Um Framework para Realizar Aprendizado Federado em
Ambientes com Recursos de Hardware Limitados

Igor L. Tomich' e Guilherme Maia'!

!Departamento de Ciéncia da Computagio
Universidade Federal de Minas Gerais (UFMG) — Belo Horizonte — MG — Brazil

{igorlt96, jgmm}@dcc.ufmg.br

Abstract. This paper presents a Federated Learning Framework adapted for
resource-constrained environments, focusing on IoT devices. This is the first
framework that enables federated training directly on microcontrollers. The
framework demonstrates the autonomy of federated nodes, validating the fea-
sibility of training models directly on microcontrollers. Two experiments were
performed, showing promising results, despite challenges inherent to the envi-
ronment, such as computational limitations, communicability, and scalability.
Comparisons with related frameworks, such as TensorFlow-Federated, high-
light the efficiency and dynamism of the proposed solution. The paper also
discusses practical insights and improvements, contributing to the advancement
of decentralized learning and the evolution of the TinyML scenario.

Resumo. Este artigo apresenta um framework de Aprendizado Federado adap-
tado para ambientes com recursos limitados, com foco em dispositivos loT. Este
é o primeiro framework que permite realizar treinamento federado diretamente
em microcontroladores. O framework demonstra a autonomia dos nos federa-
dos, validando a viabilidade de treinar modelos diretamente em microcontrola-
dores. Dois experimentos foram realizados, mostrando resultados promissores,
apesar de desafios inerentes ao ambiente, tais como limita¢cdes computacionais,
comunicabilidade e escalabilidade. Comparagcoes com frameworks estabele-
cidos, como TensorFlow-Federated, destacam a eficiéncia e o dinamismo da
solucdo proposta. O trabalho também discute ideias prdticas e melhorias, con-
tribuindo para o avango do aprendizado descentralizado e para a evolugdo do
cendrio TinyML.

1. Introducao

A Internet das Coisas (IoT) [Colakovié and HadZiali¢ 2018] redefiniu a interacdo entre
dispositivos e sistemas com seu grande nimero de inclusdes didrias. Essa revolucdo per-
mitiu avangos e solugdes inteligentes em varios contextos sociais, de areas urbanas a
setores agricolas e industriais. Muitos desses dispositivos operam em um ambiente de
computacao de borda, desempenhando um papel vital na habilitacdo e amplificacdo da
capacidade de processamento distribuido [Li et al. 2018]. De acordo com um estudo da
International Data Corporation (IDC), estima-se que os dados globais atinjam 180 zet-
tabytes (ZB), com 70% dos dados gerados pela IoT esperados para serem processados
na borda da rede até 2025 [Shi et al. 2019]. Esse cenario exige abordagens inovadoras,

Pesquisa parcialmente financiada pela FAPEMIG, processos #APQ-02510-18 e #APQ-00426-22.

particularmente no reino do controle descentralizado capaz de operar varios dispositivos
de borda juntos.

Paralelamente, avancos em técnicas de aprendizado de maquina (ML) vem cres-
cendo significativamente. ML consiste no desenvolvimento de algoritmos e modelos que
permitem reconhecer padrdes para prever e tomar decisdes com base no treinamento
dos parametros de modelos por meio de uma grande quantidade de dados complexos
[Wang et al. 2017]. No cendrio de computacdo de borda, a crescente descentralizacio
do ML se faz necessaria, pois as solu¢des carecem de escalabilidade, possibilitando
o aumento das capacidades de processamento com a adicdo de mais dispositivos.
[Verbraeken et al. 2020]. Outro ponto importante € garantir a seguranca e privacidade
dos dados que podem ser processados localmente ou estdo sob alguma regulamentagdo
de protecdo de dados. Os modelos de treinamento a partir de dispositivos IoT geral-
mente apresentam problemas de laténcia devido ao tempo de resposta do servidor central
[Verbraeken et al. 2020]. Outro problema € a largura de banda, que pode causar gargalos
na comunicac¢do de dados com o servidor central ou até mesmo sobrecarregar a rede, prin-
cipalmente em redes com conectividade limitada, impossibilitando, portanto, a utilizagdo
de ML centralizado em alguns cenarios.

Como a computagdo de borda envolve a produgdo continua de uma grande quanti-
dade de dados, o Aprendizado Federado (FL) [Zhang et al. 2021] surge como uma abor-
dagem inovadora no campo do aprendizado de maquina, especialmente adaptada para am-
bientes descentralizados. Nesse paradigma, o treinamento do modelo ocorre localmente
em dispositivos distribuidos, preservando a privacidade dos dados, pois nao € necessario
transferir dados locais para um servidor central. Localmente, algoritmos de aprendizado
especificos sdo empregados para ajustar os parametros do modelo. A colaboraciao en-
tre dispositivos ocorre de forma federada, onde cada dispositivo contribui para o trei-
namento global, promovendo assim a convergéncia entre modelos locais. Essa abor-
dagem pode oferecer vantagens significativas em ambientes com recursos computaci-
onais limitados, pois o treinamento do modelo € totalmente distribuido, otimizando a
eficiéncia da comunicacdo e minimizando a sobrecarga de dados entre dispositivos fe-
derados. No entanto, a implementacdo eficaz de técnicas de aprendizado de maquina
em dispositivos com recursos limitados enfrenta desafios significativos. Termos como
TinyML [Abadade et al. 2023] surgiram como referéncias para modelos de treinamento
especificamente para dispositivos de borda como esses.

