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Abstract. The current network’s infrastructure needs to support the rapidly in-
creasing data traffic. Sophisticated planning approaches must be adopted by
the operators so the high number of applications can be managed efficiently.
In this work, a resource provisioning model for hierarchically distributed data
centers is proposed using Integer Linear Programming (ILP). The objective is
to increase the efficiency in the use of computational resources and decrease
the overhead in network links. Results show that the model is able to efficiently
accommodate 20% more applications when compared to the First-Fit approach.

1. Introduction
The growing volume of services and applications, in addition to the accelerated growth
in wireless access demands, has posed significant challenges for the next generation of
mobile networks. Cisco expects more than 50 billion individual devices to be connected to
the network by 2020 [Computing 2015]. The traffic and processing capabilities required
by these devices make it necessary to create more intelligent and sophisticated resource
provisioning approaches than the currently used strategies.

Traditional cloud computing allocates the computational resources at the core of
the network and is designed to be scalable. It is the current architecture of choice to host
Internet services, as it is a data center (DC) based paradigm capable to manage and process
large data volumes. However, traditional cloud computing incurs a significant delay in
the response time of the applications and a traffic overhead in the network core, which is
already at its limit, hindering stringent requirements such as latency of the applications.

The currently used architecture is not ready to support the stricter requirements
of new services, e.g., virtual reality. In this way, new proposals are emerging to address
these shortcomings such as Mobile Edge Computing (MEC), Cloudlet and Fog Comput-
ing. These proposals bring cloud computing (processing and storage) closer to the end
user, thereby significantly reducing end-to-end latency, and enabling a multitude of new
applications.

The MEC can be defined as an implementation of Edge Computing (EC) to bring
computing capabilities to the edge within the radio access network, thus reducing la-
tency and improving application contextualization [Dolui and Datta 2017]. MEC nodes
or servers are usually located next to the radio network controller or a macro base sta-
tion. However, the implementation of this new architecture presents several problems that
need attention, such as the allocation and provisioning of resources, traffic control, higher
capital expenditure (CAPEX) and operational expenditure (OPEX).



Traditionally, the approaches proposed in the literature focus solely on
a single layer of the architecture as in [da Silva et al. 2016], [Mei et al. 2017],
[Upadhyaya and Ahuja 2017], ignoring the proliferation of DCs in the various layers of
the network . They also overlook the DCs capacity to support a large amount of appli-
cations with different performance requirements. In this paper, a mathematical model
was proposed with the objective of optimizing resources provisioning in hierarchically
distributed networks.

This work considers a hierarchic network, divided into three levels, in which the
MEC located on the edge coexists with the traditional cloud computing. The first level
consists of the MEC architecture, the second level consists of a DC in a metropolitan
network (MAN) and the third level is traditional cloud computing. The proposed model’s
objective is to provide a better resource provisioning so that the users can be served hav-
ing their requirements respected, thus decreasing the use of network resources without
affecting the quality of the service offered.

The remainder of this article is organized as follows: Section 2 discusses the re-
lated works, Section 3 presents the mathematical formulation of the proposed model, in
Section 4 the results are discussed and Section 5 presents the conclusions obtained from
this work.

2. Related Work
In recent years, the literature has been focusing on the deployment of DC resources to
meet minimum Quality of Service (QoS) and Quality of Experience (QoE) requirements.
A comprehensive model of MAN resource provisioning in a hybrid cloud computing and
fog computing architecture is proposed in [Sturzinger et al. 2017], which decouples com-
puting functions while accounting for traffic from a set of application profiles. The model
proposed in [Sturzinger et al. 2017] intends to assist the MAN service provider in min-
imizing the total operational cost of IoT (Internet of Things) provisioning. The model
demonstrates which application profile and topological parameters have the most signifi-
cant effect on individual cost components.

A centralized and distributed resource allocation is presented in
[Masoudi and Cavdar 2017], in which the algorithms defines the allocation of joint
energy and channel distribution aiming at the minimization of energy consumption
for mobile devices. The allocation algorithm proposed in [da Silva et al. 2016] is
used to establish a strategy based on protection and in [Zhang et al. 2018] the authors
present an optimal resource allocation scheme in heterogeneous networks with MEC.
They formulate an optimization problem to provide an optimal computing unloading
strategy, sub-channel allocation, uplink transmission power and resource scheduling.
In [Zhang et al. 2017] the authors investigate the multiobjective resource allocation for
multi-user MEC systems by adopting the utility of the system as the performance metric,
which is a weighted combination of time and energy savings achieved by computing
unloading.

