simulada.

Os dados também foram divididos de forma que 20% das amostras foram usadas
para avaliação do modelo e os 80% restantes foram divididos com a mesma quantidade de
40 amostras para os 3 nós de simulação da estrutura TFF. Após vários treinamentos com a
mesma configuração, resultados semelhantes sempre foram obtidos, conforme mostrado
na Figura 6 representando um desses treinamentos.

Uma similaridade notável na precisão entre a estrutura desenvolvida e o TFF
também é observada. Os resultados demonstraram que ambas as estruturas convergiram
para uma precisão comparável, como pode ser visto na Fig. 7, mostrando outra maneira
de validar a eficácia da estrutura em relação ao TFF.

Em resumo, além da compatibilidade observada na função de perda entre as ro-
dadas federadas, a precisão alcançada pelo framework proposto foi consistentemente ali-
nhada com aquela obtida pelo TFF. Essa correspondência tanto em perda quanto em pre-



Figura 6. Perda vs. épocas durante o processo de treinamento.

Figura 7. Precisão vs. rodadas federadas durante o processo de treinamento.

cisão valida a robustez e eficácia do framework desenvolvido, demonstrando que ele pode
atingir resultados equivalentes aos de um framework amplamente reconhecido como o
TFF. Assim, os resultados sugerem que o framework não é apenas uma alternativa viável,
mas também uma ferramenta confiável e competitiva para a implementação de sistemas
de aprendizado federados em dispositivos de recursos restritos e computação de borda.

4.5. Avaliação da Comunicabilidade na Rede

Foi o utilizado a ferramenta WireShark para análise do tráfego de pacotes na rede. O
projeto utiliza um roteador ASUS RT-AC1200 operando na banda de 2,4 GHz para a
conexão wi-fi dos microcontroladores.

Os dados da Tabela 3 indicam que as operações CheckGlobalModel e GetGlobal-
Model, ambas do tipo GET, possuem pacotes pequenos e latências relativamente baixas,
sendo CheckGlobalModel ainda mais leve. Apesar de GetGlobalModel e SendGlobal-
Model transmitirem modelos de tamanho equivalente na teoria (o mesmo modelo com
pesos ajustados após o treinamento), observa-se uma diferença significativa nas latências.
Enquanto GetGlobalModel apresenta picos ocasionais, PostGlobalModel, realizada via
WebSocket, possui latências consistentemente mais altas, em torno de 1 segundo, o que
pode ser atribuı́do ao overhead de envio ou processamento no servidor. Essa diferença
sugere que fatores como estado da conexão WebSocket ou carga do servidor podem im-
pactar o desempenho.



Round CheckGlobalModel GetGlobalModel SendGlobalModel
Pacotes Latência Pacotes Latência Pacotes Latência

1 5 26ms 7 36ms 8 1044ms
2 5 20ms 7 29ms 9 1034ms
3 5 17ms 7 24ms 9 1021ms
4 5 26ms 7 55ms 9 1026ms
5 5 20ms 7 63ms 8 1024ms
6 5 16ms 7 56ms 8 1029ms
7 5 16ms 7 57ms 9 1036ms
8 5 24ms 7 45ms 8 1032ms
9 5 16ms 7 61ms 8 1028ms

10 5 32ms 7 80ms 6 1036ms
11 5 21ms 7 27ms 8 1023ms
12 5 18ms 7 75ms 8 1033ms

Tabela 3. Tabela com dados de pacotes e latências das operações CheckGlobal-
Model, GetGlobalModel e PostGlobalModel.

4.6. Métricas de Consumo de Energia

O módulo INA219 foi integrado via barramento I2C para medir o consumo de energia.
A tensão, conforme mostrado na Tabela 4, representa a tensão na carga, calculada como
a soma da tensão de derivação (queda de tensão no resistor) e da tensão do barramento
(tensão da fonte). Tais resultados mostram que diferentes soluções de alimentação de
energia podem ser empregadas durante a utilização do framework, como por exemplo,
pequenos painéis solares integrados ou bateria de lı́tio.

State Load Voltage (V) Current (mA) Power (mW)
Idle 5.03 68.10 340.00

Training 5.02 83.10 410.00

Tabela 4. Métricas de consumo de energia durante as fases de inatividade e
treinamento, capturadas pelo módulo INA219.

5. Conclusão e Trabalhos Futuros

Foi apresentado um framework de aprendizado federado, que realiza treinamento no dis-
positivo de um modelo de rede neural usando módulos ESP32-WROON-32. Um caso de
uso descreveu como o aplicativo treina rótulos de flores de ı́ris em cada dispositivo de
forma federada, demonstrando a autonomia dos nós na rede. Dois experimentos foram
realizados: um descreveu a aplicação do framework com três nós de forma federada e
o outro experimento foi a comparação do framework desenvolvido com o Tensorflow-
Federated. Os experimentos também mostraram uma tendência decrescente nas perdas
conforme as rodadas de treinamento aumentaram, conforme esperado. Os resultados de
ambos os experimentos indicam a viabilidade de combinar treinamento no dispositivo em
microcontroladores com aprendizado federado em um framework dedicado, apesar dos
desafios de comunicabilidade, escalabilidade e escassez de recursos computacionais por
parte dos microcontroladores.



Dentre as melhorias que podem ser feitas no framework pode-se destacar, a
implementação de mais funções de ativação, funções de perda e outros métodos de
otimização. Um outro ponto interessante seria implementar outros meios de comunicação
mais adequados para microcontroladores, como comunicação em rede LoRa ou serial bus.
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