Pode-se destacar varios desafios ao tentar aplicar sistemas de FLL em dispositivos
com grande restricdo computacional. Por exemplo, como reduzir o uso de memoria do
dispositivo ou mesmo diminuir a laté€ncia na execucao da etapa de treinamento no disposi-
tivo, pois os dispositivos t€m memoria flash e memoria de acesso aleatério (RAM) restrita
e normalmente tém um nucleo de processamento com arquiteturas de hardware simples,
operando em frequéncias mais baixas em comparag¢ao aos computadores convencionais.
Logo, o problema em estudo nesse trabalho é como realizar e escalar o treinamento de mo-
delos de ML de forma federada em ambientes com dispositivos com grandes limitagcdes de
hardware, garantindo a convergéncia do treinamento e obtendo desempenho satisfatério
para um conjunto de aplicagdes.

Dado o cendrio acima, este trabalho propde um framework para realizar o treina-
mento de modelos de ML de forma federada diretamente em microcontroladores, respei-

tando as limitagdes de recursos computacionais desses dispositivos. Diferente de solugdes
existentes na literatura, o framework proposto € o tinico que permite realizar a etapa de
treinamento federado diretamente nos microcontroladores. A solu¢do proposta abstrai di-
versos aspectos do processo de aprendizado federado, além de oferecer uma interface sim-
ples para os desenvolvedores. Desse modo, o framework demanda apenas a definicao de
alguns hiperparametros, como o nidmero de dispositivos clientes, configuracdo de épocas
por dispositivos e configuracdes de sincronizacdo com o servidor de FL. De forma a
demonstrar a viabilidade de se realizar treinamento federado diretamente em sistemas
embarcados, uma comparacao com o estabelecido TensorFlow-Federated foi realizada,
destacando a eficiéncia e o dinamismo da solug@o proposta.

Este trabalho € organizado da seguinte forma: a Secdo 2 apresenta trabalhos rela-
cionados ao tema de aprendizado de mdquina com dispositivos embarcados. Em seguida,
a Secdo 3 descreve em detalhes o desenvolvimento da arquitetura da estrutura de aprendi-
zado federado para o problema proposto. Na Secdo 4, um caso de uso é apresentado, que
usa o conjunto de dados da flor iris para simular o ambiente FL e comparar a solu¢do pro-
posta com o TensorFlow-Federated. Finalmente, a Se¢do 5 fornece as conclusdes obtidas
ao longo do trabalho e propostas para trabalhos futuros.

2. Trabalhos Relacionados

A literatura foi revisada para encontrar trabalhos que fornecam suporte para o desenvol-
vimento de solucdes de ML em um ambiente descentralizado que opera em pequenos
dispositivos para treinamento de nds de rede federados.

O trabalho de Llisterri Gimenez et al.”[Llisterri Giménez et al. 2022] levanta pon-
tos importantes na implementagdo de aprendizado distribuido para reconhecimento de
palavras-chave. Usa-se uma placa Arduino Nano 33 BLE Sense. A arquitetura do sistema
¢ projetada para que o treinamento seja totalmente supervisionado com o objetivo princi-
pal de reconhecer duas palavras pelo usuério. No entanto, o trabalho tem uma aplicacio
unica e é dedicado a um unico problema, pois ndo possui uma estrutura de ferramentas
que suporte o treinamento como um framework dedicado.

O trabalho de Ficco et al. [Ficco et al. 2024] cria outra abordagem geral para o
treinamento em microcontroladores. A ideia principal é montar um sistema de apren-
dizado federado para pequenos dispositivos heterogéneos, cada um com suas préprias
caracteristicas, limitagdes e restricdes. Um dos principais recursos explorados no traba-
lho é a quantidade de RAM, que estd diretamente relacionada a complexidade do modelo
que esta sendo treinado e a laténcia de aprendizagem que estd atrelada ao poder compu-
tacional do dispositivo. O trabalho avalia como diferentes hardwares se comportam com
diferentes métricas de aprendizagem em cendrios com e sem FL. Pontos fundamentais sao
levantados, especialmente quanto a aplicacdo da técnica proposta em cendrios do mundo
real para avaliar seu desempenho em véarios dominios.

Além do escopo do treinamento e das restricdes do microcontrolador, alguns estu-
dos abordam a etapa de treinamento federado. O trabalho de [Wulfert et al. 2023] traz um
novo conceito chamado TinyFL. Por meio da integragdo do barramento de comunicacao
de circuito integrado (I2C), o TinyFL usa um protocolo mestre/escravo hibrido onde o
MCU mestre € responsavel pela comunicagdo e agregacdo. Usando o reconhecimento de
gestos como estudo de caso, a abordagem deste estudo atingiu uma velocidade 11,5%

maior do que o treinamento centralizado. No entanto, além do barramento (I?C) ter um
alcance relativamente curto, ele pode sofrer gargalos quando estressado em um sistema
multimestre hierdrquico de forma assincrona, comprometendo todo o sistema federado.