The authors in [Chen et al. 2018] consider the edge cloud computing offloading
which is composed of a set of wireless devices and each device has a renewable en-
ergy collection equipment. The authors formulate a multi-user multi-tasking computing
download problem for the green MEC, and use the Lyanponuv optimization approach



to determine the energy collection policy. In [Liao et al. 2017] the authors propose an
intelligent MEC-based traffic accident detection system with proximity, low latency and
vehicle identification, requiring the provision of computational resources for real-time
responses.

The related works aims at meeting the requirements of the new applications
through several techniques. However, these solutions consider aspects such as route opti-
mization and resource maximization as well as do not consider the co-existence of DC at
several network levels. Thus, this work aims at creating a model for a better provisioning
and management of network resources.

3. Mathematical Modeling

The model proposes a strategy to allocate applications while optimizing the use of net-
work resources in a hierarchically distributed scenario of three levels. The aim is to in-
crease the use of resources and the number of served applications. The model consists of
two main components: a set of R applications and a set of C nodes, representing the net-
work’s topology. This nodes are interconnected by fiber links. R is the input of the model
and the output consists of two variables: Xr

i,j , which represents the path an application of
the set R will take to reach it’s destiny and Pr,i, the node chosen by each application for
processing.

3.1. Topology and Variables

The proposed topology, composed of three levels of DCs, is illustrated in Figure 1. The
set of nodes C that composes the topology is sub-divided into three types according to
its positioning in the network, as follows: edge nodes, metropolitan data centers (MDCs)
and core nodes or core data centers (CDCs). The computational capacity is a factor that
decreases with the distance of the DC from the network core, thus the edge DCs have the
lowest computational capacity.

Figure 1. Three levels hierarchically distributed network topology.

The C set is sub-divided into another sub-group composed of two types: routing
nodes and processing nodes. Routing nodes are used to route de applications through the



topology until a DC that is capable of processing them is found. Processing nodes can be
DCs, the final destination of the application, or serve as routing nodes.

The set C is defined by six parameters, as described below:

• DCn = 1 if node n is a DC.
• CPn is the number of processing units (UP) in node n has.
• Ti,j = 1 if node i is connected to node j.
• Disti,j is the distance from the link that connects nodes i and j.
• Wli,j is the total of wavelength in the fiber that links nodes i and j.
• V f is the data propagation speed in the fiber.

The set of applications R consists of five elements, defined as follows:

• IDr represents the application id r.
• SRCr represents the source of the application r.
• Pr represents how many PUs are required to process an application r.
• Wr represents how many wavelenghts the application r will occupy in the path.
• Dr represents the maximum allowed delay of the application r.

The proposed model uses two binary variables to represent the flow and allocation
of the applications.

• Xr
i,j = 1 if the path for application r traverses link that goes from the node i to the

node j, it represents the flow of the application to its destination.
• Ar, i = 1 if the application r is allocated in the DC node i.

3.2. Objective Function

The problem was modeled through a multiobjective function, which aims at maximizing
the number of allocated applications while minimizing the number of resources used. The
function is then defined to minimize the three components shown in Eq. (1):

MinimizeFO = AlocA + AlocP + Path (1)

The first component in Eq. (1) refers to the allocation of the applications, the
second component is the allocation of the PUs and the third component is the usage of
fiber resources.

AlocA = TA −
∑
r∈R

∑
n∈C

Ar,n (2)

Eq. (2) represents the amount of applications that could not be allocated. Where
TA is the total of applications that exist at an instant of time and the sum represents the
total of applications that have been allocated. So, minimizing Eq. (2) maximizes the
number of allocated applications.



AlocP = TP −
∑
r∈R

∑
n∈C

Ar,n ∗ Pr (3)

Eq. (3) represents the amount of PUs that were not used. Where TP is the total of
PUs in the network and the sum represents the total number of UPs used by the solution.
Thus, when Eq. (3) is minimized, the use of computational resources is maximized.

Path =
∑
r∈R

∑
i∈C

∑
j∈C

Xr
i,j (4)

Eq. (4) computes the total of fiber resources used by the solution. The sum rep-
resents the total number of hops made by the applications before reaching the final desti-
nation, i.e., the DC. So, by minimizing the number of hops in an application the usage of
fiber resources can be minimized.

3.3. Constraints

A set of constraints is necessary to ensure that network and application constraints are
respected, such as the minimum acceptable latency of an application or even if the maxi-
mum amount of PU that a DC can support is not exceeded, that is ensured by Eq. (5), (6)
and (7), respectively.