A maioria das solu¢des TinyML ndo fornece um sistema robusto para configu-
rar o aprendizado federado, especialmente em relacdo a hiperpardmetros e parametros de
redes neurais. Existem abordagens interessantes, como usar servidores em nuvem para
treinamento em dispositivos restringidos computacionalmente ou usar plataformas bem
conhecidas como TensorFlow Lite para habilitar a inferéncia de modelos nos disposi-
tivos. No entanto, a integracdo dessas solucdes pode tornar a implementagdo cara e o
processo de treinamento complexo. Este projeto apresenta uma estrutura de aprendizado
federado com opcdes de configuracio para hiperparametros e parametros de rede neural
para microcontroladores, como serd mostrado nas se¢oes a seguir.

3. Desenvolvimento do Framework

Esta secdo descreve o desenvolvimento do framework FL inicialmente para o micro-
controlador ESP32 [Rai and Rehman 2019] para analisar e estudar o framework em
comparacao com a plataforma 7ensorFlow-Federate. O Framework consiste em um ser-
vidor que deve ser capaz de compilar e instanciar um modelo global para disponibilizi-lo
aos dispositivos clientes, onde eles treinardo o modelo global instanciado a partir de um
conjunto de dados local, simulando a capacidade de ser autdbnomo e descentralizado. O
servidor responsdvel pela aplicacdo deve receber os modelos locais treinados pelos micro-
controladores em cada rodada federada e agregéd-los ao modelo global para classificar to-
das as classes disponiveis do conjunto de dados escolhido para o treinamento. Apds cada
rodada predefinida, o servidor apresenta as métricas de valida¢do do aprendizado fede-
rado. As subsecdes a seguir descreverao com mais detalhes a funcionalidade do servidor
e cliente FL, algoritmos, configuracdes de hardware e fluxo de trabalho do framework.

3.1. Arquitetura do Aprendizado Federado

Uma arquitetura de aprendizado federado € implementada para executar qualquer tama-
nho de modelo, inicialmente compativel com a restricio do médulo ESP32 em estudo.
Essa arquitetura consiste em um servidor central que controla varios médulos como um
no6 federado em uma rede Wi-Fi por meio de um roteador local.

A estrutura da arquitetura ilustrada na Figura 1 consiste em trés subestruturas fun-
damentais vinculadas chamadas FederatedLearning, NodeControl e NeuralNetwork. A
estrutura FederatedLearning representa a estrutura principal da arquitetura responsdvel
por indicar o status do modelo global e armazenar a instancia das estruturas Neural-
Network e Nodecontrol. A estrutura Neuralnetwork possui 0s pardmetros necessarios
para a configuracdo e treinamento da rede neural profunda, na qual possui ponteiros para
montar modelos de camadas e pesos de neurdnios. Por fim, a estrutura NodeControl € res-
ponsdvel por gerenciar os nos clientes registrados na rede federada e controlar a agregacao
dos modelos locais treinados no modelo global por meio de outra instancia da estrutura
NeuralNetwork.

Os tipos de neurdnios implementados até entdo para o framework foram os
neur6nios de entrada, saida e ocultos, necessarios para a configuracdo de uma rede neu-
ral profunda. As fun¢des de ativacao implementadas para os neurdnios ocultos sao ReLU,

[NODECONTROL |
curentinteraction [CLTENT NODE| CLIENT NODE|
interaction cycle ipid - ipid

iclient nodes interaction interaction
[client nodes registered|
INEURAL NETWORK

[1

NEURAL NETWORK LAYER LAYER
epoch activation function type T activation function type

alpha

regularization
lambda
percentual training NEURON
lossfunction type bias.

NEURON
bias.
activation function

3T

L1 L1
NEURON] NEURON

Ly bias : Ly bias
activation function activation function
i

Figura 1. Estrutura Geral do Framework de Aprendizado Federado

®
layers activation function
IT

Sigmoid e Perceptron. Para os neur6nios de saida, a funcdo Softmax esta disponivel, o que
€ essencial para redes de classificagdo multiclasse. At€ o dado momento, o framework for-
nece duas funcdes de perda, a saber, Categorical cross entropy € minimal mean square.
Além disso, também ha duas fun¢des de regularizacdo disponiveis, Lasso e Ridge, para
minimizar o efeito de overfitting. Com essas implementacgdes, € possivel modelar diversos
modelos, pois as estruturas Layer, Neuron e Weight t€m ponteiros para si mesmas, permi-
tindo a alocacdo dinamica de tamanho n limitado pela RAM do dispositivo e também sao
duplamente encadeadas para facilitar o processo de feed-forward e back-propagation da
rede.

3.1.1. Servidor do Aprendizado Federado

O servidor de arquitetura foi implementado em linguagem C. Dessa forma, ha um
maior controle sobre onde ele pode ser executado em um computador convencional ou
mesmo em outro dispositivo com recursos restritos, visando, por exemplo, uma futura
implementagdo horizontal ou em camadas da rede federada. O servidor utiliza o padrao
de criagdo Singleton na estrutura FL supracitada, garantindo uma unica instancia global
acessivel. Para proteger o acesso concorrente, cada vez que € feita uma tentativa de acesso
a estrutura Singleton, uma chave mutex € utilizada, evitando a corrup¢ao de dados durante
as operagoes de leitura e escrita. Ele também € responsdvel por gerenciar todo o controle
dos nos federados através da subestrutura NodeControl.

Além disso, o servidor € responsavel por prover um servico HTTP para consumo
da API, no qual o microcontrolador pode solicitar o modelo global, verificar a disponi-
bilidade do modelo global e se registrar como um né valido. E para que o cliente possa
enviar modelos locais, o servidor disponibiliza um servico Websocket com um sistema de
controle de buffer de mensagens para o controle de multiplos nds clientes simultaneos na
rede.

Para este projeto, o Federated Averaging (FedAVG) [Sun et al. 2023] € escolhido
como o método de algoritmo de agregacdo. Ele € usado para combinar modelos treinados
localmente de dispositivos de borda em um modelo global em um servidor central. Ele
opera em rodadas iterativas, onde cada rodada envolve o treinamento do modelo local

seguido pela agregacdo de atualizagdes do modelo. FedAVG emprega a média ponderada
para garantir uma representacdo equilibrada no modelo global, facilitando a colaboragdo
eficaz, preservando a privacidade dos dados e minimizando a sobrecarga de comunicagao.
Essa abordagem torna o FedAVG um algoritmo fundamental para sistemas de ML descen-
tralizados. Finalmente, para avaliar o modelo, o servidor executa as fun¢des de acurécia,
precisdo, revocagdo, especificidade e FI-Score implementadas para essa finalidade em
cada rodada federada.

3.1.2. Cliente do Aprendizado Federado

Como o cliente tem recursos computacionais limitados, ele tem o minimo de tare-
fas possiveis. Inicialmente, ele configura a comunicacdo serial UART, estabelece a
comunicacao de rede Wi-Fi, formata e particiona o sistema de arquivos e, finalmente,
configura os pinos de entrada e saida. O né cliente tem implementacdes de comunicagao
http para requisitar o modelo global, registrar-se no servidor e verificar a disponibilidade
do modelo global. H4 também a configuracdo da comunica¢do Websocket com o servidor
apenas para enviar o modelo local treinado.

3.2. Configuracao do Hardware

Para interagir com a aplicagdo, € necessdria uma etapa de preparacao do hardware. A
aplicacdo ¢ implantada em médulos ESP32-WROOM-32, que ja integram varios dos com-
ponentes. Uma etapa importante é configurar as particdes do projeto, pois a memoria é
um recurso limitado, sendo de no minimo 4 MB. Quatro parti¢des foram configuradas, a
primeira NVS de 16 KB, PHYINIT de 4 KB, FACTORY de 1 MB e o restante na parti¢ao
STORAGE. Elas sao usadas respectivamente para armazenar as configuragdes nao volateis
do sistema, inicializagdo fisica da camada de rede, armazenar dados do sistema e cédigo
embarcado e finalmente armazenar os dados que serdo usados na simulacdo de treina-
mento mostrada na Tabela 1.

Tabela de Particoes
Nome Tipo | SubTipo Offset Tamanho
NVS data nvs 0x9000 0x4000
PGYINIT | data phy 0xf000 0x1000
FACTORY | app | factory | 0x10000 M
STORAGE | data | spiffs | 0x110000 | 0x100000

Tabela 1. Tabela de representacao do sistema de particao do dispositivo ESP32.

Para melhor visualizacdo do funcionamento do sistema e para ter uma melhor
forma de depuragdo, foram configurados um botéao e trés LEDs para indicar os passos de
execucao do algoritmo, como pode ser visto na Figura 2

O botdo € usado para inicializar o aplicativo apds a configuragao base inicial do
dispositivo. O LED verde tem dois estados, em que o estado piscando indica que esta
esperando o botdo ser pressionado para inicializar o aplicativo, enquanto o estado ligado
indica que o aplicativo esta em operacao. O LED azul sinaliza qualquer conexdo com o
servidor via solicitacdo HTTP ou usando o canal WebSocket para enviar o modelo local.

Figura 2. Configuracao do Hardware.

Por fim, o LED vermelho indica falhas do sistema, em que uma piscada indica falha de
inicializacdo, duas piscadas indicam falha de comunicag@o com o servidor e trés piscadas
indicam falha de treinamento.

3.3. Funcionamento Dinamico do Sistema

Inicialmente, o servidor inicializa e compila o modelo FL, que consiste basicamente na
construcdo dindmica das trés estruturas descritas na Secao 3.1, onde o nimero de nds cli-
entes e o nimero de rodadas federadas sdao definidos para o controle dos nés. Quanto ao
treinamento da rede, o nimero de camadas, a funcao de ativacao para os neuronios da ca-
mada, o numero de neurdnios por camada, o tipo de regularizacdo, a taxa de regularizacao,
o numero de épocas por rodada federada e a fun¢do de perda podem ser definidos. Logo
apos, os servicos HTTP e Websocket sdo inicializados em threads diferentes para que os
noés clientes possam fazer as requisicdes necessarias.