∑
r∈R

(Ar,n ∗ Pr) ≤ CPn,∀n ∈ C (5)

∑
i∈C

∑
j∈C

Xr
i,j ∗Disti,j

V f
≤ Dr,∀r ∈ R (6)

∑
r∈R

Xr
i,j ∗Wr ≤ Wli,j,∀(i ∈ C, j ∈ C) (7)

Eq. (5) ensures that a DC will not exceed its capacity, that is, at most CPn UPs
will be allocated on that node. Nodes only have routing capabilities, i.g., CPn = 0, so
it is not possible to allocate applications in them. Eq. (6) ensures that an application will
have its maximum allowed latency. Eq. (7) constrains the fiber capacity by limiting the
total of applications that use the fiber. Applications that are unable to use the fiber are
blocked. Eq. (8)-(15) guarantee the path of the application, making it travel valid paths.

∑
kinC

Xr
n,k + Pr,n = 1, ∀(r ∈ R, n ∈ C, SRCr = n,DCn = 1, Tn,k = 1) (8)

∑
k∈C

Xr
n,k = 1, ∀(r ∈ R, n ∈ C, SRCr = n,DCn = 0, Tn,k = 1) (9)

Eq. (8) and (9) treats the application on its source node. Eq. (8) ensures that the
application can be allocated on the current node or move to a next node. Eq. (9) ensures
that the application should proceed to a next node, seeking a DC capable of attending it.



∑
k∈C

Xr
n,k ≤ 1,∀(r ∈ R, n ∈ C, SRCr 6= n,DCn = 1) (10)

∑
k∈C

Xr
n,k −

∑
i∈C

Xr
i,n = 0,∀(r ∈ R, n ∈ C, SRCr 6= n,DCn = 0) (11)

Eq. (10) guarantee that if the r application is on a node that is a DC and it can be
allocated in it or continue searching for a processing node. Eq. (11) ensures that if the r
application is on a routing node it continues its search for a DC.

∑
k∈C

Xr
j,k = 0,∀(Tj,k = 0, r ∈ R) (12)

Xr
j,k +Xr

k,j ≤ 1,∀(r ∈ R, j ∈ C, k ∈ C, j 6= k) (13)

The Eq. (12) ensures that the application r goes from node j to node k only if
there is a link connecting these two nodes, preventing an application from going from one
node to a non-interconnected node. The Eq. (13) ensures that an application will not loop
in between two nodes, that is, if an application r went from node i to node j it can not go
back through the same link

∑
n∈C

Ar,n ≤ 1, ∀r ∈ R (14)

Ar,j −
∑
k∈C

Xr
k,j ≤ 0, ∀(r ∈ R, j ∈ C,DCj = 1) (15)

Eq. (14) ensures that the application r will be allocated in at most one DC. Eq.
(15) ensures that the application will be allocated to the end node of your course. Thus,
node j is the last node in the application path r.

4. Results

The mathematical model was implemented using the IBM ILOG CPLEX Optimization
Studio optimization software. The scenario parameters are presented below:

• 258 Applications, summing up to 2600 PU.
• 1500 PU at the network core.
• 500 PU on the metro network.
• 600 PU at the edge of the network.
• 6 DCs (4 on the edge, 1 on the metro and 1 on the core).
• 19 Links interconnecting the nodes.



The applications used as input to the model (in both approaches) were generated
using a linear probability distribution, until the sum of the processing requirements of
the applications is equal to 2600 PU. As a benchmark, an approach was implemented
based on First-Fit [10], available in the literature. In the First-Fit scheme, the applications
searching over the DCs, from edge to core, until the DC with available capacity, is found.
In both approaches the applications search for the shortest routing path (least number of
hops) to the DC in which the application will be allocated.

A set of seven applications, as pointed out in [Sturzinger et al. 2017], is repre-
sented in table 1 along with their delay and processing parameters. It is considered as
delay the time required by each application to reach the DC.

Table 1. Application Profiles [Sturzinger et al. 2017]

Application Delay (ms) PU (CPU/Mbps)
Virtual Reality 10 30

Industrial Automation 20 9
Data Backup 1000 0
Smart Grid 50 7

Smart Home 60 0
Health 40 20

Tactile Internet 1 5

For evaluation purposes, 3 different scenarios have been created, as following:
Scenario 1 - Hierarchy of data centers (DCs in the 3 levels, as proposed); Scenario 2 -
Existence of DCs in the core only; Scenario 3 - DCs only at the edge. As can be observed
in the results in Fig. 2 and Fig. 3, the proposed model achieved superior results both
in the allocation of the applications and in DC utilization. The improvement obtained in
the proposed technique is due to a better distribution of the applications in the scenario,
avoiding congestion and early use of DCs.