ApOs a configuracao inicial, o servidor aguarda o registro de todos os nos definidos
no momento da compilacdo, armazenados na estrutura NodeControl. Quando todos os
registros foram feitos, o servidor libera o modelo global para que os n6s clientes possam
solicitd-los. Agora o servidor entra em um estado de loop aguardando o modelo local de
todos os nds registrados. Quando um modelo local € enviado ao servidor, o algoritmo
FedAvg € executado em uma cOpia da rede instanciada na estrutura NodeControl. Dessa
forma, se um né na rede perder o treinamento por algum motivo, ele pode solicitar o
modelo global da rodada atual novamente. Assim que todos 0s nds enviam seus modelos,
o servidor sai do loop de espera, copia a rede neural da estrutura NodeControl para a
rede neural principal e executa as métricas de desempenho. Finalmente, o servidor entra
em outro loop no qual verifica se todas as rodadas foram executadas. Caso contrario, o
servidor libera o modelo global novamente e repete o processo de rodada federada. Entao,
apos todas as rodadas federadas, a aplicacdo € encerrada. Uma melhor visualiza¢do do
fluxo de trabalho do servidor pode ser vista na Figura 3a.

As tarefas nos microcontroladores sio minimas devido as suas restricdes compu-
tacionais. Inicialmente, o n6 cliente inicia suas configuragdes base iniciais mencionadas
na Secdo 3.1.2 para ter as condi¢gdes necessdrias para executar o aplicativo. Entdo, o n6
faz uma solicitacio HTTP para se registrar como um né operacional na rede federada.
Entao, ele faz outra solicitacio HTTP para verificar se o modelo global estd disponivel.
Se nao estiver disponivel, um loop € inicializado para verificar a disponibilidade do mo-
delo até que ele esteja disponivel. Quando o modelo global est4 finalmente pronto para
o treinamento, o loop € encerrado, continuando o fluxo do aplicativo, que subsequente-
mente faz uma nova solicitacdo a estrutura de aprendizado federado descrita na Segao
3.1. Com o modelo instanciado no dispositivo, o treinamento local inicializa com os da-

dos disponiveis na particdo STORAGE, apresentada na tabela 1, e com as configuracdes
predefinidas na compilacdo do modelo. Apds a conclusdo do treinamento, o dispositivo
abre uma conexao WebSocket para enviar o modelo local ao servidor. Por fim, o processo
retorna a etapa de verificagao da disponibilidade do modelo global para uma nova rodada
federada. A Figura 3b ilustra o fluxo de operacdo do n6 cliente conforme descrito acima.

HTTP and
WebSocket L
r services

Compiles the Start the initial
a) giabal model and b base configuration
initializes the
End of application

Node
Register

Yes

Runs the No

performance [

federated rounds
have been
executed

registration of
client nodes

Makes the

registered nodes

No

Yes
Y
have already sent _ ‘h'loli_!fl‘_ -
the local model avainire Get global
Model
No
Y

Waits for a
local model

Send the Neural
Local Network
model training

Figura 3. Fluxograma do funcionamento do sistema dinamico do Framework.

4. Caso de Uso

Nesta se¢do, apresentamos primeiramente o estudo de caso envolvendo a descri¢do do
conjunto de dados e sua aplicacdo do framework apresentado na se¢do 3. Além disso,
apresentamos o modelo e os hiperparametros escolhidos para o treinamento federado.
Dois experimentos foram conduzidos, nos quais o primeiro experimento executa o con-
junto de dados de forma federada em trés microcontrolador ESP32 como nés cliente da
rede. O segundo experimento apresenta a execucao do framework TFF em comparacao
com o framework desenvolvido neste trabalho para demonstrar o desempenho do treina-
mento federado.

4.1. Conjunto de Dados

Para analisar o desempenho e a operacdo do framework, escolhemos o conjunto de dados
iris, que abrange trés tipos da flor iris: Setosa, Versicolor e Virginica. Cada uma caracte-
rizada por quatro caracteristicas: comprimento da sépala, largura da sépala, comprimento
da pétala e largura da pétala. Este conjunto de dados tem 150 amostras, das quais ha 3
classes representando a classificacao dos tipos de flores de iris. Cada classe tem a mesma
quantidade de amostras, totalizando um terco para cada classe.

4.2. Treinamento do modelo de rede neural

E importante construir um modelo ideal para o conjunto de dados escolhido para poder
avaliar o desempenho do framework e se ele realmente opera corretamente. E utilizada
uma rede neural totalmente conectada composta por quatro camadas. A primeira camada
de entrada € composta por quatro nds, responsaveis por receber as quatro caracteristicas da
amostra da flor de iris. Seguidas por duas camadas ocultas com trés neurdnios cada, am-
bas com funcdes de ativacdo ReLU (Rectified Linear Unit). O uso da funcdo de ativacao

RelLU se deve a mitigacdo do problema do gradiente de fuga, uma vez que suas derivadas
sdo constantes para entradas positivas, facilitando a propagagdo do gradiente em redes
profundas. Além disso, ReLU é computacionalmente simples e promove a escassez na
ativacao, melhorando a generalizacdo do modelo e tornando-o menos propenso a over-
fitting. Por fim, a dltima camada, chamada de camada de saida, possui trés neurdnios
porque as amostras sao distribuidas em trés classes. Portanto, ele usa a func¢do de ativagao
Softmax para classificagdo, que € ideal para transformar os valores de saida do modelo em
uma distribuicao de probabilidade, onde a soma das probabilidades € 1, tornando mais
facil interpretar as previsdes do modelo como probabilidades de pertencer a cada classe.
O modelo pode ser melhor visualizado na Figura 4

sepal_length

Y

irns_setosa

sepal_width

irs_versicolor

petal_length

iris_virginica

A 4

petal_width

Figura 4. O modelo usado no projeto onde as células amarelas representam os
neuronios de entrada, as células verdes representam os neurénios ocultos
e as células laranja representam as células de saida

A funcdo de perda Entropia Cruzada Categdrica é amplamente usada em tarefas
de classificagdo em Deep Learning porque mede a divergéncia entre a distribuicao de pro-
babilidade prevista pelo modelo e a distribuicio real das classes. E ideal para problemas
de classificacdo multiclasse porque penaliza fortemente previsdes que atribuem alta pro-
babilidade as classes erradas, incentivando o modelo a ser mais preciso. Ao minimizar
a entropia cruzada categdrica, o modelo ajusta seus pesos para aumentar a probabilidade
das classes corretas, resultando em previsdes mais precisas e confidveis.

Para otimizar o treinamento do modelo, € possivel ajustar os hiperparametros,
sendo a taxa de aprendizado um dos mais importantes. Essa taxa controla o quanto o
modelo € atualizado em resposta ao erro estimado em cada época de treinamento. Esco-
lher a taxa de aprendizado correta € um desafio considerdvel. Um valor muito pequeno
pode resultar em um longo periodo de treinamento, enquanto um valor muito alto pode
tornar o processo de treinamento instavel. A taxa de aprendizado padrao usada em nossa
aplicacao € 0,001. A ideia principal é permitir que os nds treinem por um periodo sufi-
ciente para que nenhum deles tenha um impacto significativo no momento da agregacao
pelo servidor.

Além da taxa de aprendizado, outro hiperparametro crucial é definir o nimero de
épocas que cada no treinard antes de enviar seu modelo local para o servidor e solicitar
uma atualizacdo. Essa escolha € vital para equilibrar o tempo de treinamento local e a
frequéncia de atualizacdo do modelo. Se o numero de épocas for muito baixo, o modelo
local pode ndo ter tempo suficiente para aprender padrdes significativos nos dados. Por
outro lado, um nimero excessivamente alto de épocas pode levar a um desperdicio de
recursos computacionais e possivel ajuste excessivo aos dados locais. Portanto, encontrar
o equilibrio ideal para o numero de épocas € essencial para garantir um treinamento eficaz
e uma colaborag¢do suave entre os nds e o servidor no sistema de aprendizado federado.

Para finalizar a configuracao do modelo, a regularizagdao L2 (Regressao de Ridge)
foi adicionada, onde a funcdo de perda € aumentada com a soma de todos os pesos ao qua-
drado. Em geral, ele evita o ajuste excessivo ao penalizar pesos que tiveram crescimento
significativo em comparagao a outros pesos.

4.3. Execucao do Framework

Para analisar o desempenho do framework em um ambiente federado, hd 3 mddulos do
ESP32 na rede como nos federados. Geralmente, um desempenho pior € esperado quando
um modelo € treinado de forma federada, quando comparados com um treinamento cen-
tralizado. Neste experimento, as 120 amostras disponiveis foram divididas igualmente
entre os 3 nés da rede, totalizando 40 amostras distintas para cada um. A Figura 5 mostra
a média da fun¢do de perda do modelo local entre os 3 dispositivos.

Loss vs. Epochs

Loss

1 |
00 12 24 36 48 60 72 8 96

Epoch

Figura 5. Perda vs. épocas durante o processo de treinamento nos trés disposi-
tivos.

Na Tabela 2 podemos ver a avaliagdo do modelo calculada pelo servidor através
de métricas de desempenho para 3 nés federados. Esses indicadores sdo cruciais para
uma andlise abrangente e precisa da capacidade do modelo de fazer previsdes corretas e
identificar corretamente as classes de interesse.

Ao distribuir o treinamento em 3 nds, cada um processando 40 amostras distintas,
o experimento destaca o desafio da diversidade de dados reduzida por nd, o que pode-
ria afetar potencialmente o desempenho dos modelos individuais. No entanto, o objetivo
principal dessa abordagem era demonstrar a capacidade da estrutura de treinar modelos
de rede neural profunda em dispositivos de baixa computagdo de forma federada. Os
resultados confirmam a viabilidade de combinar treinamento no dispositivo em micro-
controladores com aprendizado federado em uma estrutura dedicada, apesar dos desafios
relacionados a comunicacdo, escalabilidade e recursos computacionais limitados. Es-
sas descobertas ressaltam a capacidade da estrutura de agregar eficientemente modelos
treinados em subconjuntos distribuidos de dados, tornando-a uma solucdo viavel para
aprendizado profundo baseado em computacao de borda.