Figure 2. Allocated Applications

It is possible to identify that the proposed model was superior to the benchmark in



the use of data centers and the number of applications that have been allocated, as shown
in Fig. 2 and 3. Fig. 2 shows an increase of approximately 40% of allocated applications
between scenarios 1 and 3 for the proposed model. In scenario 1 there is a difference of
more than 10% from the proposed model to the benchmark. The obtained results show
that, with better network resources provisioning it is possible to allocate a larger number
of applications.

Figure 3. Processing Units Usage

Figure 4. Link Usage

In Fig. 4 the usage of fiber resources for each approach is presented. It can be
observed that First-Fit used much more fiber resources than the proposed model, except
in scenario 3. The usage of fiber in scenario 3 is justified since the proposed model looks



for the best way to increase the number of allocated applications while in the benchmark
there is no such concern. In the First-Fit scheme, the allocation to other DCs is not
necessary if there is available capacity on the source node. Thus, the number of allocated
applications and use of fibers are decreased.

Fig. 4. also shows the percentage of applications that were not allocated in the
benchmark, due to delay restrictions. In the proposed model the applications do not have
significant delays.

The reason for these applications not being allocated is the non-optimized usage
of the fiber resources, overloading the links of smaller paths, consequently obligating the
demands to get a not optimized route, thus not meeting the QoS requirements.

5. Conclusion
Data Center architectures has emerged as a facilitator in applications processing for low-
capacity hardware. However, due to new performance requirements, the traditional cloud
computing model has become insufficient. In this work, a mathematical model was devel-
oped to optimize application allocation in hierarchical DC networks. The proposed model
was able to allocate more applications by making better use of the network resources than
the benchmark approach, which is based in the first DC found.
According to the obtained results, there was a 20% improvement in the application allo-
cation capacity, in addition to a 30% reduction in fiber usage when compared to First-Fit.
Also, the QoS requirements for different applications of the next generation were ful-
filled. In future work, a heuristic will be developed, to optimize the allocation of network
resources in order to meet the needs of all users more efficiently, looking for sub-optimal
but faster answers.

References
Chen, W., Wang, D., and Li, K. (2018). Multi-user multi-task computation offloading in

green mobile edge cloud computing. IEEE Transactions on Services Computing.

Computing, F. (2015). the internet of things: Extend the cloud
to where the things are. Available on: http://www. cisco.
com/c/dam/en us/solutions/trends/iot/docs/computingoverview. pdf.

da Silva, C. N., Wosinska, L., Spadaro, S., Costa, J. C., Francês, C. R., and Monti, P.
(2016). Restoration in optical cloud networks with relocation and services differentia-
tion. Journal of Optical Communications and Networking, 8(2):100–111.

Dolui, K. and Datta, S. K. (2017). Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing. In Global Internet of Things Summit
(GIoTS), 2017, pages 1–6. IEEE.

Liao, C., Shou, G., Liu, Y., Hu, Y., and Guo, Z. (2017). Intelligent traffic accident de-
tection system based on mobile edge computing. In Computer and Communications
(ICCC), 2017 3rd IEEE International Conference on, pages 2110–2115. IEEE.

Masoudi, M. and Cavdar, C. (2017). Cloud vs edge computing for mobile services:
Delay-aware decision making to minimize energy consumption. arXiv preprint
arXiv:1711.03771.



Mei, J., Li, K., and Li, K. (2017). Customer-satisfaction-aware optimal multiserver con-
figuration for profit maximization in cloud computing. T-SUSC, 2(1):17–29.

Sturzinger, E., Tornatore, M., and Mukherjee, B. (2017). Application-aware resource
provisioning in a heterogeneous internet of things. In Optical Network Design and
Modeling (ONDM), 2017 International Conference on, pages 1–6. IEEE.

Upadhyaya, J. and Ahuja, N. J. (2017). Quality of service in cloud computing in higher
education: A critical survey and innovative model. In I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), 2017 International Conference on, pages 137–140.
IEEE.

Zhang, J., Xia, W., Yan, F., and Shen, L. (2018). Joint computation offloading and re-
source allocation optimization in heterogeneous networks with mobile edge comput-
ing. IEEE Access, 6:19324–19337.

Zhang, X., Mao, Y., Zhang, J., and Letaief, K. B. (2017). Multi-objective resource al-
location for mobile edge computing systems. In Personal, Indoor, and Mobile Ra-
dio Communications (PIMRC), 2017 IEEE 28th Annual International Symposium on,
pages 1–5. IEEE.