4.4. Comparando com o Framework Tensorflow-Federated

A comparacdo com um framework conhecido como o TensorFlow, aceito pela comu-
nidade, € importante para avaliar o bom funcionamento e dinamismo do framework
desenvolvido. O TensorFlow possui ferramentas de aprendizado federado chamadas

Métricas de desempenho por rodada
Rodada | Acuracia | Precisao | Recall | Especificidade | F1-Score
1 0.76 0.27 1.00 0.73 0.42
2 0.76 0.30 0.90 0.74 0.45
3 0.77 0.33 0.91 0.75 0.49
4 0.78 0.43 0.81 0.77 0.57
5 0.82 0.57 0.85 0.81 0.68
6 0.81 0.57 0.81 0.81 0.67
7 0.81 0.57 0.81 0.81 0.67
8 0.81 0.57 0.81 0.81 0.67
9 0.82 0.57 0.85 0.81 0.68
10 0.82 0.57 0.85 0.81 0.68
11 0.87 0.70 0.88 0.86 0.78
12 0.92 0.87 0.90 0.93 0.88

Tabela 2. Métricas de desempenho para cada rodada durante o treinamento de
aprendizado federado no ESP32.

TensorFlow-Federated (TFF), que foram utilizadas para comparar os desempenhos asso-
ciados a cada framework. E muito dificil criar o mesmo modelo idéntico em frameworks
diferentes e ao mesmo tempo obter os mesmos resultados, pois pode haver pequenas
alteracOes nos algoritmos e diferentes formas de precisdo e conversio de ponto flutuante
de uma linguagem para outra. Outro ponto importante a ser avaliado € a forma como os
parametros sdo aplicados nos diferentes frameworks, principalmente aqueles relacionados
ao aprendizado federado. Dito isso, foi montado um modelo o mais fiel possivel no TFF,
seguindo a mesma ideia de um modelo de 4 camadas em que uma se refere a camada de
entrada de 4 neurdnios, seguida de 2 camadas intermedidrias de 3 neur6nios com ativagao
Relu e finalmente uma camada de saida com ativagao Softmax. A configuracao federada
também consiste em 3 nés com a mesma taxa de aprendizado de 0,001, também usando
Entropia cruzada categorica como a fungdo de perda e também o mesmo otimizador de
treinamento Stochastic Gradient Descent. E importante destacar que o TFF ndo permite
o treinamento federado (permite apenas a fase de inferéncia) diretamente nos microcon-
troladores, logo, uma rede com os 3 nés foi simulada.

Os dados também foram divididos de forma que 20% das amostras foram usadas
para avaliacdo do modelo e os 80% restantes foram divididos com a mesma quantidade de
40 amostras para os 3 nos de simulagado da estrutura TFF. Ap0s varios treinamentos com a
mesma configuracdo, resultados semelhantes sempre foram obtidos, conforme mostrado
na Figura 6 representando um desses treinamentos.

Uma similaridade notdvel na precisdo entre a estrutura desenvolvida e o TFF
também € observada. Os resultados demonstraram que ambas as estruturas convergiram
para uma precisao compardvel, como pode ser visto na Fig. 7, mostrando outra maneira
de validar a eficicia da estrutura em relagdo ao TFF.

Em resumo, além da compatibilidade observada na fun¢do de perda entre as ro-
dadas federadas, a precisdo alcancada pelo framework proposto foi consistentemente ali-
nhada com aquela obtida pelo TFF. Essa correspondéncia tanto em perda quanto em pre-

Loss vs. Epochs

T
—— Our Framework Loss

e TFF Loss

0 12 24 36 48 60 72 84
Epoch

Figura 6. Perda vs. épocas durante o processo de treinamento.

Accuracy vs. Rounds
1 I I

0.8
g 0.6 -
35
S
< 04
0.2 —8— Our Framework
—a— TFF
0
0 2 4 6 8 10 12

Rounds

Figura 7. Precisao vs. rodadas federadas durante o processo de treinamento.

cisdo valida a robustez e eficacia do framework desenvolvido, demonstrando que ele pode
atingir resultados equivalentes aos de um framework amplamente reconhecido como o
TFF. Assim, os resultados sugerem que o framework nao € apenas uma alternativa vidvel,
mas também uma ferramenta confidvel e competitiva para a implementacdo de sistemas
de aprendizado federados em dispositivos de recursos restritos € computag¢ao de borda.

4.5. Avaliacao da Comunicabilidade na Rede

Foi o utilizado a ferramenta WireShark para anédlise do trafego de pacotes na rede. O
projeto utiliza um roteador ASUS RT-AC1200 operando na banda de 2,4 GHz para a
conexao wi-fi dos microcontroladores.

Os dados da Tabela 3 indicam que as operacdes CheckGlobalModel e GetGlobal-
Model, ambas do tipo GET, possuem pacotes pequenos e laténcias relativamente baixas,
sendo CheckGlobalModel ainda mais leve. Apesar de GetGlobalModel e SendGlobal-
Model transmitirem modelos de tamanho equivalente na teoria (0 mesmo modelo com
pesos ajustados apds o treinamento), observa-se uma diferenca significativa nas laténcias.
Enquanto GetGlobalModel apresenta picos ocasionais, PostGlobalModel, realizada via
WebSocket, possui laténcias consistentemente mais altas, em torno de 1 segundo, o que
pode ser atribuido ao overhead de envio ou processamento no servidor. Essa diferenca
sugere que fatores como estado da conexdao WebSocket ou carga do servidor podem im-
pactar o desempenho.

Round | CheckGlobalModel | GetGlobalModel | SendGlobalModel
Pacotes | Laténcia | Pacotes | Laténcia | Pacotes | Laténcia

1 5 26ms 7 36ms 8 1044ms
2 5 20ms 7 29ms 9 1034ms
3 5 17ms 7 24ms 9 1021ms
4 5 26ms 7 55ms 9 1026ms
5 5 20ms 7 63ms 8 1024ms
6 5 16ms 7 56ms 8 1029ms
7 5 16ms 7 57ms 9 1036ms
8 5 24ms 7 45ms 8 1032ms
9 5 16ms 7 61ms 8 1028ms
10 5 32ms 7 80ms 6 1036ms
11 5 21ms 7 27ms 8 1023ms
12 5 18ms 7 75ms 8 1033ms

Tabela 3. Tabela com dados de pacotes e laténcias das operacoes CheckGlobal-
Model, GetGlobalModel e PostGlobalModel.

4.6. Métricas de Consumo de Energia

O médulo INA219 foi integrado via barramento 12C para medir o consumo de energia.
A tensdo, conforme mostrado na Tabela 4, representa a tensao na carga, calculada como
a soma da tensdo de derivagcdo (queda de tensdo no resistor) e da tensdo do barramento
(tensdo da fonte). Tais resultados mostram que diferentes solu¢des de alimentagcao de
energia podem ser empregadas durante a utilizacdo do framework, como por exemplo,
pequenos painéis solares integrados ou bateria de litio.

State | Load Voltage (V) | Current (mA) | Power (mW)
Idle 5.03 68.10 340.00
Training 5.02 83.10 410.00

Tabela 4. Métricas de consumo de energia durante as fases de inatividade e
treinamento, capturadas pelo médulo INA219.

5. Conclusao e Trabalhos Futuros

Foi apresentado um framework de aprendizado federado, que realiza treinamento no dis-
positivo de um modelo de rede neural usando médulos ESP32-WROON-32. Um caso de
uso descreveu como o aplicativo treina rétulos de flores de iris em cada dispositivo de
forma federada, demonstrando a autonomia dos nés na rede. Dois experimentos foram
realizados: um descreveu a aplicacdo do framework com trés nds de forma federada e
o outro experimento foi a comparacdo do framework desenvolvido com o Tensorflow-
Federated. Os experimentos também mostraram uma tendéncia decrescente nas perdas
conforme as rodadas de treinamento aumentaram, conforme esperado. Os resultados de
ambos os experimentos indicam a viabilidade de combinar treinamento no dispositivo em
microcontroladores com aprendizado federado em um framework dedicado, apesar dos
desafios de comunicabilidade, escalabilidade e escassez de recursos computacionais por
parte dos microcontroladores.

Dentre as melhorias que podem ser feitas no framework pode-se destacar, a
implementagdo de mais funcdes de ativacdo, fungdes de perda e outros métodos de
otimizacao. Um outro ponto interessante seria implementar outros meios de comunicagao
mais adequados para microcontroladores, como comunicacdo em rede LoRa ou serial bus.

Referéncias

Abadade, Y., Temouden, A., Bamoumen, H., Benamar, N., Chtouki, Y., and Hafid, A. S.
(2023). A comprehensive survey on tinyml. /EEE Access, 11:96892-96922.

Ficco, M., Guerriero, A., Milite, E., Palmieri, F., Pietrantuono, R., and Russo, S. (2024).
Federated learning for iot devices: Enhancing tinyml with on-board training. Informa-
tion Fusion, 104:102189.

Li, H., Ota, K., and Dong, M. (2018). Learning iot in edge: Deep learning for the internet
of things with edge computing. /[EEE Network, 32(1):96-101.

Llisterri Giménez, N., Monfort Grau, M., Pueyo Centelles, R., and Freitag, F. (2022).
On-device training of machine learning models on microcontrollers with federated le-
arning. Electronics, 11(4).

Rai, P. and Rehman, M. (2019). Esp32 based smart surveillance system. In 2019 2nd
International Conference on Computing, Mathematics and Engineering Technologies
(iCoMET), pages 1-3.

Shi, W., Pallis, G., and Xu, Z. (2019). Edge computing [scanning the issue]. Proceedings
of the IEEE, 107(8):1474—1481.

Sun, T., Li, D., and Wang, B. (2023). Decentralized federated averaging. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45(4):4289-4301.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and Rellermeyer,
J. S. (2020). A survey on distributed machine learning. ACM Computing Surveys,
53(2):1-33.

Wang, P, Li, Y., and Reddy, C. K. (2017). Machine learning for survival analysis: A

survey.

Waulfert, L., Wiede, C., and Grabmaier, A. (2023). Tinyfl: On-device training, communi-
cation and aggregation on a microcontroller for federated learning. In 2023 21st IEEE
Interregional NEWCAS Conference (NEWCAS), pages 1-5.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., and Gao, Y. (2021). A survey on federated
learning. Knowledge-Based Systems, 216:106775.

Colakovi¢, A. and HadZiali¢, M. (2018). Internet of things (iot): A review of enabling
technologies, challenges, and open research issues. Computer Networks, 144:17-39.

